• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • Tagged with
  • 12
  • 9
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Glycerol acetalization using water-tolerant catalyst

Chen, Lin 31 August 2018 (has links)
L'application commerciale du glycérol a attiré l'attention de la communauté scientifique ces dernières années. Le glycérol formal, qui est produit par l'acétalisation du glycérol, est bénéfique en tant qu'additif pour carburant, en particulier pour les propriétés d’écoulement du biodiesel à basse température. Cependant, le processus réversible d'acétalisation est ralenti par la formation d'eau qui cause aussi une désactivation des catalyseurs acides. Dans ce travail une étude comparative de differents catalyseurs résistants à l’eau et incluant, Cs2.5H0.5PW12O40, AS-MES (acide arène sulfonique éthane-silice), zéolithe ZSM-5, H3PW12O40 en tant que modèle homogène et le catalyseur commercial Amberlyst -15 a été effectuée. De plus, une étude cinétique préliminaire a été réalisée dans un réacteur discontinu agité, étudiant l'influence de différents paramètres, tels que la température, la composition de l'alimentation et la charge de catalyseur. Un des isomères du glycérol formal, le 1,3 dioxan-5ol pourrait être transformé en 1,3-propanediol. Par conséquent, la distribution des deux isomères d'acétal de glycérol a été étudiée systématiquement. Pour améliorer d’avantage l'activité du Cs2.5H0.5PW12O40 non-supporté dans l'acétalisation du glycérol, il a été déposé sur de la silice mésoporeuse par une méthode d'imprégnation pour augmenter la surface de contact des réactifs et des sites acides. En outre, le Cs2.5H0.5PW12O40 supporté sur des silice mésoporeuse 2D (SBA-15) et 3D (KIT-6 et SBA-16) ont été comparées puisque le réseau poreux topologiques de le silice mésoporeuse avec une structure 3D facilite l'accès aux sites acides, tandis que les canaux longs 2D de SBA-15 peuvent entraîner des limitations au transport aux points de connexion des particules élémentaires. L'impact du volume de mésopores a également été étudié. Trouver une source d'aldéhyde appropriée est également crucial pour améliorer l'activité du catalyseur employé. Comme la solution de formaldéhyde contient de grandes quantités d'eau qui désactiveraient le catalyseur et favoriserait la réaction inverse, le paraformaldéhyde (une source solide de formaldéhyde sans eau) et l'acétone ont été étudiés afin de remplacer la solution de formaldéhyde. / The commercial application of glycerol has attracted attention of the scientific community in recent years. Glycerol formal, which is produced from glycerol acetalization, is beneficial as fuel additive especially for the low temperature properties of biodiesel. However, the acetalization process is hampered by formation of water which will reverse the reaction and deactivate the acid catalysts. Using water-resistant heterogeneous acid catalyst will be favorable for acetalization of glycerol. In this research work, a comparative study has been carried out using the water-tolerant Cs2.5H0.5PW12O40, AS-MES (arene sulfonic acid ethane-silica), zeolite ZSM-5, H3PW12O40 as a homogeneous model and the commercial catalyst Amberlyst-15. In addition, a preliminary kinetic study was performed in a batch stirred tank reactor, studying the influence of different process parameters including temperature, feed composition and catalyst loading. One of glycerol formal isomers, 1,3 dioxan-5ol may be postsynthetically modified into important chemical products such as 1,3-propanediol. Therefore, the distribution of the two glycerol acetal isomers has also been studied systematically. To further enhance the activity of bulk Cs2.5H0.5PW12O40 for glycerol acetalization, it was supported on mesoporous silica by incipient impregnation method to increase the contact area of reactants and acid sites. Besides, supported Cs2.5H0.5PW12O40 supported on 2D (SBA-15) and 3D (KIT-6 and SBA-16) pore lattice mesoporous silicas have been compared since the topological curvatures of mesoporous silica with 3D structure would reasonably provide good transportation channels to get facilitated access to acid sites, while 2D long channels of SBA-15 may yield transport limitations at the points of connections of elemental particles. The impact of mesopore volume on activity has also been studied. Finding an appropriate aldehyde source is also crucial to improve the activity of the catalyst used. Since formaldehyde solution contains large amount of water which would deactivate the catalyst and favor the reversibility of the reaction, paraformaldehyde (a solid water-free source of formaldehyde) and acetone were studied to replace formaldehyde solution.
2

Partial oxidation of glycerol over tempo grafted mesosstructured silicas

Ghodsi-Maman, Fatemeh 19 April 2018 (has links)
De grandes quantités de glycérol sont formées lors de la production de biodiesel. Le faible coût de ce sous-produit a motivé beaucoup de groupes de recherche à lui trouver de nouvelles applications ce qui a mené au développement de nombreux procédés pour convertir sélectivement le glycérol en produits à haute valeur ajoutée. L’oxydation du glycérol est l’un de ces procédés. Dans cette thèse, deux catalyseurs hétérogènes composés de TEMPO greffés à une silice mésostructurée (SBA-16 et KIT-6) ont été synthétisés, caractérisés par différentes techniques et utilisés pour effectuer la réaction d’oxydation du glycérol. La conversion du glycérol et la sélectivité pour les différents produits formés ont été déterminées par l’analyse du milieu réactionnel via une technique de chromatographie en phase liquide à haute performance (HPLC). La stabilité et la versatilité de ces catalyseurs furent aussi étudiées. Il a été établi que ceux-ci démontrent un réel potentiel, en tant que catalyseurs réutilisables et exempts de métaux, pour la conversion d’un composé organique renouvelable et accessible qu’est le glycérol en produits commercialement très recherchés. / A large surplus of glycerol is formed as a by-product during the production of biodiesel. The low cost of glycerol has motivated research groups to find new applications of it. This has led to the introduction of a number of selective processes for converting glycerol into commercially valued products. Glycerol oxidation is one of chemical reactions which converts glycerol to more valuable compounds. In this thesis, two heterogeneous catalysts, with TEMPO grafted on mesostructured silica (SBA-16 and KIT-6) were synthesized and characterized by different techniques then followed by performing glycerol oxidation reaction. Glycerol conversion and products selectivity are reported by analyzing the reaction medium via high pressure liquid chromatography (HPLC). The stability and versatility of these catalysts were studied; these materials show real promise as reusable metal-free catalysts for the conversion of a readily available and renewable biofeedstock into highly valued compounds.
3

Sustainable valorization of coal fly ash waste in conventional/intensified glycerol steam reforming for green hydrogen production / Valorisation durable des résidus de cendres volantes de charbon dans un procédé conventionnel/intensifié de vaporeformage du glycérol pour la production d'hydrogène propre

