• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 11
  • 4
  • 1
  • Tagged with
  • 43
  • 25
  • 13
  • 9
  • 9
  • 9
  • 9
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Finding novel Neural Crest regulators : Pfkfb4, a key glycolysis partner, controls Neural Crest early patterning in Xenopus laevis / A la découverte de nouveaux régulateurs de la Crête Neurale : Pfkfb4, un régulateur de la glycolyse, contrôle aussi le développement précoce de la Crête Neurale chez l’amphibien.

Pegoraro, Caterina 12 December 2012 (has links)
La crête neurale (CN) est une population transitoire de cellules multipotentes qui émerge à la frontière entre l’ectoderme neural et non-neural, dans une région appelée la bordure neurale (BN). Lorsque la BN se soulève pour former le tube neural, les cellules de la CN subissent une transition épithélium-mésenchyme (TEM), et migrent de façon intensive dans l’ensemble de l’embryon pour atteindre leur destination finale et se différencier. Elles sont à l’origine de nombreux types de dérivés : neurones, cellules gliales, cartilage de la tête, os et tissus connectifs, cellules pigmentaires, cellules sympatho-adrenales. Tous ces processus sont régulés par l’action coordonnée de nombreux gènes qui forment un réseau de régulations génétiques complexe, au sein duquel de nombreuses interactions ont été décrites, même si de nombreuses relations restent à élucider à ce jour. Une mauvaise régulation de gènes normalement impliqués dans la formation de la CN provoque des malformations congénitales appelées neurocristopathies. Par ailleurs, la TEM subie par les cellules de CN avant leur migration est également observée dans les cellules cancéreuses acquérant des propriétés métastatiques. Les événements moléculaires et de nombreux gènes impliqués dans la TEM sont communs au développement de la CN et au cancer.Les liens existant entre le développement de la CN et les neurocristopathies, ainsi que les métastases, soulignent l’importance de l’étude du réseau de régulations génétiques permettant la formation de la CN et l’EMT.Au laboratoire, nous nous intéressons aux événements précoces d’induction et de spécification de la CN. Dans le but d’identifier les gènes préférentiellement impliqués dans le développement précoce de la CN et non dans la formation de l’ectoderme neural et non-neural, un crible a été effectué sur le transcriptome de différents tissus embryonnaires micro-disséqués. La validation des résultats de ce crible a permis d’identifier plusieurs gènes intéressants possédant une fonction potentielle dans la formation de la CN. Nous nous sommes particulièrement intéressés à deux d’entre eux, en raison de leur fonction originale comparée à la majorité des gènes impliqués dans le développement de la CN : serca1 et pfkfb4, un régulateur de l’homéostasie calcique et un régulateur de la glycolyse respectivement.Nous avons analysé les patrons d’expression des gènes des familles serca et pfkfb au cours du développement de Xenopus laevis. En raison de son expression spécifique dans la CN, nous avons étudié plus en détails le rôle de pfkfb4 dans la formation de la CN. Cette analyse a montré que pfkfb4 est nécessaire pour la spécification neurale et de la crête neurale.Toutefois, malgré son rôle documenté dans la glycolyse, le phénotype des morphants pfkfb4 dans l’embryon de Xenopus laevis n’est pas dû à une altération de la glycolyse.En conclusion, nos résultats démontrent l’existence d’un nouveau rôle non glycolytique pour Pfkfb4 au cours du développement embryonnaire de Xenopus Laevis. / Neural Crest (NC) is a transient population of multipotent cells that arises at the border between neural and non-neural ectoderm, in a region named the neural border (NB). As the neural border elevates to form the neural tube, NC cells undergo an Epithelial-To-Mesenchymal Transition (EMT), migrate extensively into the whole body to reach their final destinations and differentiate. They give rise to multiple derivatives: neurons and glia, head cartilage, bones and connective tissue, pigment cells, sympatho-adrenal cells. All these processes are regulated by the concerted actions of several genes that form a complex Gene Regulatory Network (GRN), in which many interactions have been elucidated, but even more relationships still need to be understood. Misregulation of genes normally involved in NC formation causes birth defects called neurocristopathies. Moreover, the EMT that NC cells undergo before migration also takes place when cancer cells become metastatic: the molecular events and many of the genes involved in EMT and migration are shared between NC development and cancer. The links with metastasis, neurocristopathies and the fact that still little is known about the earliest steps of NC formation, highlight the importance and the interest in understanding the Gene Regulatory Network (GRN) leading to NC formation and EMT.In the laboratory, we are interested in the early steps of NC induction and specification. In order to identify genes preferentially involved in early NC development compared to genes involved in neural and non-neural ectoderm formation, a transcriptome screen on different microdissected embryonic tissues has been performed. The validation of the results of the screen revealed several interesting genes with a potential function in NC formation. We focused particularly on two of them, due to their original function compared to the majority of the genes involved in NC development: serca1 and pfkfb4, a calcium homeostasis regulator and a glycolysis regulator respectively. We analysed the expression patterns of serca and pfkfb family genes during Xenopus laevis development. Then, due to its specific expression in NC, we studied more in details the role of pfkfb4 in NC formation. This analysis revealed that pfkfb4 is necessary for neural and neural crest specification. However, despite its known role in glycolysis, pfkfb4 morphant phenotype in Xenopus laevis embryos is not due to an alteration of the glycolytic pathway.In conclusion, our results reveal a novel extra-glycolytic role for Pfkfb4 during Xenopus laevis embryonic development.
32

