• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 268
  • 24
  • 21
  • 10
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 399
  • 399
  • 78
  • 70
  • 67
  • 64
  • 56
  • 54
  • 50
  • 47
  • 44
  • 44
  • 39
  • 36
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Electro-thermal-mechanical modeling of GaN HFETs and MOSHFETs

James, William Thomas 07 July 2011 (has links)
High power Gallium Nitride (GaN) based field effect transistors are used in many high power applications from RADARs to communications. These devices dissipate a large amount of power and sustain high electric fields during operation. High power dissipation occurs in the form of heat generation through Joule heating which also results in localized hot spot formation that induces thermal stresses. In addition, because GaN is strongly piezoelectric, high electric fields result in large inverse piezoelectric stresses. Combined with residual stresses due to growth conditions, these effects are believed to lead to device degradation and reliability issues. This work focuses on studying these effects in detail through modeling of Heterostructure Field Effect Transistors (HFETs) and metal oxide semiconductor hetero-structure field effect transistor (MOSHFETs) under various operational conditions. The goal is to develop a thorough understanding of device operation in order to better predict device failure and eventually aid in device design through modeling. The first portion of this work covers the development of a continuum scale model which couples temperature and thermal stress to find peak temperatures and stresses in the device. The second portion of this work focuses on development of a micro-scale model which captures phonon-interactions at the device scale and can resolve local perturbations in phonon population due to electron-phonon interactions combined with ballistic transport. This portion also includes development of phonon relaxation times for GaN. The model provides a framework to understand the ballistic diffusive phonon transport near the hotspot in GaN transistors which leads to thermally related degradation in these devices.
362

Mikrostrukturelle Untersuchungen an Mangan-dotiertem Galliumnitrid mittels fortgeschrittener Methoden der hochauflösenden und analytischen Transmissionselektronenmikroskopie / Microstructural investigations of Manganese-doped Gallium Nitride by modern methods of high resolution and analytical transmission electron microscopy

Niermann, Tore 30 October 2006 (has links)
No description available.
363

Investigation of Time Domain Modulation and Switching-Mode Power Amplifiers Suitable for Digitally-Assisted Transmitters

Frebrowski, Daniel Jordan January 2010 (has links)
Innovation in wireless communication has resulted in accelerating demand for smartphones using multiple communications protocols such as WiFi, Bluetooth and the many cellular standards deployed around the world. The variety of frequency, bandwidth and power requirements associated with each standard typically calls for the implementation of separate radio frequency (RF) front end hardware for each standard. This is a less-than-ideal solution in terms of cost and device area. Software-defined radio (SDR) promises to solve this problem by allowing the RF hardware to be digitally reconfigurable to adapt to any wireless standard. The application of machine learning and cognition algorithms to SDR will enable cognitive radios and cognitive wireless networks, which will be able to intelligently adapt to user needs and surrounding radio spectrum conditions. The challenge of fully reconfigurable transceivers is in implementing digitally-controlled RF circuits which have comparable performance to their fixed-frequency counterparts. Switching-mode power amplifiers (SMPA) are likely to be an important part of fully reconfigurable transmitters since their switching operation provides inherent compatibility with digital circuits, with the added benefit of very high efficiency. As a step to understanding the RF requirements of high efficiency and switching PAs, an inverse class F PA in push-pull configuration is implemented. This configuration is chosen for its similarity to the current mode class D (CMCD) topology. The fabricated PA achieves a peak drain efficiency of over 75% with 42.7 dBm (18.6 W) output power at 2.46 GHz. Since SMPAs cannot directly provide the linearity required by current and future wireless communications standards, amplitude information must be encoded into the RF signal in a different way. Given the superior time resolution of digital integrated circuit (IC) technology, a logical solution is to encode this information into the timing of the signal. The two most common techniques for doing so are pulse width modulation and delta-sigma modulation. However, the design of delta-sigma modulators requires simulation as part of the design process due to the lack of closed-form relationships between modulator parameters (such as resolution and oversampling) and performance figures (such as coding efficiency and signal quality). In particular, the coding efficiency is often ignored although it is an important part of ensuring transmitter efficiency with respect to the desired signal. A study of these relationships is carried out to observe the tradeoffs between them. It is found that increasing the speed or complexity of a DS modulated system does not necessarily translate to performance benefits as one might expect. These observations can have a strong impact on design choices at the system level.
364