Gao, Kang 21 September 2023 (has links)
Parmi les combustibles renouvelables, l'hydrogène est un vecteur énergétique intéressant pour atténuer les changements climatiques dû aux émissions anthropiques de CO₂ . La plupart de l'hydrogène est actuellement produit par reformage à la vapeur (SR) à partir de combustibles fossiles. Pour des applications spécifiques, le rendement et la pureté de l'hydrogène peuvent être améliorés par un procédé intensifié en intégrant la capture in-situ du CO₂ au reformage à la vapeur en une seule étape et dans le même réacteur (SESR). Cependant, la consommation élevée et incessante de combustibles fossiles entraîne l'épuisement des ressources finies et des effets négatifs sur l'environnement. Dans le cadre d'un scénario de développement durable, écologique et économique, le recyclage et la valorisation d'une variété de déchets industriels et de matières résiduelles suscitent un intérêt croissant pour un large éventail de produits à valeur ajoutée. En particulier, la production d'hydrogène à partir de sous-produits renouvelables est largement reconnue et étudiée comme une approche prometteuse pour atténuer la crise énergétique et environnementale. L'essor de la production de biodiesel a entraîné une augmentation de la production de glycérol (C₃H₈O₃), qui peut toutefois représenter une matière première potentielle à adopter dans les technologies propres pour la conversion en hydrogène. D'autre part, un autre déchet industriel, les cendres volantes de charbon (FA), est largement généré par la combustion du charbon dans les centrales thermiques. En raison de leur grande stabilité thermique et du fait qu'elles contiennent plusieurs oxydes métalliques, les cendres volantes peuvent servir de support solide alternatif et/ou de promoteur pour le développement de catalyseurs hétérogènes. La production d'hydrogène par SR et/ou SESR présente donc des opportunités pour valoriser les déchets de glycérol et de FA dans une approche verte (GSR/SEGSR). Dans le contexte de l'importance de transformer les déchets en produits à valeur ajoutée, cette thèse traite la valorisation combinée de deux résidus industriels importants (à savoir, les FA pour le développement de catalyseurs efficaces à base de Ni (yNi-FAx) et de matériaux catalyseur-sorbant bifonctionnels (Ni-CaO-FA), et le glycérol comme matière première alternative potentielle) pour la production d'hydrogène propre et durable par les procédés GSR et SEGSR. Plus précisément, les principaux objectifs de cette recherche étaient 1) d'étudier l'influence du type de FA, de la concentration en Ni et de la température de reformage sur la performance catalytique des catalyseurs yNi-FAx, 2) de proposer une nouvelle méthode pour améliorer les capacités des FA bruts en ajustant leurs propriétés physico-chimiques à l'aide de traitements acides/alcalins, et 3) de développer des matériaux catalyseur-sorbant bifonctionnels (Ni-CaO-FA) pour l'application dans un procédé intensifié de SEGSR/régénération multi-cyclique. (1) Des catalyseurs Ni supportés par des FA (Ni-FA) ont été synthétisés par une méthode d'imprégnation à l'état solide. Nous avons étudié l'effet de différents paramètres comprenant (i) les types de FA, (ii) la concentration en Ni (2.5 - 15 % en poids), et (iii) la température de reformage (530 - 730 °C) sur la performance catalytique des catalyseurs yNi-FAx dans le GSR. La meilleure performance en termes d'activité (conversion du glycérol en produits gazeux = 98 %, rendement en hydrogène = 78.8 %) et de stabilité (faible taux de formation de coke et de frittage 2.44 mg[indice coke]•g⁻¹catalyseur•h⁻¹pendant 40 h de réaction) a été atteinte pour le catalyseur Ni-FA4 (7.5 % Ni) à 630 °C. Ces performances ont été attribuées à une dispersion élevée des sites actifs de Ni° et à une forte interaction avec le support, en raison de la surface spécifique plus élevée du FA4 et de la présence de néphéline (fournissant des sites vacants pour l'ancrage des particules de Ni) et de mullite thermostable. (2) À la lumière des performances catalytiques des catalyseurs Ni-FAx (1), des traitements acides/alcalins simples ont été réalisés pour améliorer les capacités d'un type de FA qui avait montré un très faible rendement (comme support du catalyseur à base de Ni) en régulant ses propriétés via une lixiviation-dissolution-partielle (LPD) en une étape (HNO₃ ou NaOH) ou en deux étapes (NaOH/HNO₃ ou HNO₃/NaOH). L'influence de la séquence de traitement sur l'activité des catalyseurs développés a été mise en évidence. Les résultats ont montré que l'activité catalytique des catalyseurs Ni-FA (traités) dans le GSR a été significativement améliorée par rapport aux matériaux non traités. La LPD alcaline a été plus efficace que la LPD acide pour améliorer la surface du FA et ajuster la distribution élémentaire du FA. Ni-FA(HNO₃ /NaOH) a montré la meilleure performance avec une conversion du glycérol en produits gazeux de 99.2 % et un rendement en hydrogène de 74.5 %, attribués à (i) l'élimination des espèces contenant du soufre via le LPD acide, (ii) l'amélioration de la surface spécifique, de l'exposition au fer et de la dispersion du Ni via le LPD alcaline, (iii) la réduction de la formation de coke par le traitement séquentiel LPD acide/alcaline, et (iv) l'amélioration de la stabilité catalytique due à la formation d'alliages NiFe. (3) Pour synthétiser des matériaux catalyseur-sorbant bifonctionnels, une première étape consistait à modifier un sorbant à base de CaO en ajoutant différents types de FA (FAx (x = 1 à 12)) afin de développer des sorbants à base de CaO très efficaces et économiques pour l'élimination du CO₂ à haute température. Les résultats ont montré que le sorbant CaO-FA5 (90 % en poids CaO) offrait l'activité de capture du CO₂ la plus stable sur 20 cycles, avec une capacité de capture du CO₂ de 0.58 g[indice CO2]•g[indice sorbant]⁻¹ au 1er cycle et de 0.45 g[indice CO2]•g[indice sorbant]⁻¹ au 20e cycle. Ceci a été attribué aux quantités relativement élevées de SiO₂ et de mullite (matériaux inertes) dans le FA5 par rapport aux autres échantillons FAx. La présence de ces matériaux inertes contribue à améliorer la stabilité du sorbant en empêchant l'agrégation et le frittage. Ce sorbant a ensuite été choisi pour synthétiser un matériau catalyseur-sorbant bifonctionnel pour la production d'hydrogène de haute pureté par SEGSR. Le matériau bifonctionnel Ni-CaO-FA5 a montré une pureté d'hydrogène de ~ 97 % et un rendement de ~ 90 % stables pendant 30 min (période de pre-breakthrough). Ces résultats soulignent le fort potentiel du FA5 en tant que stabilisateur à faible coût pour améliorer la stabilité des sorbants à base de CaO. En conclusion, grâce à la valorisation des matières résiduelles liquides (glycérol) et solides(cendres volantes de charbon), les résultats présentés dans cette thèse fournissent une approche économique et environnementale pour la production d'hydrogène par GSR ainsi que la capture simultanée du CO₂ et la production d'hydrogène de haute pureté par SEGSR. Même si tous les types de FA tels que reçus (bruts) ne conviennent pas comme support catalytique, de simples traitements acides/alcalins peuvent conduire à des supports de FA à faible teneur en calcium/soufre avec des caractéristiques physico-chimiques supérieures. Comme dans le cas des résidus liquides, l'utilisation de déchets solides pour la production catalytique d'hydrogène est une stratégie favorable à l'environnement et économiquement durable. Avec la crise énergétique croissante, cet aspect devient de plus en plus important et pousse à de nouvelles tentatives pour convertir davantage de déchets en produits à valeur ajoutée. / Among renewable fuels, hydrogen is an appealing energy carrier for mitigating climate change arising from the anthropogenic emissions of CO₂. Most hydrogen is currently produced by steam reforming (SR) from fossil fuels. For specific applications, hydrogen yield/purity can be enhanced via the integration of steam reforming and sorption intensification in a single step/reactor (SESR). However, the high and unceasing consumption of fossil fuels results in the exhaustion of finite resources and negative effects on the environment. With a scenario of green-economic sustainable development, there is a growing interest in the recycling and valorization of a variety of industrial wastes and residual materials to a broad spectrum of value-added products. In particular, hydrogen production from renewable byproduct substrates is widely recognized and investigated as a promising approach to mitigate energy and environmental crises. The booming of biodiesel production has resulted in the increase of glycerol (C₃H₈O₃) byproduct, which can represent however a potential feedstock candidate to be adopted in green technologies for conversion into hydrogen. On the other side, another industrial waste, coal fly ash (FA), is vastly generated from coal combustion in thermal power plants. Due to its high thermal stability and the fact that it contains several metal oxides, FA can act as potential alternative solid support and/or promotor for developing heterogeneous catalysts. The hydrogen production (SR and/or SESR) presents therefore opportunities to valorize glycerol and FA wastes in a green approach (GSR/SEGSR). In the context of the importance of turning wastes into value-added products, this thesis deals with a combined valorization of two important industrial residues (namely, FA for developing efficient Ni-based catalysts (yNi-FAx) and bifunctional catalyst-sorbent materials (Ni-CaO-FA), and glycerol as potential alternative feedstock) for sustainable green hydrogen production by GSR and SEGSR processes. More specifically, the main objectives of our work were 1) investigating the influence of FA types, Ni loading, and reforming temperature on the catalytic performance of yNi-FAx catalysts, 2) proposing a novel method for improving the properties of raw FA by adjusting the physicochemical properties using acid/alkali treatments, and 3) developing bifunctional Ni-CaO-FA catalyst-sorbent materials for multi-cyclic SEGSR/regeneration operation. (1) FA supported Ni catalysts (Ni-FA) were synthesized via solid-state impregnation method. The effect of different parameters including (i) types of FA, (ii) Ni loading (2.5 - 15 wt.%), and (iii) reforming temperature (530 - 730 °C) on the catalytic performance of yNi-FAx catalysts over GSR was investigated. The best performance in terms of activity (glycerol conversion to gas = 98 %, hydrogen yield = 78.8 %) and stability (40 h, with a low rate of coke formation and sintering 2.44 mg[subscript coke]•g⁻¹catalyst•h⁻¹) was achieved for 7.5 wt.% Ni-FA4 catalyst at 630 °C. This performance was attributed to a higher dispersion of Ni° active sites and stronger interaction with the support, due to the higher surface area of FA4 and the existence of nepheline (providing vacancy sites for anchoring Ni particles) and thermostable mullite. (2) In light of the catalytic performance of Ni-FAx catalyst (1), simple acid/alkali treatments were carried out to improve a low-efficiency FA (as support of Ni-based catalyst) by regulating its properties via one-step (HNO₃ or NaOH) or two-step (NaOH/HNO₃ or HNO₃/NaOH) leaching-partial-dissolution (LPD). The influence of the treatment sequence on the activity of the developed catalysts was highlighted. The results show that the catalytic activity of Ni-FA(treated) catalysts for GSR was significantly improved compared to the untreated materials. Alkali-LPD is more effective than acid-LPD in both improving FA’s surface area and adjusting FA’s elemental distribution. Ni-FA(HNO₃/NaOH) has the best performance with glycerol conversion to gas of 99.2 % and hydrogen yield of 74.5 %, attributed to (i) the removal of sulfur-containing species via acid-LPD, (ii) improvement of specific surface area, iron exposure, and Ni dispersion via alkali-LPD, (iii) reduction of coke formation by acid/alkali-LPD sequence treatment, and (iv) enhancement of catalytic stability due to the formation of NiFe alloys. (3) To synthesize bifunctional catalyst-sorbent materials, an attempt was initially made to modify a CaO-based sorbent by adding different types of FA (FAx (x = 1 to 12)) to develop highly efficient and economical CaO-based sorbents for CO₂ removal at high temperatures. The results showed that CaO-FA5 (90 wt.% CaO) sorbent offered the most stable CO₂ capture activity over 20 cycles, with a CO₂ capture capacity of 0.58 g[subscript CO2]•g[subscript sorbent]⁻¹ at the 1st cycle and 0.45 (g[subscript CO2]•g[subscript sorbent]⁻¹) at the 20th cycle. This was attributed to the relatively high amounts of SiO₂ and mullite (inert materials) in FA5 compared to the other FAx samples. The presence of these inert materials helps to enhance the sorbent stability by hindering their aggregation and sintering. This sorbent was then chosen to further synthesize a bifunctional catalyst-sorbent material for highly pure hydrogen production via SEGSR. The Ni-CaO-FA5 bifunctional material exhibited a stable hydrogen purity of ~ 97 % and yield of ~ 90 % for 30 min (pre-breakthrough period). These results highlight the high potential of FA5 as a low-cost stabilizer for improving the stability of CaO-based sorbents. In conclusion, through the valorization of both liquid (glycerol) and solid (coal fly ash) residual materials, the results presented in this thesis provide an economic and environmental approach to hydrogen production by GSR as well as the simultaneous CO₂ capture and high-purity hydrogen production by SEGSR. Even though not all kinds of as-received (raw) FA materials are suitable for serving as catalytic support, simple acid/alkali treatments could lead to low-calcium/sulfur FA supports with superior physicochemical features. As for different residual liquid substrates, using solid wastes to catalytically produce hydrogen is an environmentally favorable and economically sustainable strategy. With the growing energy crisis, this aspect is becoming more important and pushing forward new attempts to convert more wastes to value-added products.
4