Etude fonctionnelle du génome de Bacillus subtilis : de nouvelles régulations transcriptionnelles du métabolisme central du carbone.

Doan, Thierry 04 1900 (has links) (PDF)
Chez Bacillus subtilis, la transcription de l'opéron gapA, comprenant les gènes de la partie centrale de la glycolyse, est stimulée en présence de sources de carbone glycolytiques. Nos études in vivo et in vitro de CggR, le répresseur qui contrôle cette stimulation, ont démontré d'une part que celui-ci a la capacité de se lier à une séquence d'ADN inhabituellement longue, consistant en une répétition directe de deux motifs (CGGGACN6TGTCN4CGGGACN6TGTC) et située entre le promoteur et le codon d'initiation de l'opéron cggR-gapA, et d'autre part que son activité est inhibée par le fructose-1,6-biphosphate. Des analyses de séquence et des expériences de transcriptome ont indiqué que CggR, qui est très conservé chez les bactéries à Gram positif et qui définit une sous-famille de la famille de régulateurs transcriptionnels SorC/DeoR, est spécialisé dans le contrôle des gènes de la glycolyse. Ainsi, une collaboration a été engagée avec des structuralistes (CBS, Montpellier) pour aller plus loin dans la connaissance de ce prototype d'une famille encore peu connue de régulateurs. Deux paires de gènes paralogues ont été détectés dans le génome (ywkA et malS, ytsJ et mleA) dont les produits sont homologues à des enzymes maliques. L'analyse transcriptomique globale d'une souche sauvage cultivée en présence de glucose ou de malate comme seule source de carbone montre que l'expression d'ywkA est induite en présence de malate. En collaboration avec l'équipe de Y. Fujita, nous avons montré qu'ywkA codait bien une enzyme malique NADdépendante dont l'expression est spécifiquement induite par le malate extracellulaire et insensible à la répression catabolique. De plus, nous avons montré que le système à deux composants YufL-YufM active directement la transcription d'ywkA en présence de malate. Cependant, YwkA n'est pas requis pour la croissance en présence de malate comme seule source de carbone. La technique d'analyse du transcriptome au moyen de membranes à haute densité est maintenant acquise au laboratoire. Nous avons commencé à mettre à profit cet outil pour une étude globale de l'expression génique en fonction de différentes sources de carbone.
33

AMPK, signalisation hypoxique et métabolisme tumoral / AMPK, hypoxic signaling and tumor metabolism