Etude de fils semi-conducteurs dopés individuels par techniques locales d'analyse de surface / Study of individual doped semiconductor wires by local surface analysis techniques

Morin, Julien 18 December 2013 (has links)
Ce mémoire de thèse traite de la caractérisation de microfils et nanofils semi conducteurs dopés individuels par microscopie à émission de photoélectrons X (XPEEM) complétée par des techniques de champ proche électrique: Kelvin force microscopy (KFM) et scanning capacitance microscopy (SCM). L'objectif est d'évaluer l'apport des méthodes locales de surface « sans contact », grâce à la mesure du travail de sortie local et de l'énergie de liaison des niveaux de cœur, pour l'étude des phénomènes liés au dopage dans ces objets, comme par exemple l'uniformité longitudinale. Nous mettons d'abord en évidence l'importance de la préparation des échantillons pour la mise en œuvre des techniques citées: méthodes de transfert des fils, adéquation du substrat, influence des caractérisations pré-analyse. Nous présentons ensuite deux principales études de cas en lien avec une problématique technologique : les microfils de nitrure de gallium dopés Si (diamètre 2 µm) pour applications dans l'éclairage à l'état solide, et les jonctions pn à nanofils de Si (diamètre 100 nm) pour la nanoélectronique basse puissance. Dans le premier cas, nous avons mis en œuvre la SCM pour l'identification rapide de l'hétérogénéité axiale du dopage n, puis avons utilisé l'imagerie XPEEM spectroscopique avec excitation synchrotron pour, d'abord, estimer le travail de sortie local et la courbure de bande en surface; ensuite, élucider les modes d'incorporation du silicium en surface, qui pointent notamment sur la sensibilité des conditions d'élaboration dans la part du dopage intentionnel (Si en sites Ga) et non intentionnel (Si sur sites lacunaires en azote). (Des mesures complémentaires sur sections radiales et longitudinales de fils, par microscopie Auger et spectrométrie ToF-SIMS montrent une incorporation du Si limitée à la surface des microfils). Concernant les jonctions pn à nanofils de silicium étudiées après retrait partiel de l'oxyde de surface, nous avons mis en relation des résultats obtenus indépendamment par KFM et par XPEEM. Ils mettent conjointement en lumière une très faible différence de travail de sortie local entre partie n et partie p, et qui semble en partie expliquée par un ancrage du niveau de Fermi en surface. / This thesis addresses the characterization of individual doped semiconductors microand nanowires by photoemission electron microscopy (XPEEM) and near field techniques : Kelvin probe force microscopy (KFM) and scanning capacitance microscopy. The aim of this study is to evaluate the benefits of contactless surface methods, thanks to local work function and core level binding energy measurements, for the study of phenomena linked to doping in such objects, like for example axial uniformity. First, we highlight the importance of sample preparation required for these techniques: wires transfer methods, substrate/wire match, and preanalysis characterization influence. Then we present two case studies addressing technological issues: Si doped gallium nitride microwires (2μm diameter) for solid state lighting, and p-n junction nanowires (100 nm diameter) for low power microelectronics. In the first case, we have performed SCM for quick identification of n doping axial heterogeneity, then performed spectroscopic XPEEM using synchrotron radiation to, first, estimate local work function and surface band bending, then clarify surface silicon incorporation highlighting growth process influence over intentional (si on Ga sites) and unintentional doping (si on nitrogen vacancy). Complementary measurements on both axial and radial section of wires have been led by Auger microscopy and ToF-SIMS, highlighting silicon incorporation preferentially at the surface of the microwires. Regarding p-n junctions, after partial removal of surface oxide, we have linked results obtained independently by KFM and XPEEM. Both methods highlighted a weak local work function difference between n-doped and p-doped part, partly explained by Fermi level pinning induced by surface states.
365