Caractérisation préclinique de la réponse pulmonaire à l'exposition à la cigarette électronique

Lechasseur, Ariane 24 April 2018 (has links)
CONTEXTE : Le marché de la cigarette électronique a connu une importante hausse dans les dernières années, principalement chez les fumeurs visant l’arrêt tabagique. Toutefois, les effets pulmonaires de l’inhalation de propylène glycol (PG) et de glycérol (Gly), principaux constituants du e-liquide utilisé dans les cigarettes électroniques, demeurent encore inconnus. OBJECTIF : Investiguer les effets pulmonaires des vapeurs de cigarette électronique. MÉTHODES : Un système d’exposition de type « whole-body » a été mis au point. Jusqu’à 40 souris sont exposées 2 h/jour, 5 jours/semaine pour une période de 2 à 8 semaines. Le e-liquide est fabriqué au laboratoire, est composé de 30% de Gly et de 70% de PG, et ne contient ni nicotine ni saveurs. L’inflammation pulmonaire a été déterminée par cytologie des lavages broncho-alvéolaires. Les effets de la cigarette électronique sur le transcriptome pulmonaire ont été évalués à l’aide de puces d’expression génique. RÉSULTATS : L’exposition à la cigarette électronique n’entraine pas d’inflammation pulmonaire significative. Les analyses sur puces d’ADN montrent que la cigarette électronique a un impact sur les gènes impliqués dans la régulation du cycle circadien pulmonaire. Des analyses périodiques sur 24h montrent que la rythmicité de plusieurs gènes impliqués dans la régulation du cycle circadien est dérégulée par l’exposition à la cigarette électronique. On retrouve également ces perturbations dans le foie, le rein et le muscle squelettique, et dans une moindre mesure, dans le cerveau. L’exposition au Gly seul ou au PG seul indique que les deux composés sont responsables des changements observés au niveau systémique. CONCLUSION : La cigarette électronique n’induit pas de réponse inflammatoire, mais semble plutôt causer une perturbation du cycle circadien, tant au niveau pulmonaire que systémique. De plus amples recherches sont nécessaires afin de cerner les effets potentiels d’une perturbation circadienne induite par la cigarette électronique. / RATIONALE. The market for electronic cigarettes has boomed in the past few years, especially among smokers who desire to quit smoking. However, the pulmonary effects on propylene glycol (PG) and glycerol (Gly) inhalation have not been thoroughly investigated. OBJECTIVE. To investigate the effects of vapour on the mouse lungs. METHODS. A whole-body exposure automated system has been designed. Up-to 40 mice are exposed to electronic cigarette vapour, 2 hours/day, 5 days/week, from 2 and up to 8 weeks. E-liquid was fabricated in the laboratory, composed of 30% Gly and 70% PG, and without nicotine or flavor. Parameters of lung inflammation were assessed by cytology and ELISA in the bronchoalveolar lavage (BAL). Effects of electronic cigarette exposure on the pulmonary transcriptome were assessed using gene expression arrays RESULTS. Exposure to electronic cigarette alone does not cause pulmonary inflammation. Transcriptome analysis performed on lung tissue showed that electronic cigarette had a significant impact on genes responsible for regulating the pulmonary circadian cycle. Periodical sacrifices showed that the rhythmicity of key circadian genes was altered by electronic cigarette exposure. Expression of circadian genes in the liver is also altered, but the brain is less affected. Exposure to glycerol or propylene glycol alone indicated that glycerol was largely responsible for dysregulating the pulmonary circadian rhythm. It also showed that both compound had an impact on the liver and brain circadian rhythms. CONCLUSION. Electronic cigarette exposure does not appear to trigger lung inflammatory but rather seems to affect the lung circadian rhythmicity. Further research is required to investigate the possible effects of pulmonary circadian disruption by electronic cigarette.
5

Sustainable hydrogen production by glycerol steam reforming over metallurgical waste-driven catalysts / Production durable d'hydrogène par reformage à la vapeur de glycérol sur catalyseurs à base d'un déchet métallurgique