Pelletier, Joffrey 01 July 2014 (has links)
Les tumeurs solides sont souvent confrontées à un environnement déficient en oxygène, dit hypoxique. Hypoxia-Inducible Factor 1 (HIF1) est le facteur de transcription clé de l’adaptation cellulaire à l’hypoxie, régulant de nombreux gènes impliqués dans l’angiogenèse, le métabolisme cellulaire ou la régulation du pH. Ma thèse s’articule en trois axes autour de HIF1 et de la reprogrammation métabolique hypoxique. J’ai d’abord étudié Factor-Inhibiting HIF1 (FIH), l’un des deux senseurs d’oxygène régulant HIF1. Nous avons montré que FIH est essentiel dans le développement tumoral en inhibant à la fois l’activité transcriptionnelle de HIF1 et la voie p53-p21. J’ai ensuite étudié le « shift » du métabolisme cellulaire vers la glycolyse induit par HIF1, générant une addiction pour le glucose. Nos travaux ont montré que paradoxalement, les cellules hypoxiques synthétisent du glycogène via HIF1 constituant ainsi une réserve de glucose intracellulaire. Le glycogène confère alors une résistance accrue des cellules tumorales suite à une carence en glucose. Enfin, j’ai pu montrer que l’AMPK, « gardien de la balance énergétique », n’est pas nécessaire au maintien d’un niveau viable d’ATP suite à l’inhibition de la glycolyse, via le blocage de l’export de lactate, mais exerce, un effet protecteur en absence de glucose. Cependant, l’inhibition conjointe du transporteur de lactate, MCT4, et de l’AMPK réduit fortement le développement tumoral dans un modèle de xénogreffes chez la souris, suggérant un rôle crucial de ces deux acteurs dans ce contexte. L’ensemble de ces travaux a permis d’identifier plusieurs cibles potentielles impliquées dans la plasticité métabolique en hypoxie. / Cells of solid tumors are often exposed to an environment deficient in oxygen, i.e. hypoxic. The Hypoxia-Inducible Factor-1 (HIF-1) is the major transcription factor involved in cellular adaptation to hypoxia. HIF-1 regulates a wide array of genes involved in angiogenesis, cellular metabolism or pH regulation. My thesis is organized into three axes around HIF-1 and metabolic reprogramming in hypoxia. I first studied Factor-Inhibiting HIF-1 (FIH), one of two oxygen sensors regulating HIF-1. We showed that FIH is essential for tumor development through inhibition of the HIF-1 transcriptional activity as well as through the suppression of the p53-p21 axis. I then studied the HIF-1-induced « shift » in cellular metabolism toward glycolysis, which generates a type of “glucose addiction”. We showed that paradoxically, tumor cells store glycogen in hypoxia through a HIF-1 dependant mechanism. Glycogen served as a reservoir of intracellular glucose, which allows hypoxic cells to survive periods of glucose starvation. Finally, I studied AMPK «the guardian of energy », and showed that surprisingly, this kinase is not necessary in maintaining a viable level of ATP when glycolysis is inhibited (by blockade of lactate export). However, as expected, AMPK protected cells during glucose starvation. Moreover, combined inhibition of the lactate transporter MCT4 and of AMPK reduced dramatically tumor development in a xenograft model, suggesting a crucial role for these two actors in the context of growth of tumor cells in a hostile environment. Taken together these results identified several potential drug targets involved in the metabolic plasticity of hypoxic cells.
34

Chloroacétaldéhyde : de l’implication dans les mécanismes physiopathologiques de la néphrotoxicité de l’ifosfamide à la contribution à son effet anticancéreux / Chloroacetaldehyde : from the implication in the pathophysiological mechanisms of ifosfamide-induced nephrotoxicity to the contribution to its anticancerous effect

Knouzy, Burhan 18 November 2009 (has links)
Le chloroacétaldéhyde (CAA), un des principaux produits du métabolisme hépatique de l’ifosfamide (IFO), est considéré comme responsable de la néphrotoxicité de ce médicament. Les mécanismes exacts de cette néphrotoxicité ne sont pas complètement élucidés. Dans la première partie de cette étude, nous avons essayé de préciser les mécanismes physiopathologiques de la toxicité du CAA sur un modèle de tranches de cortex rénal de rat, puis, dans la deuxième partie, nous avons recherché un effet anticancéreux éventuel du CAA sur des cellules de cancer du sein humain (MCF-7). La néphrotoxicité du CAA, utilisé à des concentrations proches de celles mesurées chez les patients traités par l’IFO, soit 0 - 75 µM, s’est manifestée par une chute d’ATP et du glutathion ainsi que par une inhibition du métabolisme du lactate. Certaines enzymes de la néoglucogenèse, notamment la glyceraldéhyde 3-phosphate déshydrogénase, ont été inhibées par le CAA. Le complexe I de la chaîne respiratoire mitochondriale ainsi que l’oxydation du lactate ont été également inhibées par le toxique. D’autre part, le CAA (10 et 25 µM) a inhibé la prolifération des cellules MCF-7 sans que cette inhibition soit accompagnée d’une chute d’ATP cellulaire. Le transport cellulaire et le métabolisme du glucose ainsi que certaines enzymes de la glycolyse ont été également inhibés par le CAA. Parmi celles-ci, l’hexokinase semble être l’enzyme qui catalyse l’étape limitante de la voie de la glycolyse. En conclusion, le CAA est bien impliqué dans les mécanismes de la néphrotoxicité de l’IFO, mais de plus, il pourrait, via l’inhibition de la glycolyse, contribuer à l’effet thérapeutique de l’IFO. / Chloroacetaldehyde (CAA), one of the main products of ifosfamide (IFO) hepatic metabolism, is considered as responsible of IFO nephrotoxicity. The mechanisms of this nephrotoxicity are not completely known. In the first part of this study, we tried to clarify the pathophysiological mechanisms of CAA toxicity using precision-cut rat renal cortical slices, then, in the second part, we looked for a possible anticancerous effect of CAA on human breast cancer cells (MCF-7). Using clinically-relevant concentrations (0-75 µM), CAA nephrotoxicity was demonstrated by the depletion of ATP and glutathione and by the inhibition of lactate metabolism. Some of the gluconeogenic enzymes, mainly glyceraldehyde 3-phosphate dehydrogenase, were inhibited by CAA. The complex I of the mitochondrial respiratory chain as well as lactate oxidation were also inhibited by CAA. On the other hand, CAA (10 and 25 µM) inhibited MCF-7 cell proliferation which was not accompanied by cellular ATP depletion. Glucose transport and metabolism as well as some of the glycolytic enzymes were also inhibited by CAA. Hexokinase seems to be the rate-limiting enzyme of glycolysis. In conclusion, CAA is implied in the mechanisms of IFO-induced nephrotoxicity; furthermore, it could, via the inhibition of the glycolytic pathway, contribute to the therapeutic effect of IFO.
35