Ingénierie des défauts cristallins pour l’obtention de GaN semi-polaire hétéroépitaxié de haute qualité en vue d’applications optoélectroniques / Defect engineering applied to the development of high quality heteroepitaxial semipolar GaN for optoelectronic applications

Tendille, Florian 24 November 2015 (has links)
Les matériaux semi-conducteurs III-N sont à l’origine d’une véritable révolution technologique. Mais malgré l’effervescence autour de ces sources lumineuses, leurs performances dans le vert et l’UV demeurent limitées. La principale raison à cela est l’orientation cristalline (0001)III-N (dite polaire) selon laquelle ces matériaux sont généralement épitaxiés et qui induit de forts effets de polarisation. Ces effets peuvent cependant être fortement atténués par l’utilisation d’orientations de croissance dite semi-polaires. Malheureusement, les films de GaN semi-polaires hétéroépitaxiés présentent des densités de défauts très importantes, ce qui freine très fortement leur utilisation. L’enjeu de cette thèse de doctorat est de réaliser des films de GaN semi-polaire (11-22) de haute qualité cristalline sur un substrat de saphir en utilisant la technique d’épitaxie en phase vapeur aux organométalliques. La réduction de la densité de défaut étant l’objectif majeur, différentes méthodes d’ingénieries de défauts s’appuyant sur la structuration de la surface des substrats et sur la croissance sélective du GaN ont été développées. Elles ont permis d’établir l’état de l’art actuel du GaN semi-polaire hétéroépitaxié. Par la suite, dans le but d’améliorer les performances des DELs vertes, une étude dédiée à l’optimisation de leur zone active a été menée. D’autre part, le développement de substrats autosupportés de GaN semi-polaires, ainsi que la confection de cristaux 3D de grande taille dont la qualité cristalline est comparable aux cristaux de GaN massifs ont été démontrés. Ces deux approches permettant de s’approcher encore plus de la situation idéale que serait l’homoépitaxie. / Nitride based materials are the source of disruptive technologies. Despite the technological turmoil generated by these light sources, their efficiency for green or UV emission is still limited. For these applications, the main issue to address is related to strong polarization effects due to the (0001)III-N crystal growth orientation (polar orientation). Nevertheless these effects can be drastically decreased using semipolar growth orientations. Unfortunately semipolar heteroepitaxial films contain very high defect densities which hamper their adoption for the time being. The aim of this doctoral thesis is to achieve semipolar (11-22) GaN of high quality on sapphire substrate by metalorganic chemical vapor deposition. Defect reduction being the main objective, several defect engineering methods based on sapphire substrate patterning and GaN selective area growth have been developed. Thanks to refined engineering processes, the remaining defect densities have been reduced to a level that establishes the current state of the art in semipolar heteroepitaxial GaN. These results have enabled the achievement of high quality 2 inches semipolar GaN templates, thus forming an ideal platform for the growth of the forthcoming semipolar optoelectronic devices. With this in mind, to improve green LEDs, a study dedicated to the optimization of their active region has been conducted. Finally, the development of semipolar freestanding substrate has been performed, and beyond, the realization of large size crystals with a structural quality similar to that of bulk GaN has been demonstrated. These last two approaches pave the way to quasi-homoepitaxial growth of semipolar structures.
366

Group III Nitride/p-Silicon Heterojunctions By Plasma Assisted Molecular Beam Epitaxy