Ali Zadeh Sahraei, Ommolbanin 12 November 2023 (has links)
Les crises liées à la dégradation de l'environnement et à la diminution des ressources naturelles renforcent la nécessité de prolonger la durée de vie de tout matériau résiduel ou sous-produit indésirable dans les systèmes de production et de consommation. Dans ce contexte, l'idée de développer de nouveaux catalyseurs en utilisant des déchets solides industriels est un sujet émergent, qui s'inscrit bien dans le concept de développement durable. D'autre part, en raison des progrès rapides de la technologie, de l'industrie et de l'information, l'offre en énergie sera difficilement capable de répondre à la demande mondiale croissante. L'importance de fournir cette énergie de manière durable afin de rencontrer les objectifs des efforts mondiaux de lutte contre les changements climatiques a renforcé l'intérêt pour le développement de biocarburants hydrocarbonés renouvelables tels que le biodiesel. Au cours des dernières décennies, avec la croissance de la production de biodiesel, le monde a été confronté à un excédent de glycérol comme sous-produit résiduel provenant du processus de production commun de transestérification. Afin de réduire l'impact environnemental négatif de cet excédent de glycérol et d'accroître la rentabilité de l'industrie du biodiesel, ce déchet devrait être impliqué dans une économie circulaire environnementale et durable. De récentes recherches ont démontré qu'il existe un grand potentiel pour l'utilisation du glycérol résiduel du biodiesel dans le secteur des énergies renouvelables. Il est possible d'y parvenir par divers procédés, notamment la gazéification, la pyrolyse, la combustion, la liquéfaction et le reformage à la vapeur. Parmi ceux-ci, le reformage à la vapeur est considéré comme l'une des méthodes les plus prometteuses pour convertir le glycérol en hydrogène (en tant que vecteur d'énergie verte et matière première essentielle dans les raffineries et les industries chimiques), car sa mise à l'échelle industrielle ne nécessiterait pas de modifications importantes des infrastructures de reformage du gaz naturel existantes. Compte tenu de l'importance de ces enjeux, cette thèse se penche sur le développement de nouveaux catalyseurs par la valorisation d'un résidu solide métallurgique (UGSO) pour la production d'hydrogène (syngas) via le reformage à la vapeur de glycérol (GSR). Plus précisément, les trois principaux objectifs de cette étude sont les suivants: (i) l'étude du potentiel de l'UGSO comme support/promoteur pour catalyseurs à base de Ni (Ni-UGSO), (ii) l'analyse approfondie de l'effet des paramètres de synthèse du catalyseur (charge de métal actif et méthode de préparation) sur les propriétés physico-chimiques et la performance du catalyseur, ainsi que l'étude de l'effet de la température de réaction en examinant le rôle des principales réactions secondaires dans le réseau réactionnel du procédé reformage (y compris les réactions de water-gas shift (WGS), de Boudouard, de méthanisation du CO et du CO₂, et la réaction inverse de WGS), et (iii) la comparaison des caractéristiques structurelles et de la performance catalytique du Ni-UGSO avec celles des catalyseurs à base de métaux nobles(Ru-UGSO et Rh-UGSO) reconnus comme hautement efficaces dans les procédés de reformage à la vapeur. (i) Le catalyseur préparé par l'incorporation de 12,5 % massique de Ni dans l'UGSO a été évalué pour l'application dans le procédé de GSR dans des conditions opératoires spécifiques suggérées comme optimales par l'analyse thermodynamique (T=580 °C, P=1 bar, et S/C=3). En comparant avec un catalyseur commercial de reformage à la vapeur à base de Ni, les résultats furent prometteurs, notamment en termes de formation de coke. Les principales propriétés intéressantes du catalyseur Ni-UGSO ont été suggérées comme étant : (i) la dispersion et l'ancrage des particules de Ni par la formation d'oxydes mixtes nickel-fer ainsi que nickel-magnésium, (ii) l'absence de phases métalliques libres par la formation d'alliages Ni-Fe après un prétraitement de réduction, et (iii) le caractère basique de l'UGSO dû à la présence d'oxydes tels que MgO, CaO, K₂O et MnO, qui pourrait favoriser l'adsorption dissociative de l'eau et la réaction de WGS. Ces résultats ont prouvé la capacité de l'UGSO promu par le Ni à agir comme un puissant catalyseur dans le procédé de GSR. (ii) Les résultats d'une étude détaillée sur les effets des paramètres de synthèse sur la performance du catalyseur Ni-UGSO ont révélé que la meilleure performance catalytique GSR a été obtenue en incorporant 5 % massique de Ni par la méthode d'imprégnation à l'état solide (SSI-5%Ni-UGSO), où des oxydes mixtes nickel-fer avec un rapport Ni/Fe optimal (comme NiFe₂O₄) et des oxydes mixtes nickel-magnésium riches en Mg (comme 3MgO.NiO) ont été formés. La performance supérieure du catalyseur SSI-5%Ni-UGSO optimisé est principalement due à (i) l'effet synergique entre le Ni et les espèces d'oxyde de fer partiellement réduites sur les sites actifs Ni-Fe[indice x]O[indice y] (plutôt que les alliages métalliques Ni et/ou NiFe) où le glycérol est activé sur les espèces Ni et les atomes d'oxygène sont fournis à l'intermédiaire carboné à partir du Fe[indice x]O[indice y] voisin, et (ii) aux propriétés fondamentales du MgO en contact étroit avec le Ni, qui favorise la dissociation de l'eau en groupes hydroxyle et aide à gazéifier les précurseurs de coke déposés sur la surface du catalyseur. Pour des températures supérieures à 580 °C, des conversions presque complètes du glycérol en produits gazeux ont été obtenues avec le catalyseur SSI-5%Ni-UGSO dans les conditions opératoires choisies (S/C=3, FI=1.1, GHSV=10,966 cm³ (STP) gcat⁻¹ h⁻¹). Un rendement en H₂ plus élevé (80.7 %) et une très faible formation de coke (0.59 mg[indice coke] h⁻¹(m²/g[indice cat])⁻¹) sont des avantages de l'opération à 580 °C en favorisant la réaction WGS, tandis que l'augmentation de la température à 730 °C permet de supprimer presque entièrement la formation de coke (0.18 mg[indice coke] h⁻¹(m²/g[indice cat])⁻¹) principalement en limitant la réaction de Boudouard, avec l'inconvénient d'un rendement en hydrogène plus faible (59.4 %). (iii) Les résultats d'une étude exhaustive sur la performance des catalyseurs UGSO promus au M (M= 1%Ru, 1%Rh, 5%Ni) ont révélé que la tendance du métal incorporé à interagir avec les oxydes contenant du Mg/Fe déjà existants dans l'UGSO joue un rôle crucial (i) dans la disponibilité de surface du métal correspondant, (ii) les changements structurels après réduction et (iii) la stabilité du catalyseur. En plus d'offrir une meilleure stabilité, le catalyseur 5% Ni-UGSO a montré une performance (conversion du glycérol en produits gazeux de 100% et rendement en H₂ de 74%) comparable à celle de 1% Rh-UGSO (100% et 78%, respectivement) ou même dépassant celle de 1% Ru-UGSO (94% et 71%, respectivement), en tant que catalyseurs à base de métaux nobles. Une coopération synergique entre les métaux incorporés (M) et les espèces contenant du Fe/Mg au sein de l'UGSO a permis d'améliorer l'activation du glycérol et de l'eau. Les résultats plus faibles observés pour Ru-UGSO pourraient s'expliquer par un manque de propension à l'interaction MgO-RuO₂ sur la surface de l'UGSO. Compte tenu du prix nettement inférieur du Ni par rapport au Rh (1/5526 du prix moyen du Rh en 2018), un rendement en hydrogène légèrement supérieur (78 contre 74 %) et une différence insignifiante dans la formation de coke (0 contre 0,01 g[indice coke] h⁻¹ gcat⁻¹) ne justifient pas économiquement l'utilisation du catalyseur 1 % Rh-UGSO à la place de 5 % Ni-UGSO. En conclusion, les résultats présentés dans cette thèse prouvent la capacité de l'UGSO comme support/promoteur prometteur dans la formulation de catalyseurs actifs, sélectifs, stables et rentables pour la production d'hydrogène via le procédé de GSR, spécialement en raison de(i) la présence d'oxydes (principalement des oxydes de magnésium et de fer) reconnus pour leur capacité à éviter la formation de carbone (la principale cause de désactivation du catalyseur dans le reformage à la vapeur des hydrocarbures oxygénés) et (ii) sa structure cristalline de type spinelle avec des cations métalliques échangeables distribués de manière homogène, qui peut fournir une bonne