Métabolisme énergétique cardiaque fœtal dans un modèle de restriction de croissance intra-utérine chez le rat

Monfils, Sarah 03 1900 (has links)
Une diète faible en sodium donnée à des rates lors de la dernière semaine de gestation induit une diminution de l’expansion volumique, du diamètre des artères utérines et du poids des placentas comparativement à des rates témoins. Ces perturbations suggèrent une diminution de la perfusion placentaire affectant l’apport foetal en nutriments. Les ratons naissent avec une restriction de croissance intra-utérine (RCIU). Chez le foetus, le substrat énergétique cardiaque principal est le glucose via la glycolyse. À la naissance, la source principale d’énergie est l’utilisation des acides gras par la β-oxydation. Nous émettons l’hypothèse que dans ce modèle de RCIU, le coeur foetal répond à la diminution d’apport nutritionnel due à une atteinte maternelle en adaptant son métabolisme énergétique cardiaque à la baisse. Les rates gestantes (témoins et recevant la diète faible en sodium) sont sacrifiées au jour 22 de gestation (sur 23). Les coeurs foetaux sont prélevés afin de caractériser les protéines dites « limitantes » in vitro des voies de la glycolyse et de la β-oxydation. Les expressions protéiques de GLUT1, GLUT4, HK1, HK2, CPT2, CPT1β, cytochrome c, PFK1, PKM1/2, mesurées par immunobuvardage de type Western, sont similaires entre les coeurs des foetus RCIU et témoins, mâles et femelles. L’expression protéique de CPT1α est diminuée dans les coeurs des femelles RCIU seulement. Il n’existe aucune différence significative entre les différents groupes quant à l’activité enzymatique de PKM1/2. Nos résultats dressent un profil métabolique général suggérant que le sexe du foetus peut avoir un effet sur la réponse cardiaque foetale à une atteinte du volume sanguin maternel causée par la diète restreinte en sodium. Ce profil métabolique semble démontrer une atteinte du catabolisme des lipides. Afin de bien caractériser cette réponse du mécanisme énergétique, l’activité enzymatique des autres enzymes principales de la glycolyse (HK1, HK2, PFK1), le flux intra-mitochondrial d’acyl CoA à travers les CPTs ainsi que la quantité totale d’acétyl CoA devront être quantifiés. / A low sodium diet was given to pregnant rats during the last week of gestation. This diet diminished the maternal expansion of blood volume, the uterine arteries diameter, and placental weight, when compared to their controls. Together, these results suggest a lower placenta perfusion and a decreased output of nutrients to the fetus. The offspring of these pregnant rats were born with an intra-uterine growth retardation (IUGR). The fetal heart utilizes glucose through glycolysis as the major cardiac energy substrate. At birth, the principal source of energy switches to the oxidation of fatty acids, through β-oxydation. We hypothesized that within our IUGR model, the fetal heart could respond to a diminished nutritional intake due to the maternal input when a decreased cardiac energy metabolism was present. The pregnant rats of both groups (controls and on the low sodium diet) were sacrificed on day 22 of a 23 day gestation. The fetal hearts were then analyzed looking for signs of the limiting proteins glycolysis and β-oxidation. The GLUT1, GLUT4, HK1, HK2, CPT2, CPT1β, cytochrome c, PFK1, PKM1/2 proteins obtained through a Western immunoblot method were similar between the hearts of the IUGR and their control fetuses, whether they were male or female. The protein expression of CPT1α was lower only in female IUGR fetal hearts. There was no significant difference between the groups with respect to the enzymatic activity of PKM1/2. Our results suggest that the metabolic profile changes with regards to the fetus gender and could affect the fetal cardiac metabolism, due to a lower maternal blood flow caused by a sodium controlled diet, by diminishing its lipid metabolism and sparing glucose metabolism. To characterize the energy metabolism, the enzymatic activity of the other principal limiting enzymes glycolysis (HK1, HK2, PFK1), the intra-mitochondrial flux of acyl CoA through the CPTs and the total quantity of acetyl CoA must also be analyzed.
36