Bhat, Thirumaleshwara N 07 1900 (has links) (PDF)
The present work focuses on the growth and characterizations of GaN and InN layers and nanostructures on p-Si(100) and p-Si(111) substrates by plasma-assisted molecular beam epitaxy and the studies of GaN/p-Si and InN/p-Si heterojunctions properties. The thesis is divided in to seven different chapters. Chapter 1 gives a brief introduction on III-nitride materials, growth systems, substrates, possible device applications and technical background. Chapter 2 deals with experimental techniques including the details of PAMBE system used in the present work and characterization tools for III-nitride epitaxial layers as well as nanostructures. Chapter 3 involves the growth of GaN films on p-Si(100) and p-Si(111) substrates. Phase pure wurtzite GaN films are grown on Si (100) substrates by introducing a silicon nitride layer followed by low temperature GaN growth as buffer layers. GaN films grown directly on Si (100) are found to be phase mixtured, containing both cubic and hexagonal modifications. The x-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy studies reveal that the significant enhancement in the structural and optical properties of GaN films grown with silicon nitride buffer layer grown at 800 oC, when compared to the samples grown in the absence of silicon nitride buffer layer and with silicon nitride buffer layer grown at 600 oC. Core-level photoelectron spectroscopy of SixNy layers reveals the sources for superior qualities of GaN epilayers grown with the high temperature substrate nitridation process. The discussion has been carried out on the typical inverted rectification behavior exhibited by n-GaN/p-Si heterojunctions. Considerable modulation in the transport mechanism is observed with the nitridation conditions. The heterojunction fabricated with the sample of substrate nitridation at high temperature exhibites superior rectifying nature with reduced trap concentrations. Lowest ideality factors (~1.5) are observed in the heterojunctions grown with high temperature substrate nitridation which is attributed to the recombination tunneling at the space charge region transport mechanism at lower voltages and at higher voltages space charge limited current conduction is the dominating transport mechanism. Whereas, thermally generated carrier tunneling and recombination tunneling are the dominating transport mechanisms in the heterojunctions grown without substrate nitridation and low temperature substrate nitridation, respectively. A brief comparison of the structural, optical and heterojunction properties of GaN grown on Si(100) and Si(111) has been carried out. Chapter 4 involves the growth and characterizations of InN nanostructures and thinfilms on p-Si(100) and p-Si(111) substrates. InN QDs are grown on Si(100) at different densities. The PL characteristics of InN QDs are studied. A deterioration process of InN QDs, caused by the oxygen incorporation into the InN lattice and formation of In2O3/InN composite structures was established from the results of TEM, XPS and PL studies. The results confirm the partial oxidation of the outer shell of the InN QDs, while the inner core of the QDs remains unoxidized. InN nanorods are grown on p-Si(100), structural characterizations are carried out by SEM, and TEM. InN nanodots are grown on p-Si(100), structural characterizations are performed. InN films were grown on Si(100) and Si(111) substrates and structural characterizations are carried out. Chapter 5 deals with the the heterojunction properties of InN/p-Si(100) and InN/p-Si(111).The transport behavior of the InN NDs/p-Si(100) diodes is studied at various bias voltages and temperatures. The temperature dependent ZB BH and ideality factors of the forward I-V data are observed, while it is governed through the modified Richardson’s plot. The difference in FB BH and C-V BH and the deviation of ideality factor from unity indicate the presence of inhomogeneities at the interface. The band offsets derived from C-V measurements are found to be Δ EC=1.8 eV and Δ EV =1.3 eV, which are in close agreement with Anderson’s model. The band offsets of InN/p-Si heterojunctions are estimated using XPS data. A type-III band alignment with a valence band offset of Δ EV =1.39 eV and conduction band offset of ΔEC=1.81 eV is identified. The charge neutrality level model provides a reasonable description of the band alignment of the InN/p-Si interface. The interface dipole deduced by comparison with the electron affinity model is 0.06 eV. The transport studies of InN NR/p-Si(100) heterojunctions have been carried out by conductive atomic force microscopy (CAFM) as well as conventional large area contacts. Discussion of the electrical properties has been carried out based on local current-voltage (I-V) curves, as well as on the 2D conductance maps. The comparative studies on transport properties of diodes fabricated with InN NRs and NDs grown on p-Si(100) substrates and InN thin films grown on p-Si(111) substrates have also been carried out. Chapter 6 deals with the growth and characterizations of InN/GaN heterostructures on p-Si(100) and p-Si(111) substarets and also on the InN/GaN/p-Si heterojunction properties. The X-ray diffraction (XRD), scanning electron microscopy (SEM) studies reveal a considerable variation in crystalline quality of InN with grown parameters. Deterioration in the rectifying nature is observed in the case of InN/GaN/p-Si(100) heterojunction substrate when compared to InN/GaN/p-Si (111) due to the defect mediated tunneling effect, caused by the high defect concentration in the GaN and InN films grown on Si(100) and also due to the trap centers exist in the interfaces. Reduction in ideality factor is also observed in the case of n-InN/n-GaN/p–Si(111) when compared to n-InN/n-GaN/p–Si(100) heterojunction. The sum of the ideality factors of individual diodes is consistent with experimentally observed high ideality factors of n-InN/n-GaN/p–Si double heterojunctions due to double rectifying heterojunctions and metal semiconductor junctions. Variation of effective barrier heights and ideality factors with temperature are confirmed, which indicate the inhomogeneity in barrier height, might be due to various types of defects present at the GaN/Si and InN/GaN interfaces. The dependence of forward currents on both the voltage and temperatures are explained by multi step tunneling model and the activation energis were estimated to be 25meV and 100meV for n-InN/n-GaN/p–Si(100) and n-InN/n-GaN/p–Si(111) heterojunctions, respectively. Chapter 7 gives the summary of the present study and also discusses about future research directions in this area.
367