matrice pour la dispersion de métaux actifs conduisant à une coopération synergique entre les particules de métaux actifs incorporées (en particulier le Ni, très accessible et bon marché) et les autres constituants déjà présents dans l'UGSO. De telles approches, dans lesquelles les déchets industriels issus de divers procédés sont utilisés ensemble pour des applications environnementales, sont non seulement cohérentes avec les concepts d'écologie industrielle et de développement durable, mais sont également classées comme le niveau le plus sophistiqué de valorisation des déchets. / The crises related to the environmental degradation and shrinking natural resources reinforces the necessity of extending the life of any residual material or unwanted by-product in the production and consumption systems. In this context, the idea of developing new catalysts using industrial solid wastes is an emerging topic, which aligns well with the concept of sustainable development. On the other hand, due to the rapid technological, industrial, and informational advancements, the energy supply will not be able to keep up with the growing demand. The importance of supplying this energy in a sustainable manner in order to meet the goals of global efforts to combat climate change has heightened interest in the development of renewable hydrocarbon biofuels such as biodiesel. Over the last few decades, with the growth in biodiesel production, the world has faced a surplus of glycerol as a waste by-product of its common production process through transesterification. To reduce the negative environmental impact of this excess glycerol and to make the biodiesel industry profitable, this waste should contribute to a sustainable environmental circular economy. Recent research has indicated that there is a great potential for the use of biodiesel waste glycerol in the renewable energy sector. This can be achieved through a variety of processes including gasification, pyrolysis, combustion, liquefaction, and steam reforming. Among them, catalytic steam reforming is considered as one of the most promising methods for converting glycerol into hydrogen (as a green energy carrier and a critical feedstock in refineries and chemical industries), since its industrial scale-up would not necessitate significant changes to existing natural gas reforming infrastructure. Given the importance of these issues, this thesis focuses on the development of new catalysts through valorization of a metallurgical solid residue (UGSO) for hydrogen (syngas) production via steam reforming of biodiesel waste glycerol (GSR). More specifically, the three main objectives of our work include:(i) investigating the potential of UGSO as a support/promoter for Ni-based catalysts, (ii) performing a thorough investigation on the effect of catalyst synthesis parameters (active metal loading and catalyst preparation method) on both physicochemical properties and catalyst performance, as well as studying the effect of operating temperature by examining the role of the main side reactions in the reaction network (including water gas shift (WGS), Boudouard, CO and CO₂ methanation, and reverse WGS reactions), and finally (iii) comparing the structural characteristic and catalytic performance of the optimized Ni-UGSO with noble metal based catalysts (Ru-UGSO and Rh-UGSO) with well-known high efficiency for steam reforming process. (i) The catalyst prepared by the incorporation of 12.5 wt % Ni into UGSO was evaluated for application in GSR process at specific operating conditions suggested as optimum by thermodynamic analysis (T=580 °C, P=1 bar, and S/C=3). By comparing with a Ni-based commercial steam reforming catalyst, the results were very promising especially in terms of coke formation. The main reasons for the interesting properties of Ni-UGSO catalyst were suggested to be: (i) the dispersion and anchoring of Ni particles by formation of nickel-iron as well as nickel-magnesium mixed oxides, (ii) the lack of free metallic phases through the formation of Ni-Fe alloys after reduction pre-treatment, and (iii) the basic characteristic of UGSO due to the presence of oxides such as MgO, CaO, K₂O and MnO, which could promote dissociative adsorption of water and boost WGS reaction. These results proved the capability of Ni promoted UGSO to act as a powerful GSR catalyst. (ii) The results of a detailed study on the effects of synthesis parameters on the performance of Ni-UGSO catalyst revealed that the best GSR performance was achieved by incorporating 5 wt % Ni via solid-state impregnation method (SSI-5%Ni-UGSO), where nickel-iron mixed oxides with an optimum Ni/Fe ratio (such as NiFe₂O₄) and Mg-rich nickel-magnesium mixed oxides (such as 3MgO.NiO) were formed. The superior performance of the optimized SSI-5%Ni-UGSO catalyst is mainly due to (i) the synergic effect between Ni and partially reduced iron oxide species on the Ni-Fe[indice x]O[indice y] active sites (rather than metallic Ni and/or NiFe alloys) where glycerol is activated on the Ni species and the oxygen atoms are provided to the carbonaceous intermediate from the neighboring Fe[indice x]O[indice y], and (ii) the basic properties of MgO in close contact with Ni, which promotes the dissociation of water into hydroxyl groups and helps to gasify the coke precursors deposited on the catalyst surface. For temperatures above 580 °C, almost complete glycerol conversions to gaseous products were obtained over SSI-5%Ni-UGSO catalyst in the selected operating conditions (S/C=3, FI=1.1, GHSV=10,966 cm³ (STP) gcat⁻¹ h⁻¹). Higher H₂ yield (80.7%) and very low coke formation (0.59 mg[indice coke] h⁻¹(m²/g[indice cat)⁻¹) are the advantages of working at 580 °C by favoring the WGS reaction, whereas increasing temperature to 730 °C allows to almost suppress coke formation (0.18 mg[indice coke] h⁻¹(m²/g[indice cat])⁻¹) mainly by limiting the Boudouard reaction, with the drawback of a lower hydrogen yield (59.4%). (iii) The results of a comprehensive study on the performance of M-promoted (M=1%Ru, 1%Rh, 5%Ni) UGSO catalysts (M-UGSO) for GSR process revealed that the tendency of incorporated metal to interact with Mg/Fe containing oxides already exist in UGSO, plays a crucial role in the surface availability of the corresponding metal, structural changes after reduction, and catalyst stability. Aside its best stability, 5% Ni-UGSO showed a performance (glycerol conversion to gaseous products of 100% and H₂ yield of 74%) comparable with 1% Rh-UGSO (100% and 78%, respectively) or even surpassing that of 1% Ru-UGSO (94% and 71%, respectively), as noble metal-based catalysts. Synergistic cooperation was achieved by incorporated metals(M) and Fe/Mg containing species within UGSO, resulting in enhanced glycerol and water activation. The weakest results of Ru-UGSO could be explained by a lack of proclivity for MgO-RuO₂ interaction on UGSO surface. Regarding the significantly lower price of Ni compared to Rh (1/5526 of the average price of Rh in 2018), as lightly higher hydrogen yield (78 vs. 74%) and trivial difference in coke formation (0 vs. 0.01 g[indice coke] h⁻¹ g[indice cat]⁻¹) does not economically justify the use of 1% Rh-UGSO instead of the affordable 5% Ni-UGSO. In conclusion, the results presented in this thesis proved the capability of UGSO as a promising support/promoter in the formulation of active, selective, stable, and cost-effective catalysts for hydrogen production via GSR process, owing to (i) the presence of oxides (mainly magnesium and iron oxides) recognized for their ability to avoid carbon formation(the main cause of catalyst deactivation in the steam reforming of oxygenated hydrocarbons), and (ii) the spinel crystalline structure with homogeneously distributed exchangeable metal cations that can provide a good pattern for active metal dispersion, leading to a synergic cooperation between the incorporated active metal particles (especially Ni with high availability and low price) and the other constituents of UGSO. Such approaches, in which industrial wastes from various processes are used together for environmental applications, are not only consistent with the concepts of industrial ecology and sustainable development but are also classified as the most sophisticated level of waste valorization.
6