Modeling and analysis of yeast osmoadaptation in cellular context

Kühn, Clemens 13 January 2011 (has links)
Mathematische Modellierung ist ein wichtiges Werkzeug biologischer Forschung geworden, was sich in der Entstehung von Systembiologie widerspiegelt. Eine erfolgreiche Anwendung mathematischer Methoden auf biologische Fragen erfordert die Zusammenarbeit zwischen experimentell und theoretisch arbeitenden Wissenschaftlern, auch um sicherzustellen, dass die Biologie im Modell adäquat dargestellt wird. Ich präsentiere hier zwei Untersuchungen zur Anpassung von Saccharomyces cere- visae an hyperosmotische Bedingungen: Eine biologisch detailgetreue Beschreibung der Signaltransduktion zur Aktivierung von Hog1 und ein Model, das Anpassung an osmotischen Stress in zellulärem Zusammenhang beschreibt. Die Studie zur Osmoadaptation in zellulären Kontext impliziert, dass Hog1 und Fps1, zwei wichtige Bausteine dieses Adaptationsvorgangs, miteinander in Wechselwirkung treten und dies zur Anpassung beiträgt. Dieses Ergebnis wird durch die Integration verschiedener Hefestämme mit zum Teil gegensätzlich wirkenden Mutationen ermöglicht. Diese Studie offenbart des weiteren, dass die Rolle von Glycerol in der langfristigen Anpassung bisher überschätzt wurde. Die hier präsentierten Ergebnisse zeigen, dass Glycerol als ’Not’-Osmolyt eingesetzt wird und andere Stoffe, z.B. Trehalose, erheblich zu dauerhafter Osmoadaptation beitragen. Durch die Betrachtung des Zustands mehrerer zellulärer Mechansimen wird deutlich, dass Osmoadaptation stark vom Kontext abhängig ist und nicht perfekt ist. Der Preis schlägt sich in langsamerem Wachstum nieder. Zeitabhängige Sensitivitätsanalyse des Modells untermauert diese Hypothese. Die gewählte Perspektive ermöglicht die Betrachtung von intrazellulären Signaltransduktionskomponenten, Metaboliten und des Wachstums. Der Vergleich mit einer Studie, die Anpassung an osmotischen Stress als perfekte Adaptation auf Grund eines vereinfachten Modells beschreibt, hebt die Rolle der gewählten Perspektive zum Verständnis biologischer Systeme hervor. / Mathematical modeling has become an important tool in biology, reflected in the emergence of systems biology. Successful application of mathematical methods to biological questions requires collaboration of experimental and theoretical scientists to identify and study the problem at hand and to ensure that biology and model match. In this thesis, I present two studies on adaptation to hyperosmotic conditions in the yeast Saccharomyces cerevisae: A biologically faithful description of the signaling pathways activating Hog1 and a model integrating the effects of Hog1-activity and cellular metabolism, describing osmoadaptation in cellular context. The study of osmoadaptation in cellular context suggests that Hog1 and Fps1, two crucial components of adaptation, interact upon hyperosmotic stress. This finding is facilitated by incorporating multiple strains with mutations leading to partly oppositional phenotypes. This study further reveals that the role of glycerol in long term adaptation has been overestimated so far. According to the results presented here, glycerol is utilized as an ’emergency’ osmoprotectant and other compounds, e.g. trehalose, contribute significantly to osmoadaptation. Accounting for the state of multiple cellular mechanisms (Hog1-activity, glycolysis, growth) shows that adaptation to hyperosmotic stress and the impact of the individual mechanisms of adaptation is context dependent and that adaptation to sustained osmostress is not perfect, the expense reflected in a reduced growth rate in hyperosmotic medium. Time-dependent sensitivity analysis supports the notion of context. The perspective chosen allows observations on intracellular signaling components, metabolites and growth speed. Comparison with a study that describes osmoadaptation as perfect adaptation highlights the role of this perspective for the conclusions drawn, thus emphasizing the importance of an integrative perspective for understanding biological systems.
37

Étude de l’effet Warburg, à l’origine du métabolisme énergétique de la cellule cancéreuse, chez la levure Saccharomyces cerevisiae / Study of the Warburg effect, on the origin of the energy metabolism of the cancer cell, in yeast Saccharomyces cerevisiae