Optimisation et analyse des propriétés de transport électroniques dans les structures à base des matériaux AlInN/GaN / Optimization and analysis of electronic transport properties in structures based on InAlN/GaN materials

Latrach, Soumaya 19 December 2018 (has links)
Les matériaux III-N ont apporté un gain considérable au niveau des performances des composants pour les applications en électronique de puissance. Les potentialités majeures du GaN pour ces applications résident dans son grand champ de claquage qui résulte de sa large bande interdite, son champ de polarisation élevé et sa vitesse de saturation importante. Les hétérostructures AlGaN/GaN ont été jusqu’à maintenant le système de choix pour l’électronique de puissance. Les limites sont connues et des alternatives sont étudiées pour les surmonter. Ainsi, les hétérostructures InAlN/GaN en accord de maille ont suscité beaucoup d’intérêts, notamment pour des applications en électronique de puissance à haute fréquence. L’enjeu de ce travail de thèse consiste à élaborer et caractériser des hétérostructures HEMTs (High Electron Mobility Transistors) afin d’établir des corrélations entre défauts structuraux, électriques et procédés de fabrication. Une étude sera donc menée sur la caractérisation de composants AlGaN/GaN afin de cerner les paramètres de croissance susceptibles d’avoir un impact notable sur la qualité structurale et électrique de la structure, notamment sur l’isolation électrique des couches tampons et le transport des porteurs dans le canal. En ce qui concerne les HEMTs InAlN/GaN, l’objectif est d’évaluer la qualité de la couche barrière. Pour cela, une étude de l’influence des épaisseurs ainsi que la composition de la barrière sera menée. La combinaison de ces études permettra d’identifier la structure optimale. Ensuite, l’analyse des contacts Schottky par des mesures de courant et de capacité à différentes températures nous permettra d’identifier les différents modes de conduction à travers la barrière. Enfin, les effets de pièges qui constituent l’une des limites fondamentales inhérentes aux matériaux étudiés seront caractérisés par différentes méthodes de spectroscopie de défauts. / III-N materials have made a significant gain in component performance for power electronics applications. The major potential of GaN for these applications lies in its large breakdown field resulting from its wide bandgap, high polarization field and high electronic saturation velocity. AlGaN/GaN heterostructures have been, until recently, the system of choice for power electronics. The limits are known and alternatives are studied to overcome them. Thus, lattice matched InAlN/GaN heterostructures have attracted a great deal of research interest, especially for high frequency power electronic applications. The aim in this work of thesis consists in developing and in characterizing High Electron Mobility Transistors (HEMTs) to establish correlations between structural, electrical defects and technologic processes. A study will therefore be conducted on the characterization of AlGaN/GaN components to enhance the parameters of growth susceptible to have a notable impact on the structural and electrical quality of the structure, in particular on the electrical isolation of the buffer layers and the transport properties. For InAlN/GaN HEMTs, the objective is to evaluate the quality of the barrier layer. For this, a study of the influence of the thickness as well as the composition of the barrier will be conducted. The combination of these studies will allow identifying the optimum structure. Then, the analysis of Schottky contacts by measurements of current and capacity at different temperatures will allow us to identify the several conduction modes through the barrier. Finally, the effects of traps which constitute one of the fundamental limits inherent to the studied materials will be characterized by various defects spectroscopy methods.
368