Sustainable hydrogen production via glycerol steam reforming with and without in-situ CO2 removal : materials development and application

Shokrollahi Yancheshmeh, Marziehossadat 20 December 2019 (has links)
Au cours des dernières décennies, l'hydrogène a beaucoup attiré l'attention en tant que vecteur d'énergie verte. Actuellement, plus de 95% d'hydrogène est produit à partir de combustibles fossiles, ce qui a été remis en question par l'épuisement des ressources et l'augmentation des émissions de gaz à effet de serre. Par conséquent, les ressources renouvelables neutres en carbone telles que la biomasse et les produits chimiques dérivés de la biomasse suscitent un intérêt croissant comme alternative pour la production d'hydrogène. En tant que sous-produit principal du processus de fabrication du biodiesel, le glycérol est devenu une source prometteuse de production d’hydrogène. Bien que le reformage à la vapeur («steam reforming», SR) soit reconnu comme une approche prometteuse pour convertir le glycérol en hydrogène, le procédé est confronté à un certain nombre de défis, notamment la présence de réactions limitées par l’équilibre chimique et la nécessité d'un système couteux de purification en aval. Pour remédier ces problèmes, une solution prometteuse est l’application du procédé de reformage à la vapeur couplé à la sorption spécifique in-situ (« sorption enhanced steam reforming», SESR), dans lequel les réactions de reformage, la réaction du gaz à l’eau («water gas shift», WGS) et la capture du CO2 se produisent simultanément en utilisant un catalyseur de reformage et un sorbant solide pour le CO2. Dans ce procédé, l'élimination du CO2 se produit simultanément à la réaction de reformage, décalant la réaction du WGS vers la production d'hydrogène et produisant un flux de gaz enrichi en hydrogène en une seule étape. Les facteurs clés du succès de cette technologie sont principalement (i) les catalyseurs de reformage et les sorbants de CO2 pouvant fonctionner efficacement dans les conditions difficiles du procédé SESR et (ii) le moyen d’associer le catalyseur au matériau sorbant. Cette thèse porte sur le développement de catalyseurs et de matériaux bifonctionnels catalyseur-sorbant efficaces pour la production durable d'hydrogène par le SR et le SESR duglycérol (SRG et SESRG). Plus spécifiquement, ce travail fait l’objet de quatre directions principales: (i) l’étude de l’effet de l’addition de vapeur pendant la carbonatation ou la calcination sur les performances du sorbant Ca9Al6O18-CaO lors de la capture du CO2, (ii) le développement des matériaux bifonctionnels Ca9Al6O18−CaO/xNiO (x = 15, 20et 25% en poids) et Ca9Al6O18−CaO/20NiO−yCeO2 (y = 5, 10 et 15% en poids) et l’étude de l’effet du CeO2 sur la stabilité des matériaux en fonctionnement cyclique SESRG/régénération, (iii) le développement d’une nouvelle méthode de synthèse duspinelle NiAl2O4 plus facilement réductible et l’étude de l'effet de l'addition de CeO2 sur ses performances catalytiques, et (iv) le développement d’une nouvelle méthode de synthèse de deux matériaux bifonctionnels catalyseur-sorbant à base de Ni-CaO pour obtenir une distribution très uniforme des sites actifs catalytiques. (i) Les performances du sorbant Ca9Al6O18-CaO pour la capture du CO2 ont été étudiées en présence de 2.3 et 9.5% en volume de vapeur. Les résultats obtenus ont révélé que la réactivité du sorbant était remarquablement améliorée pour les deux concentrations de vapeur injectée lors de l'étape de carbonatation. Dans le cas de l'addition de vapeur pendant la calcination, la performance de la capture a été influencée négativement ou positivement en fonction de la concentration de vapeur: pour 2.3%, la réactivité du sorbant a été diminuée, tandis que la présence de 9.5% a entraîné une augmentation de la capacité de capture pendant les 9 premiers cycles. (ii) Deux séries de matériaux bifonctionnels catalyseur-sorbantont été développées pour la production d’hydrogène de haute pureté par SESRG. L'utilisation des matériaux Ca9Al6O18-CaO/xNiO (x = 15, 20 et 25% en poids) pendant cinq cycles SESRG/régénération a révélé que leur réactivité diminuait rapidement, principalement à cause du frittage duCaO et du dépôt de coke. De ce fait, la période de pre-breakthroughet le rendement en hydrogène ont diminué de façon notable pendant l’opération cyclique. Il est intéressant de noter que l’ajout de CeO2 au matériau le plus efficace (Ca9Al6O18−CaO/20NiO) a permis d’améliorer considérablement sa stabilité. Le matériau bifonctionnel activé avec 10% (en poids) de CeO2 a démontré les meilleures performances: pureté et rendement en H2de 98% et 91%, respectivement, pendant 20 cycles SESRG/régénération. (iii) Une nouvelle méthode impliquant la calcination en une ou deux étapes d'un alcoolate de métal mixte Ni-Al(«Ni-Al mixed-metal alkoxide», (Ni-Al)-Glycerate) a été développée pour la synthèse de spinelle de NiAl2O4. À des fins de comparaison, le spinelle de NiAl2O4 a également été synthétisépar la méthode classique de co-précipitation suivie de la technique de calcination en deux étapes. Les résultats de la caractérisation des matériaux ont révélé que la synthèse de spinelle de NiAl2O4 parla calcination de (Ni-Al)-Glycérateen deux étapesa conduit à la formation d'un catalyseur plus facilement réductible et d'une structure poreuse plus développée. Cet échantillon représentait le rendement en H2le plus élevé (76.38%) et la conversion du glycérolen produits gazeux (95.42%) par rapport aux autres échantillons. Afin de réduire ou éviter la formation de coke, CeO2 (10% en poids) a été incorporé dans l’échantillon préparé parla calcination de (Ni-Al)-Glycérateen deux étapes. L'analyse thermogravimétrique du catalyseur promu par CeO2 après la réaction de reformage a révélé que la formation de coke était presque complètement supprimée. (iv) La méthode développée pour la synthèse despinelle de NiAl2O4 dans les travaux précédents a été combinée autraitement du sorbant à base de CaO avec une solution d’éthanol/eau afin de synthétiser deux nouveaux matériaux bifonctionnels catalyseur-sorbant à base de Ni-CaO pour la production d'hydrogène via SESRG. Les expériences effectuées en opération cycliques SESRG/régénération ont montré une activité et une stabilité supérieures pour le matériau bifonctionnel Ca3Al2O6-CaO/NiO-CeO2 (pureté de l’H2 d’environ 96% pendant 10 cycles), par rapport à NiAl2O4-CaO/NiAl2O4-CeO2 (pureté de l’H2 d’environ 90% pendantles 6 premiers cycles, diminuant à 86% au cours des 4 derniers cycles). En conclusion, les résultats présentés dans cette thèse montrent que le SESRG peut être une approche très prometteuse pour la production d’hydrogène de haute pureté en une seule étape, à condition que les matériaux bifonctionnels catalyseur-sorbantutilisés possèdent une distribution uniforme des sites actifs catalytiques et à sorption à l’échelle nanométrique et une résistance élevée au frittage de CaO et formation de coke. Pour préparer des matériaux bifonctionnels catalyseur-sorbant présentant ces caractéristiques, deux approches principales ont été utilisées dans ce travail: (i) le développement de nouvelles méthodes de synthèse permettant une distribution homogène des éléments ciblés (Ca, Ni, Alet Ce dans cette étude) et (ii) l'utilisation de CeO2 comme promoteur prometteur pour réduire ou supprimer la formation de coke et améliorer la stabilité cyclique des particules de CaO. / Over the past few decades, hydrogen has attracted a great deal of attention as a green energy carrier. Currently, more than 95 % of hydrogen is produced from fossil fuels, which has been questioned by the depletion of resources andincrease of greenhouse gas emissions. Therefore, renewable, carbon-neutral resources such as biomass and biomass-derived chemicals has been receiving a growing interest as an option to produce hydrogen. As a main by product in the biodiesel manufacturing process, glycerol has emerged as a promising source for hydrogen production. Although steam reforming (SR) is being recognized as a promising approach for converting glycerol to hydrogen, this process faces a number of challenges including the presence of equilibrium-limited reactions and the need of an expensive downstream purification system. To alleviate these problems, a promising alternative is sorption enhanced steam reforming (SESR) process, in which steam reforming, water gas shift (WGS), and CO2 capture reactions occur simultaneously using areforming catalyst and a CO2solid sorbent. In this process, CO2 removal occurs simultaneously with the reforming reaction, shifting the WGS reaction towards hydrogen production and producing a hydrogen-enriched gas stream in a single step. The key factors in the successful application of this technology are mainly: (i) reforming catalysts and CO2 sorbents that can work efficiently under the harsh conditions of SESR process and (ii) mixing pattern of catalyst and sorbent. This thesis focuses on the development of efficient catalyst and catalyst-sorbent bifunctional materials for sustainable hydrogen production by SR and SESR of glycerol (SRG and SESRG). More specifically, four main objectives of our workare: (i) investigating the influence of steam addition during either carbonation or calcination on the CO2 capture performance of Ca9Al6O18-CaO sorbent, (ii) developing Ca9Al6O18−CaO/xNiO (x = 15, 20, and 25 wt.%) and Ca9Al6O18−CaO/20NiO−yCeO2(y = 5, 10, and 15 wt %) catalyst-sorbent bifunctional materials and studying the influence of CeO2 on the material stability incyclic SESRG/regeneration operation, (iii) proposing a new method for the synthesis of a more readily reducible NiAl2O4 spinel and studying the influence of CeO2 addition on its catalytic performance, and (iv) novel synthesis of two Ni-CaO-based catalyst-sorbent bifunctional materials with highlyuniform distribution of catalytic active sites. (i) CO2 capture performance of Ca9Al6O18-CaO sorbent was investigated in the presence of two concentrations of steam, 2.3 and 9.5 vol. %.The obtained results revealed that the sorbent reactivity was remarkably enhanced for both concentrations of steam injected during carbonation step. In the case of steam addition during calcination, the CO2 capture performance was influenced negatively or positively depending on the concentration of steam. For 2.3 vol.% steam, the sorbent reactivity was worsened, while the presence of 9.5 vol.% steam led to an increase in the CO2capture capacity during 9 initial cycles.(ii) Two series of catalyst-sorbent bifunctional materials were developed for the sustainable production of high-purity hydrogen by SESRG. Using Ca9Al6O18−CaO/xNiO (x = 15,20, and 25 wt.%) materials during five SESRG/regeneration cycles revealed that their reactivity was rapidly deteriorated mainly due to CaO sintering and coke deposition. As a result, the pre-breakthrough time and hydrogen yield decreased notably over five cycles. Interestingly, the addition of CeO2 to the most efficient catalyst (Ca9Al6O18−CaO/20NiO) led to a significant enhancement in material stability during cyclic operation. The bifunctional material promoted with 10 wt.% of CeO2 demonstrated the best performance, with a stable H2purity of ∼98% and H2yield of ∼91% over 20SESRG/regeneration cycles. (iii) A novel method, involving one-or two-step calcination of Ni-Al mixed-metal alkoxide((Ni-Al)-Glycerate), was developed for the synthesis of NiAl2O4 spinel. For comparison purposes, the NiAl2O4 spinel was also synthesized throughthe conventional co-precipitation method followed by two-step calcination technique. The characterization results revealed that the synthesis of NiAl2O4 spinel through two-step calcination of (Ni-Al)-Glycerateresulted in the formation of a more easily reducible catalyst and a more developed porous structure. This sample showed the highest H2yield (76.38 %) and glycerol conversion into gaseous products (95.42 %) when compared to other two samples. In order to avoid or reduce coke formation, 10 wt.% of CeO2 was incorporated into the sample prepared by two-step calcination of (Ni-Al)-Glycerate. The thermogravimetric analysis of the CeO2-promoted catalyst after SRG reaction revealed that the coke formation was almost completely suppressed. The method developed for the synthesis of NiAl2O4 spinel in the previous work was combined with the ethanol/water treatment of CaO-based sorbents to synthesistwo new NiCaO-based catalyst-sorbent bifunctional materials for hydrogen production via SESRG. Cyclic SESRG/regeneration experiments showed that the Ca3Al2O6-CaO/NiO-CeO2 bifunctional material possessed higher activity and stability when compared to NiAl2O4-CaO/NiAl2O4-CeO2. The former one exhibited a high constant H2 purity of around 96% over 10 cycles, while the latter showed a H2 purity of approximately 90% over the first 6 cycles, followed by the further decrease to 86 % over the last 4 cycles. In conclusion, the results presented in this thesis show that SESRG can be a very promising approach for high-purity hydrogen production in a single step, providing that the employed catalyst-sorbent bifunctional materials possess uniform distribution of catalytic and sorption active sites on nanoscale and high resistance against CaO sintering and coke formation. To prepare catalyst-sorbent bifunctional materials with these characteristics, two main approaches were employed in this work: (i) developing new synthesis methods that provide a homogeneous distribution of targeted elements (Ca, Ni, Al, and Ce in this study) and (ii) using CeO2 as a promising promoter to reduce or suppress coke formation and enhance the cyclic stability of CaO particles.
7

Optimisations des paramètres de polymérisation in situ d'un système glycérol/acide citrique et bois

Bérubé, Marc-André 24 April 2018 (has links)
Les produits de bois à des fins de parement subissent une dégradation accélérée face aux conditions atmosphériques comparativement aux autres produits de finition extérieurs. Cette dégradation entraine une perte de la stabilité dimensionnelle. Le bois doit être modifié afin d’ajouter de la valeur au produit et de contrer la dégradation naturelle. L’approche privilégiée consiste en l’imprégnation du bois par un mélange d’acide citrique et de glycérol pouvant réagir à de hautes températures formant un polymère réticulé. L’optimisation de ce traitement, bien que permettant d’augmenter la stabilité dimensionnelle du bois, a pour effet de diminuer de manière significative le temps et la température de la réaction de polymérisation. L’objectif des travaux présenté dans ce mémoire était de rendre viable industriellement ce procédé par l’optimisation des paramètres de polymérisation de la réaction d’estérification. Les formulations d’acide citrique et de glycérol conventionnelles, non optimisées, ont servi de témoins. La composition des formulations, le ratio des réactifs, le choix des catalyseurs, le type d’imprégnation et les espèces de bois compatibles ont permis de déterminer les meilleures conditions de polymérisation. Deux catalyseurs ont été identifiés comme performants et ils ont incorporés dans les formulations optimisées. L’imprégnation de ces formulations dans les échantillons de pin tordu et de pin blanc a permis une réduction considérable de l’énergie et du temps nécessaire à la formation du polymère dans le bois tout en augmentant davantage la stabilité dimensionnelle par rapport aux échantillons témoins. / Wood products used for exterior siding suffer from accelerated degradation due to weathering compared to other finishing products. This degradation leads to a loss of dimensional stability. In order to counter this effect, wood must be modified. The approach selected was to impregnate wood with a mixture of citric acid and glycerol able to react at high temperature to form a cross-linked polymer. The optimization of this treatment has for effect to reduce significantly the time and temperature needed for the polymerization reaction. This project has for objective to render this treatment industrially viable by modifying the reaction’s parameters. Unoptimized citric acid and glycerol mixtures were used as control. The mixture’s composition, ratio of the reactants, choice of catalysts, energy systems, impregnation types and compatibles wood species allowed to determine the best reaction conditions for polymerization. The best and efficient catalysts were added to optimized formulations, then impregnated in white pine and lodgepole pine wood samples. These impregnations allowed reducing considerably the energy and time needed to form the polymer inside the wood cell walls and to increase the dimensional stability over untreated samples.
8