Hammad, Noureddine 03 December 2018 (has links)
Nous avons étudié les relations entre les différentes voies du métabolisme énergétique lors de la mise en place des effets Crabtree et Warburg. L’effet du glucose sur le métabolisme énergétique de S. cerevisiae se traduit dans un premier temps par une inhibition cinétique du métabolisme oxydatif (effet Crabtree). Après l’ajout de glucose aux cellules, nous avons mis en évidence l’accumulation d’un intermédiaire de la glycolyse, le F1,6bP. Ceci induit une diminution drastique du rapport G6P/F1,6bP. Or, il a été montré que le G6P stimule et le F1,6bP inhibe l’activité de la chaine respiratoire mitochondriale « in-situ ». L’utilisation de mutants et la modulation de ce rapport nous a permis de montrer que l’induction de l’effet Crabtree chez la levure Saccharomyces cerevisiae est dû à une diminution du rapport G6P/F1,6bP. Parallèlement, le glucose induit un réarrangement génétique qui à terme conduit à un effet Warburg. Nous avons mis en évidence une diminution, au cours du temps du contenu mitochondrial par effet de dilution, suite à un arrêt de la biogenèse mitochondriale (répression de HAP4). Nous avons pu montrer que cette diminution quantitative des OXPHOS est sans effet sur la synthèse d’ATP cellulaire. Ceci est dû à une augmentation du flux de synthèse d’ATP glycolytique. L’utilisation de mutants HAP4", nous a permis de montrer qu’il n’y a pas de lien simple entre prolifération et répression des OXPHOS. Bien que le flux glycolytique diminue dans les conditions de maintien des OXPHOS, ceci est sans effet notoire sur la vitesse de prolifération. Ceci est un rare exemple d’une situation biologique ou l’on observe un découplage entre métabolisme énergétique et prolifération. / We used the yeast Crabtree (+) model to study the relationships between the energy metabolism pathways during the implementation of the Warburg effect. The effect of glucose on S. cerevisiae energetic metabolism results initially in a kinetic inhibition of the oxidative metabolism (Crabtree effect). Rapidly after the addition of glucose, we found an accumulation of F1, 6bP. This induces a drastic reduction in the ratio G6P / F1,6bP. Moreover, it has been shown that G6P stimulates and F1,6bP inhibits the activity of the respiratory chain "in-vitro". Mutants and the modulation of this ratio allowed us to show that the induction of the Crabtree effect is due to a decrease in the G6P / F1,6bP ratio. In parallel with the implementation of the Crabtree effect, glucose induces a genetic rearrangement that leads to a Warburg effect. We showed a decrease over time of mitochondrial enzymatic equipment by dilution effect, due to a halt of mitochondrial biogenesis (transcriptional repression of HAP4). We have been able to show that this decrease in respiratory capacity has no effect on the cellular capacity for ATP synthesis. This is due to the increase in glycolytic ATP synthesis flux. Furthermore, the use of mutants where there is no repression of mitochondrial metabolism upon glucose addition allowed us to show that there is no simple link between OXPHOS activity and cell proliferation. i.e. Mitochondrial metabolism repression/high glycolytic flux is not mandatory to allow a rapid cell proliferation. This is a rare example where energetic metabolism and cell proliferation are uncoupled.
38

Amino acids regulate hepatic intermediary metabolism-related gene expression via mTORC1-dependent manner in rainbow trout (Oncorhynchus mykiss) / Les acides aminés régulent l'expression des gènes du métabolisme intermédiaire chez la truite par le biais de mTORC1 (Oncorhynchus mykiss)