Conception d’une nouvelle génération de redresseur Schottky de puissance en Nitrure de Gallium (GaN), étude, simulation et réalisation d’un démonstrateur / Design of a new generation of Gallium Nitride Schottky power rectifier, study, simulation and realization of a demonstrator

Souguir-Aouani, Amira 16 December 2016 (has links)
Il y a actuellement un intérêt croissant pour la construction des dispositifs électroniques à semiconducteur pour les applications domotiques. La technologie des semiconducteurs de puissance a été essentiellement limitée au silicium. Récemment, de nouveaux matériaux ayant des propriétés supérieures sont étudiés en tant que remplaçants potentiels, en particulier : le nitrure de gallium et le carbure de silicium. L'état actuel de développement de la technologie 4H-SiC est beaucoup plus mature que pour le GaN. Cependant, l'utilisation de 4H-SiC n’est pas une solution économiquement rentable pour la réalisation des redresseurs Schottky 600 V. Les progrès récents dans le développement des couches épitaxiées de GaN de type n sur substrat Si offrent de nouvelles perspectives pour le développement des dispositifs de puissance à faible coût. C’est dans ce cadre que ma thèse s’inscrit pour réaliser avec ce type de substrat, un redresseur Schottky de puissance avec un calibre en tension de l’ordre de 600V. Deux architectures de redresseurs sont exposées. La première est une architecture pseudo-verticale proposée dans le cadre du projet G2ReC et la deuxième est une architecture latérale à base d’hétérojonction AlGaN/GaN obtenue à partir d'une structure de transistor HEMT. L’optimisation de ces deux dispositifs en GaN est issue de simulation par la méthode des éléments finis. Dans ce cadre, une adaptation des modèles de simulation à partir des paramètres physiques du GaN extraits depuis la littérature a été effectuée. Ensuite, une étude d’influence des paramètres géométriques et technologiques sur les propriétés statiques en direct et en inverse des redresseurs a été réalisée. Enfin, des structures de tests ont été fabriquées et caractérisées afin d’évaluer et d’optimiser le caractère prédictif des simulations par éléments finis. Ces études nous ont conduit à identifier l'origine des limites des structures de première génération et de définir de nouvelles structures plus performantes. / There is increasing interest in the fabrication of power semiconductor devices in home automation applications. Power semiconductor technology has been essentially confined to Si. Recently, new materials with superior properties are being investigated as potential replacements, in particular silicon carbide (SiC) and gallium nitride (GaN). The current state of development of SiC technology is much more mature than for GaN. However, the use of 4H-SiC is not a cost effective solution for realizing a medium and high voltage Schottky diode. Recent advances on the development of thick n-type GaN epilayers on Si substrate offer new prospects for the development of a low-cost Schottky rectifiers for at least medium voltage range 600 V. In the context of our thesis, two types of GaN based rectifier architectures have been studied. The first one is a pseudo-vertical architecture proposed during previous G2ReC project. The second one has a lateral structure with AlGaN/GaN heterojunction, derived from a HEMT structure. The optimization of the Schottky rectifiers has been achieved by finite element simulations. As a first step, the models are implemented in the software and adjusted with the parameters described in the literature. The influence of the geometrical and physical parameters on the specific on-resistance and on the breakdown voltage has been analysed. Finally, the test devices have been realized and characterized to optimize and to validate the parameters of these models. These studies lead to identify the limits of the structures and create a new generation of powerful structures.
369