Valorisation d'un résidu industriel pour la production d'hydrogène par un procédé intensifié de vaporeformage du glycérol

Aissaoui, Mustapha 29 November 2019 (has links)
La capture du CO2 est, de nos jours, une opération très convoitée car elle permet de réduire les émissions des gaz à effets de serre. Elle peut également être appliquée dans l’intensification des procédés de vaporeformage par l’utilisation des adsorbants chimiques «haute-température» (vaporeformage couplé avec la capture in-situ du CO2 (sorption-enhanced steam reforming, SESR)), afin d’augmenter significativement la pureté de l’hydrogène en une seule étape. Parmi les adsorbants solides utilisés dans ce procédé, ceux qui sont à base de CaO ont montré une certaine efficacité. Toutefois, l’agglomération des particules de CaO au cours de l’opération cyclique carbonatation/régénération rend leur utilisation à échelle industrielle difficile. L’ajout de composants inertes à l’adsorbant est l’une des stratégies utilisées afin d’augmenter sa stabilité. L’objectif principal de ce travail est la valorisation d’un résidu métallurgique (oxyde d’UGS, UGSO) afin de développer un matériau hybride adsorbant-catalyseur pour application dans la production d’hydrogène de haute pureté par SESR du glycérol. Plusieurs échantillons contenant des proportions différentes UGSO/CaO ont été préparés et testés pour évaluer l'efficacité de l’UGSO dans la stabilisation de l’adsorbant. Les expériences ont été réalisées en utilisant un analyseur gravimétrique intelligent (IGA, Hiden Isochema). Pour tous les échantillons étudiés, une meilleure stabilité a été enregistrée lors de l’ajout de l’UGSO. Les résultats ont montré que l’échantillon contenant 10% en masse UGSO a présenté la meilleure stabilité avec une conversion de CaO de 76% au 18ème cycle carbonatation/régénération, contre une conversion de 55% pour l’échantillon CaO pur testé dans les mêmes conditions. Ce meilleur rapport UGSO/CaO a été ensuite utilisé pour préparer un matériau hybride adsorbant-catalyseur et ses performances ont été testées dans le procédé SESR du glycérol. Les résultats ont montré une production d’hydrogène de pureté élevée avec un rendementde 96%. Les résultats obtenus dans ce mémoire peuvent contribuer à l’optimisation du procédé de vaporeformage du glycérol couplé à l’adsorption in-situ duCO2. / Résumé en espagnol / CO2 capture is, nowadays, a widely discussed subject as it helps reducing the greenhouse gas emissions. It can also intensify steam reforming processes through the use of high-temperature sorbents, in order to produce high purity hydrogen in a single step (sorption-enhanced steam reforming, SESR). Among the solid sorbents used in this process, those based on CaO have shown good results. However, the agglomeration of sorbent particles (sintering) during the cyclic operation carbonation/regeneration makes their use difficult at an industrial scale. The addition of inert compounds to the sorbent is one of the strategies used to increase its stability. The main objective of this work is the valorization of a metallurgical waste called UGS oxide (UGSO), in order to develop a hybrid sorbent-catalyst material for application in the production of hydrogen with high purity by SESR of glycerol. Several samples with different UGSO/CaO ratios were synthesized and tested to evaluate the efficiency of UGSO in thesorbent stabilization. The experiments were performed using an intelligent gravimetric analyzer (IGA, Hiden Isochema). For all samples, a better stability was obtained in the presence of UGSO. The results showed that the sorbent containing 10 wt.% UGSO achieved the best stability with a CaO conversion of 76% at the 18th carbonation/regeneration cycle compared to 55% for pure CaO (limestone) tested under the same conditions. This optimal UGSO/CaO ratio was then used to prepare a hybrid sorbent-catalyst material and its performance was tested in the SESR of glycerol. The results showed the production of hydrogen with high purity (97%) and yield (96%). The results obtained in this master thesis can contribute to the optimization of the sorption enhanced steam glycerol reforming process.
9

Photocatalytic valorization of biobased alcoholic wastes: a sustainable approach for the generation of green products

Karimi Estahbanati, Mahmood Reza 28 October 2019 (has links)
Ces dernières années, une attention croissante a été portée à la valorisation de différents types de résidus en produits chimiques à valeur ajoutée. La valorisation des résidus peut non seulement résoudre les problèmes environnementaux croissants et actuels, mais elle peut contribuer également au développement durable de la société. Les résidus alcooliques constituent une catégorie à fort potentiel de valorisation en différents types de produits chimiques. Dans ce contexte, la valorisation photocatalytique des résidus alcooliques est une approche prometteuse du point de vue du développement durable. L'objectif principal de la thèse était d'étudier la valorisation photocatalytique de différents résidus alcooliques biosourcés en produits à valeur ajoutée. À cet égard, ces travaux ont principalement porté sur (i) l'analyse des effets individuels et d'interaction des paramètres opératoires et l'optimisation de la production d'hydrogène à partir de glycérol (ii) l'étude de la cinétique de la production d'hydrogène à partir de glycérol et d'éthanol, (iii) la mise au point de catalyseurs nanocomposites au TiO2 utilisant des biomatériaux à base de carbone (nanotubes de carbone et sphères de carbone) pour la production d'hydrogène à partir de glycérol, et (iv) l'étude du mécanisme et de la cinétique de la valorisation photocatalytique du cyclohexanol en cyclohexanone. Pour la production d’hydrogène à partir du glycérol, les modèles « Réseau de neurones artificiels » ainsi que « Méthode des surfaces de réponses » ont été utilisés pour évaluer l’effet et l’importance des principaux paramètres opératoires (pourcentage de glycérol, catalyseur, et Pt (co-catalyseur), ainsi que pH). La comparaison de ces modèles a révélé une meilleure précision du premier, qui a été par la suite sélectionnée pour une optimisation basée sur un algorithme génétique. La plus grande quantité d'hydrogène produite s'est révélée être à 50% de glycérol dans l'eau (v/v), à une masse de catalyseur de 3,9 g/L, à 3,1% de Pt et à un pH de 4,5. Finalement, une analyse basée sur la méthode de Garson pour évaluer l’importance relative des paramètres opératoires a montré que les pourcentages de glycérol et de catalyseur affectent de façon différente la production d’hydrogène. L'effet des plus importants paramètres opératoires (catalyst loading, glycerol%, intensité de la lumière, and temps) sur la valorisation photocatalytique du glycérol en hydrogène a été analysé et un modèle cinétique a été développé sur la base d'un mécanisme proposé. La capacité du modèle à prédire le taux de production d'hydrogène pour différents substrats, photocatalyseurs et paramètres opératoires a été confirmée en comparant les valeurs calculées avec des données expérimentales de la littérature. Le rôle des composants carbonés (CT) biosourcées en tant que matrice, cocatalyseur et adsorbant dans les composites TiO2@CT a été étudié en utilisant des nanotubes de carbone et des sphères de carbone. L'analyse morphologique a permis d'examiner le rôle de la matrice et d’évaluer la formation uniforme du TiO2 sur le CT. Les expériences photocatalytiques ont été ensuite utilisées pour analyser les rôles du co-catalyseur et de l'adsorbant. Fait intéressant, les résultats ont révélé que l’incorporation de CNT dans un composite de TiO2 pouvait presque doubler le taux de production d’hydrogène (i) en l’absence de Pt ou (ii) à faible concentration en glycérol. Par conséquent, il a été constaté qu’en plus d’être une matrice, le CNT peut jouer deux autres rôles importants, comme co-catalyseur et adsorbant. Pour évaluer la valorisation des résidus alcooliques en produits liquides à valeur ajoutée, la conversion photocatalytique sélective du cyclohexanol en cyclohexanone a été investiguée par des études cinétiques et spectroscopiques. Un mécanisme de réaction a été proposé sur la base des résultats de l'analyse in situ ATR-FTIR et un modèle cinétique a été développé pour prédire le taux de production de cyclohexanone. Une très grande sélectivité de la cyclohexanone a été confirmée à la fois par des analyses spectroscopiques que chromatographiques (HPLC et GC-MS), démontrant que l'approche photocatalytique est une alternative prometteuse pour la production sélective de cyclohexanone. En résumé, les résultats de cette thèse ont montré que la photocatalyse est une alternative prometteuse pour la valorisation des résidus alcooliques biosourcés en produits à valeur ajouté. La conversion photocatalytique de ces résidus peut conduire à la production d'hydrogène comme carburant vert prometteur pour l'avenir. D'autre part, la photocatalyse peut être appliquee pour produire des composes liquides avec une sélectivité élevée. / In the recent years, increasing attention has been paid to valorizing different types of waste materials to valuable chemicals. Waste valorization not only reduces the growing modern environmental issues, but also contributes to the sustainable development of the society. The alcoholic waste is an important category with high potential to be valorized into different types of valuable chemicals. As example, glycerol is a substantial alcoholic waste of biodiesel production process whose generation increased significantly during the recent years. In this context, photocatalytic valorization of alcoholic wastes is a promising approach from a sustainable development point of view. The main objective of the thesis was to study the photocatalytic valorization of different biobased alcoholic wastes to value-added products. In this regard, this work focused on (i) analyzing individual and interaction effect of operating parameters and optimization of hydrogen production from glycerol (ii) studying the kinetics of hydrogen production from glycerol and ethanol, (iii) developing TiO2 nanocomposite catalysts using biobased carbonaceous materials (carbon nanotubes and carbon spheres) and studding the roles of carbonaceous materials in hydrogen production from glycerol, and (iv) investigating the mechanism and kinetics of the photocatalytic valorization of cyclohexanol to cyclohexanone. For hydrogen production from glycerol, Artificial Neural Network (ANN) as well as Response Surface Methodology (RSM) models were employed to evaluate the effect and importance of the main operating parameters (glycerol%, catalyst loading, Pt (cocatalyst)%, and pH). Comparison of these models revealed that the ANN model had a better accuracy and it was therefore selected for a Genetic Algorithm-based optimization. The highest amount of hydrogen production was found to be at 50% glycerol in water (v/v), 3.9 g/L catalyst loading, 3.1% Pt, and pH of 4.5. Finally, a Garson’s method-based analysis of the relative importance of the operating parameters showed that the glycerol% and catalyst loading are, respectively, the least and most influential parameters on hydrogen production. The important operating parameters (catalyst loading, substrate%, light intensity, and time) of the process of photocatalytic valorization of glycerol and ethanol to hydrogen were analyzed and a kinetic model was developed based on a proposed mechanism. The ability of the model to predict the rate of hydrogen production for different substrates, photocatalysts, and ranges of operating parameters was confirmed by comparing the model predictions with the experimental data from literature. Carbon nanotube (CNT) and carbon sphere (CS) were used to prepare carbonaceous TiO2 composites and then the role of these biobased carbonaceous materials (CT) as template, cocatalyst, and adsorbent was investigated. The morphology analysis helped in examination of the template role and find the uniformity of the formed TiO2 on the template. On the other hand, the photocatalytic experiments assisted in the analysis of the cocatalyst and adsorbent roles of CT. Interestingly, the results revealed that CNT incorporation in TiO2 composite can almost double the rate of hydrogen production (i) in the absence of Pt or (ii) at low glycerol concentrations. Consequently, it was found that in addition to being a template, the CNT can play two important roles as cocatalyst and adsorbent. To evaluate the valorization of alcoholic wastes to valuable liquid product, photocatalytic selective conversion of cyclohexanol to cyclohexanone was analyzed kinetically and spectroscopically. A reaction mechanism was proposed based on the in-situ ATR-FTIR analysis results and a kinetic model was developed to predict the rate of cyclohexanone production. Experimental data were used to evaluate the kinetic parameters using genetic algorithm method and confirm the accuracy of model predictions. A very high selectivity of cyclohexanone was confirmed by both spectroscopic and chromatographic (HPLC and GCMS) analyses, demonstrating that the photocatalytic approach is a promising alternative for selective production of cyclohexanone. In summary, the results of this thesis showed that photocatalysis is a promising alternative for valorization of biobased alcoholic wastes to value-added products. Photocatalytic conversion of alcoholic wastes can lead to the production of hydrogen as a promising green fuel for the future. On the other hand, the conversion of alcoholic wastes can be engineered to produce valuable liquid product with high selectivity.
10