Weiwei, Dai 12 October 2015 (has links)
Au cours de ma thèse, nous avons utilisé la truite arc-en-ciel, un poisson carnivore et modèle potentiellement pertinent du diabète, pour étudier des mécanismes de régulation du métabolisme intermédiaire hépatique par les nutriments (acides aminés (AA) et le glucose). Nous nous sommes plus particulièrement intéressés aux voies de signalisation de l’insuline et des acides aminés (Akt et mTORC1). Grâce à l’utilisation de rapamycine, un inhibiteur pharmacologique de mTORC1, nous avons montré que l'activation de mTORC1 stimule l'expression de gènes de la lipogenèse, de la glycolyse et du catabolisme des acides aminés, tandis que la voie de signalisation Akt inhibe celle des gènes impliqués dans la néoglucogenèse. Ces études ont été conduites dans le foie de truite ou en culture primaire d’hépatocytes de truite arc-en-ciel. En outre, nous avons démontré lors de stimulations à court terme in vivo et in vitro que l'expression hépatique des gènes de la lipogenèse est plus sensible à l'apport de protéines alimentaires ou d’AA qu’à l'apport de glucides ou de glucose. De plus, nous avons observé que des taux élevés d’AA conduisent, par le biais de l’activation de la voie de signalisation mTORC1, à une augmentation de l'expression des gènes lipogéniques mais surtout à une répression de l’inhibition de l’expression des gènes de la néoglucogenèse induite par l’insuline. Cet effet s’accompagne d’une augmentation de la phosphorylation de IRS-1 sur le résidu Ser302 qui pourrait être responsable de la baisse de phosphorylation d'Akt et par conséquent d’une inhibition de l’action de l'insuline. Enfin, en réalisant un test de tolérance au glucose chez des truites préalablement traitées avec de la rapamycine, nous avons conclu que la néoglucogenèse hépatique joue un rôle probablement majeur dans le contrôle de l'homéostasie glucidique chez la truite. Ainsi, une absence d’inhibition de la néoglucogenèse pourrait contribuer au maintien de l'hyperglycémie prolongée et au phénotype d’intolérance au glucose caractéristique des poissons carnivores. Cette thèse met en avant le rôle des protéines/AA dans la régulation du métabolisme intermédiaire de la truite et identifie certaines voies de signalisation cellulaire sollicités par les acides aminés pour réguler le métabolisme. Elle permet ainsi d’éclaircir certaines particularités nutritionnelles de la truite. / During my doctoral study, we used rainbow trout, a representative carnivorous fish and relevant diabetic model, to study the mechanisms underlying the regulation of hepatic intermediary metabolism by nutrients (amino acids (AAs) and glucose), and determine the potential involvement of insulin/Akt and mTORC1 signaling pathways in these regulations. Using acute administration of rapamycin, a pharmacological inhibitor of TOR, we first identified that mTORC1 activation promotes the expression of genes related to fatty acid biosynthesis, glycolysis and amino acid catabolism, while Akt negatively regulates gluconeogenic gene expression in rainbow trout liver and primary hepatocytes. Furthermore, we demonstrated hepatic fatty acid biosynthetic gene expression is more responsive to dietary protein intake/AAs than dietary carbohydrate intake/glucose during acute stimulations in vivo and in vitro. Moreover, we further showed that high levels of AAs up-regulate hepatic fatty acid biosynthetic gene expression through an mTORC1-dependent manner, while excessive AAs attenuate insulin-mediated repression of gluconeogenesis through elevating IRS-1 Ser302 phosphorylation, which in turn impairs Akt phosphorylation and dampens insulin action. Finally, using glucose tolerance test and acute inhibition of rapamycin, we concluded that hepatic gluconeogenesis probably plays a major role in controlling glucose homeostasis, which maybe account for the prolonged hyperglycemia and glucose intolerance phenotype of carnivorous fish. The present thesis brings forward our understandings about the roles of protein/AAs in the regulation of hepatic intermediary metabolism in trout and identifies relevant cellular signaling pathways mediating the action of amino acids on metabolism. It also clarifies some nutritional characteristics of the trout.
39

Métabolisme énergétique cardiaque fœtal dans un modèle de restriction de croissance intra-utérine chez le rat

Monfils, Sarah 03 1900 (has links)
Une diète faible en sodium donnée à des rates lors de la dernière semaine de gestation induit une diminution de l’expansion volumique, du diamètre des artères utérines et du poids des placentas comparativement à des rates témoins. Ces perturbations suggèrent une diminution de la perfusion placentaire affectant l’apport foetal en nutriments. Les ratons naissent avec une restriction de croissance intra-utérine (RCIU). Chez le foetus, le substrat énergétique cardiaque principal est le glucose via la glycolyse. À la naissance, la source principale d’énergie est l’utilisation des acides gras par la β-oxydation. Nous émettons l’hypothèse que dans ce modèle de RCIU, le coeur foetal répond à la diminution d’apport nutritionnel due à une atteinte maternelle en adaptant son métabolisme énergétique cardiaque à la baisse. Les rates gestantes (témoins et recevant la diète faible en sodium) sont sacrifiées au jour 22 de gestation (sur 23). Les coeurs foetaux sont prélevés afin de caractériser les protéines dites « limitantes » in vitro des voies de la glycolyse et de la β-oxydation. Les expressions protéiques de GLUT1, GLUT4, HK1, HK2, CPT2, CPT1β, cytochrome c, PFK1, PKM1/2, mesurées par immunobuvardage de type Western, sont similaires entre les coeurs des foetus RCIU et témoins, mâles et femelles. L’expression protéique de CPT1α est diminuée dans les coeurs des femelles RCIU seulement. Il n’existe aucune différence significative entre les différents groupes quant à l’activité enzymatique de PKM1/2. Nos résultats dressent un profil métabolique général suggérant que le sexe du foetus peut avoir un effet sur la réponse cardiaque foetale à une atteinte du volume sanguin maternel causée par la diète restreinte en sodium. Ce profil métabolique semble démontrer une atteinte du catabolisme des lipides. Afin de bien caractériser cette réponse du mécanisme énergétique, l’activité enzymatique des autres enzymes principales de la glycolyse (HK1, HK2, PFK1), le flux intra-mitochondrial d’acyl CoA à travers les CPTs ainsi que la quantité totale d’acétyl CoA devront être quantifiés. / A low sodium diet was given to pregnant rats during the last week of gestation. This diet diminished the maternal expansion of blood volume, the uterine arteries diameter, and placental weight, when compared to their controls. Together, these results suggest a lower placenta perfusion and a decreased output of nutrients to the fetus. The offspring of these pregnant rats were born with an intra-uterine growth retardation (IUGR). The fetal heart utilizes glucose through glycolysis as the major cardiac energy substrate. At birth, the principal source of energy switches to the oxidation of fatty acids, through β-oxydation. We hypothesized that within our IUGR model, the fetal heart could respond to a diminished nutritional intake due to the maternal input when a decreased cardiac energy metabolism was present. The pregnant rats of both groups (controls and on the low sodium diet) were sacrificed on day 22 of a 23 day gestation. The fetal hearts were then analyzed looking for signs of the limiting proteins glycolysis and β-oxidation. The GLUT1, GLUT4, HK1, HK2, CPT2, CPT1β, cytochrome c, PFK1, PKM1/2 proteins obtained through a Western immunoblot method were similar between the hearts of the IUGR and their control fetuses, whether they were male or female. The protein expression of CPT1α was lower only in female IUGR fetal hearts. There was no significant difference between the groups with respect to the enzymatic activity of PKM1/2. Our results suggest that the metabolic profile changes with regards to the fetus gender and could affect the fetal cardiac metabolism, due to a lower maternal blood flow caused by a sodium controlled diet, by diminishing its lipid metabolism and sparing glucose metabolism. To characterize the energy metabolism, the enzymatic activity of the other principal limiting enzymes glycolysis (HK1, HK2, PFK1), the intra-mitochondrial flux of acyl CoA through the CPTs and the total quantity of acetyl CoA must also be analyzed.
40