Vývoj atomárních a iontových svazkových zdrojů / Development of Atomic- and Ion Beam Sources

Šamořil, Tomáš January 2009 (has links)
The objective of this master thesis was to provide the optimization of an ion-atom beam source for the improvement of its properties. The improvement of the parameters increases the efficiency of the source during the deposition of gallium nitride ultrathin films (GaN) being important in microeletronics and optoelectronics. After optimization, the depositions of GaN ultrathin films on Si(111) 7x7 at lower temperatures (
370

Développement et application de la technique analytique de courant induit par faisceau d’électrons pour la caractérisation des dispositifs à base de nanofils de nitrure de gallium et de silicium / Development and application of electron beam induced current analytical technique for characterization of gallium nitride and silicon nanowire-based devices

Neplokh, Vladimir 23 November 2016 (has links)
In this thesis I present a study of nanowires, and, in particular, I apply EBIC microscopy for investigation of their electro-optical properties. First, I describe details of the EBIC analytical technique together with a brief historical overview of the electron microscopy, the physical principles of the EBIC, its space resolution, parameters defining the signal amplitude, and the information we can acquire concerning defects, electric fields, etc. Then I focus on the characterization of LEDs based on GaN nanowires, which were analyzed in a cross-section and in a top view configurations. The EBIC measurements were correlated with micro-electroluminescence mapping. Further, I address the fabrication and measurement of nanowire-based InGaN/GaN LEDs detached from their original substrate. I present the EBIC measurements of individual nanowires either cut from their substrate and contacted in a planar geometry or kept standing on supphire substrate and cleaved to reveal the horizontal cross-section.The next part of this thesis is dedicated to an EBIC study of irregular Si nanowire array-based solar cells, and then of the regular nanowire array devices. The current generation was analyzed on a submicrometer scale. Finally, I discuss the fabrication and EBIC measurements of GaN nanowires grown on Si substrate. In particular, I show that the p-n junction was induced in the Si substrate by Al atom diffusion during the nanowire growth. / Dans cette thèse je me propose d’étudier des nano-fils, et en particulier d’utiliser la technique EBIC pour explorer leurs propriétés électro-optiques. Je décris d’abord les détails de la technique d’analyse EBIC avec un bref retour historique sur la microscopie électronique, le principe physique de l’EBIC, sa résolution spatiale, les paramètres conditionnant l’amplitude du signal, et les informations que l’on peut en tirer sur le matériau en termes de défauts, champ électrique, etc. Je m’intéresse ensuite à la caractérisation de LEDs à nano-fils à base de GaN, qui ont été observés par EBIC, soit en coupe soit en vue plane (depuis le haut des fils). Les mesures EBIC sont comparées à celles de micro-électroluminescence. Plus loin j’adresse la fabrication et la mesure de nano-fils à base de GaN séparés de leur substrat d’origine. Je présente les mesures EBIC de nano-fils uniques entiers, puis de nano-fils en coupe horizontale.La partie suivante de la thèse traite d’étude EBIC des cellules solaires à base de nano-fils Si ayant d’abord une géométrie aléatoire, puis une géométrie régulière. La génération de courant dans ces cellules solaires est analysée à l’échelle submicronique. A la fin du manuscrit je discute la fabrication et les mesures EBIC de fils GaN épitaxiés sur Si. Je montre en particulier qu’une jonction p-n est enduite dans le substrat Si par la diffusion d’Al lors de la croissance de nanofils.

Page generated in 0.0756 seconds