Développement d'une stratégie de modification du bois afin de limiter les variations dimensionnelles du produit lambris dans un contexte éco-responsable

Essoua Essoua, Gatien Géraud 24 April 2018 (has links)
Ce travail de thèse présente deux grands axes. Le premier axe, touche les traitements du bois dans le but principal de réduire les variations dimensionnelles et d’améliorer la résistance à l’attaque des champignons lignivores. Le second axe quant à lui, touche l’aspect environnemental du traitement acide citrique-glycérol. Ce dernier a pour but principal de démontrer que le prolongement de la durée de vie en service du produit lambris traité, compense les impacts environnementaux causés par ce traitement. Dans le premier axe, deux traitements ont été réalisés sur deux essences de pin (Pinus strobus L. et Pinus contorta D.). Un traitement à l’anhydride maléique et un autre traitement avec une solution d’acide citrique – glycérol brute (AC-G). Dans le premier cas, les effets de deux paramètres (la durée de séchage et la température d’estérification) sur les résultats des essais de stabilité dimensionnelle, de résistance à la dégradation fongique et de vieillissement accéléré ont été évalués. Trois niveaux de durée de séchage après imprégnation (12 h, 18 h et 24 h) et trois niveaux de température d’estérification (140 °C, 160 °C et 180 °C) ont été considérés. Dans le second cas, après identification du meilleur catalyseur (HCl) et du meilleur ratio acide citrique – glycérol (3/1) pendant les essais préliminaires, les performances de ce traitement sur la stabilité dimensionnelle, la résistance à la pourriture fongique, la dureté de surface et l’adhérence des couches de revêtement de peinture sur la surface du substrat bois ont été analysées. Les résultats obtenus ont été appuyés par une suite d’analyses qualitatives et quantitatives pour mieux comprendre et expliquer. Les analyses qualitatives sont : (i) la spectroscopie infrarouge à transformée de Fourier (IRTF) et (ii) la microscopie électronique à balayage (MEB) tandis que la quantitative, l’analyse par perte de masse a été faite par pesée. Dans le second axe, une analyse des impacts environnementaux du traitement AC-G a été effectuée par le biais du logiciel SimaPro v8. La base de données Ecoinvent v3 et la méthode d’analyse d’impact Impact 2002+ ont été utilisées dans cette partie du travail de thèse. Sur la base des résultats du second traitement (AC-G) et des travaux disponibles dans la littérature, nous avons estimé, une durée de vie en service des lambris traités. Les différents scénarios de la durée de vie du lambris traité mis sur pied par rapport à celle offerte aujourd’hui par l’industrie, nous permettent de modéliser les impacts environnementaux du traitement. A cette fin, l’analyse de cycle de vie (ACV) a été utilisée comme outil de conception. En conclusion, les paramètres, durée de séchage et température d’estérification influencent les résultats obtenus dans le cas du traitement du bois à l’anhydride maléique. La combinaison 24 h de séchage et 180 °C, température d’estérification, représente les paramètres qui offrent les meilleurs résultats de stabilité dimensionnelle, de résistance à la dégradation fongique et de vieillissement accéléré. Le traitement AC-G améliore la stabilité dimensionnelle, la résistance à la dégradation fongique et la dureté de surface des échantillons. Cependant, le traitement réduit l’adhérence des couches de peinture. Les impacts environnementaux produits par le traitement AC-G sont majoritairement liés à la consommation de la ressource énergie (électricité). Le traitement prolonge la durée de vie en service du lambris traité et il a été mis en évidence que le scénario de durée de vie qui permettrait que le lambris traité puisse se présenter comme un produit à faible impact environnemental par rapport au lambris non traité est celui d’une durée de vie de 55 ans. / The work presented in this thesis is divided in two research tracks. The first axis regards the wood treatment. The aim of that work, was to reduce dimensional variation and to improve the resistance to fungal decay. The work of the second track presents the environmental impact of the citric acid-glycerol treatment. The purpose was to demonstrate that, enhancement of the service life expectancy of the siding product compensates the environmental impacts of this treatment. In the first axis, two treatments were considered, one with maleic anhydride and the second with citric acid and glycerol mixture. For the first treatment, the effects of two parameters, drying time and esterification temperature were analysed and different performance tests were performed. These tests were: dimensional stability, decay and accelerate aging. Three drying times (12 h, 18 h and 24 h) and three levels of esterification temperature (140 °C, 160 °C and 180 °C) were examined. For the second treatment, after identification, during the preliminary test, of the best catalyst, hydrochloric acid (HCl), the best ratio treatment was identified (3/1). Dimensional stability, decay, hardness and pull-off tests were performed. For a better understanding of the obtained results, qualitative analyses were performed. These were Fourier transform infrared spectroscopy (FTIR) and scanning electronic microscopy (SEM) analysis. Weight loss analysis was also performed as a quantitative analysis. In the second axis, the environment impact of citric acid and glycerol mixture treatment was evaluated by SimaPro software v8. Ecoinvent data base and Impact2002+ impact method were also used in this part of the study. Based on the results of the second treatment (citric acid and glycerol mixture) and the literature research, service life expectancy of siding wood treated was estimated. Different scenarios defined on the basis of the service life expectancy estimated. For this aim, life cycle assessment (LCA) was used as design tool. The drying time and esterification temperature parameters affect the results obtained in the case of the first treatment. Better results in terms of dimensional stability and accelerated aging, were obtained for the samples dried for 24 h and esterified at 180 °C. The citric acid and glycerol mixture treatment improves wood dimensional stability. Decay and hardness were improved compared to untreated samples. For the pull-off test, the treatment was found to reduce coating adhesion on the wood surface. The environmental impacts of the treatment process were mainly linked to the energy consumption (electricity). Citric acid and glycerol mixture treatment improves the service life expectancy of siding and the scenario of life service that presents treated lodgepole pine wood siding as more ecofriendly than the untreated one corresponds to 55 years.

Page generated in 0.0524 seconds