Recherche d'haplotypes enzymatiques associés à des phénotypes métaboliques chez la tomate

Menard, Guillaume 29 November 2012 (has links)
La recherche de variations d’activités enzymatiques associées à des phénotypes chez la tomate (Solanum Lycopersicum) a permis d’apporter de nouveaux éléments pour l’étude desrelations existantes entre le métabolisme central et la qualité du fruit. Ce projet qui engageaitune nouvelle thématique au sein de l’unité Biologie et Pathologie de Fruit (UMR 1332, INRABORDEAUX) a permis dans un premier temps de développer une plateforme d’enzymologieà haut débit. Cette structure permet d’une part de réaliser plus de 10 000 déterminationsd’activités enzymatiques par jour avec une très grande reproductibilité et d’autre part dedéterminer les constantes de Michaelis (Km) apparentes pour jusqu’à une dizaine d’enzymespar jour.Dans un deuxième temps ce projet s’est attaché à étudier les relations existantes entre lesenzymes de la voie de la glycolyse chez le cultivar de tomate MicroTom. Nous y avonsrelevé l’existence de corrélations fortes entre les activités de ces enzymes. Nous avonségalement mis à jour l’existence de corrélations pour les enzymes mesurées à partir de deuxétages foliaires distincts ce qui suggère que les réseaux enzymatiques sont conservés ausein d’une plante.Dans un troisième temps, le criblage d’une collection de mutants de tomate MicroTom a étéentrepris. Ce criblage de plus de 150 familles (soit environ 1800 plantes) sur la base desactivités enzymatique de onze enzymes du métabolisme central à deux concentrations desubstrats différentes (saturante et non saturante) a abouti à l’identification de deux familles.Ces deux familles porteraient chacune une mutation affectant les caractéristiques cinétiquesde la Triose-Phosphate Isomérase. Ces mutations étaient toujours en cours d’étude à la finde ce projet. Ces résultats ouvrent de nouvelles perspectives pour la compréhension desrelations entre les enzymes du métabolisme central. Ils permettent aussi d’apporter desméthodes d’identification rapide de mutants enzymatiques au sein d’une large population. / Research on enzymatic variations associate with phenotypes in tomato (SolanumLycopersicun) provided new and original input regarding links between central metabolismand fruit quality. This project took part in a new topic of the Fruit Biology and Pathology Unit(UMR 1332, INRA BORDEAUX). First, during this project, a new high-throughputenzymology platform was created. This unique lab offers possibility to determine both morethan 10 000 enzyme activities per day with a very good reliability and apparent Michealisconstant (Km) for up to ten enzymes per day.Second, this project investigated existent relationship between glycolytic enzymes inMicroTom tomato cultivar. We highlighted strong correlations between enzymes in leaves.We also uncovered correlations between enzymes activities measured in two distinct foliarlevels. These elements suggest inheritability of the enzymes network within the plant.Third, the screen of an Ethylmethyl Sulfonate (EMS) MicroTom mutant’s collection wasinitiated. 150 families (around 1800 plants) were screened for eleven enzymes with twodifferent substrate concentrations. At the end of the process, two families were identified;both could have mutation(s) that affect(s) the kinetic characteristic of Triose-Phosphateisomerase. These mutations were style investigated at the end of this project. These originalresults provide new perspectives for knowledge of relationship between central metabolism’senzymes. Finally, This project proposes new and rapid enzymatic mutant identification withina large population as an EMS mutant’s collection.

Page generated in 0.0302 seconds