• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 485
  • 283
  • 55
  • 1
  • 1
  • Tagged with
  • 823
  • 253
  • 251
  • 247
  • 236
  • 137
  • 129
  • 124
  • 101
  • 82
  • 80
  • 77
  • 76
  • 76
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Evaluation formative du savoir-faire des apprenants à l'aide d'algorithmes de classification : application à l'électronique numérique / Formative evaluation of the learners' know-how using classification algorithms : application to th digital electronics

Tanana, Mariam 19 November 2009 (has links)
Lorsqu'un enseignant veut évaluer le savoir-faire des apprenants à l'aide d'un logiciel, il utilise souvent les systèmes Tutoriels Intelligents (STI). Or, les STI sont difficiles à développer et destinés à un domaine pédagogique très ciblé. Depuis plusieurs années, l'utilisation d'algorithmes de classification par apprentissage supervisé a été proposée pour évaluer le savoir des apprenants. Notre hypothèse est que ces mêmes algorithmes vont aussi nous permettre d'évaluer leur savoir-faire. Notre domaine d'application étant l'électronique numérique, nous proposons une mesure de similarité entre schémas électroniques et une bas d'apprentissage générée automatiquement. cette base d'apprentissage est composées de schémas électroniques pédagogiquement étiquetés "bons" ou "mauvais" avec des informations concernant le degré de simplification des erreurs commises. Finalement, l'utilisation d'un algorithme de classification simple (les k plus proches voisins) nous a permis de faire une évaluation des schémas électroniques dans la majorité des cas. / When a teacher wants to evaluate the know-how of the learners using a software, he often uses Intelligent Tutorial Systems (ITS). However, those systems are difficult to develop and intended for a very targeted educational domain. For several years, the used of supervised classification algorithms was proposed to estimate the learners' knowledge. From this fact, we assume that the same kinf of algorithms can help to adress the learners' know-how evaluation. Our application field being digital system design, we propose a similarity measure between digital circuits and instances issued from an automatically generated database. This database consists of electronic circuits pedagogically labelled "good" or "bad" with information concerning the simplification degrees or made mistakes. Finally, the use of a simple classification algorithm (namely k-nearest neighbours classifier) allowed us to achieve a circuit's evaluation in most cases.
472

Détection d'opinions, d'acteurs-clés et de communautés thématiques dans les médias sociaux / Detection of opinions, key-actors and thematic communities in online social media

Gadek, Guillaume 22 November 2018 (has links)
Les réseaux sociaux numériques ont pris une place prépondérante dans l'espace informationnel, et sont souvent utilisés pour la publicité, le suivi de réputation, la propagande et même la manipulation, que ce soit par des individus, des entreprises ou des états. Alors que la quantité d'information rend difficile son exploitation par des humains, le besoin reste entier d'analyser un réseau social numérique : il faut dégager des tendances à partir des messages postés dont notamment les opinions échangées, qualifier les comportements des utilisateurs, et identifier les structures sociales émergentes.Pour résoudre ce problème, nous proposons un système d'analyse en trois niveaux. Tout d'abord, l'analyse du message vise à en déterminer l'opinion. Ensuite, la caractérisation et l'évaluation des comptes utilisateurs est réalisée grâce à une étape de profilage comportemental et à l'étude de leur importance et de leur position dans des graphes sociaux, dans lesquels nous combinons les mesures topologiques d'importance des noeuds dans un graphe avec les statistiques d'engagement, par exemple en nombre d'abonnés. Enfin, le système procède à la détection et à l'évaluation de communautés d'utilisateurs, pour lesquelles nous introduisons des scores de cohésion thématique qui complètent les mesures topologiques classiques de qualité structurelle des communautés détectées. Nous appliquons ce système d'analyse sur deux corpus provenant de deux médias sociaux différents : le premier est constitué de messages publiés sur Twitter, représentant toutes les activités réalisées par 5 000 comptes liés entre eux sur une longue période. Le second provient d'un réseau social basé sur TOR, nommé Galaxy2. Nous évaluons la pertinence de notre système sur ces deux jeux de données, montrant la complémentarité des outils de caractérisation des comptes utilisateurs (influence, comportement, rôle) et des communautés de comptes (force d'interaction, cohésion thématique), qui enrichissent l'exploitation du graphe social par les éléments issus des contenus textuels échangés. / Online Social Networks have taken a huge place in the informational space and are often used for advertising, e-reputation, propaganda, or even manipulation, either by individuals, companies or states. The amount of information makes difficult the human exploitation, while the need for social network analysis remains unsatisfied: trends must be extracted from the posted messages, the user behaviours must be characterised, and the social structure must be identified. To tackle this problem, we propose a system providing analysis tools on three levels. First, the message analysis aims to determine the opinions they bear. Then, the characterisation and evaluation of user accounts is performed thanks to the union of a behavioural profiling method, the study of node importance and position in social graphs and engagement and influence measures. Finally the step of user community detection and evaluation is accomplished. For this last challenge, we introduce thematic cohesion scores, completing the topological, graph-based measures for group quality. This system is then applied on two corpora, extracted from two different online social media. The first is constituted of messages published on Twitter, gathering every activity performed by a set of 5,000 accounts on a long period. The second stems from a ToR-based social network, named Galaxy2, and includes every public action performed on the platform during its uptime. We evaluate the relevance of our system on these two datasets, showing the complementarity of user account characterisation tools (influence, behaviour and role), and user account communities (interaction strength, thematic cohesion), enriching the social graph exploitation with textual content elements.
473

Continuum limits of evolution and variational problems on graphs / Limites continues de problèmes d'évolution et variationnels sur graphes

Hafiene, Yosra 05 December 2018 (has links)
L’opérateur du p-Laplacien non local, l’équation d’évolution et la régularisation variationnelle associées régies par un noyau donné ont des applications dans divers domaines de la science et de l’ingénierie. En particulier, ils sont devenus des outils modernes pour le traitement massif des données (y compris les signaux, les images, la géométrie) et dans les tâches d’apprentissage automatique telles que la classification. En pratique, cependant, ces modèles sont implémentés sous forme discrète (en espace et en temps, ou en espace pour la régularisation variationnelle) comme approximation numérique d’un problème continu, où le noyau est remplacé par la matrice d’adjacence d’un graphe. Pourtant, peu de résultats sur la consistence de ces discrétisations sont disponibles. En particulier, il est largement ouvert de déterminer quand les solutions de l’équation d’évolution ou du problème variationnel des tâches basées sur des graphes convergent (dans un sens approprié) à mesure que le nombre de sommets augmente, vers un objet bien défini dans le domaine continu, et si oui, à quelle vitesse. Dans ce manuscrit, nous posons les bases pour aborder ces questions.En combinant des outils de la théorie des graphes, de l’analyse convexe, de la théorie des semi- groupes non linéaires et des équations d’évolution, nous interprétons rigoureusement la limite continue du problème d’évolution et du problème variationnel du p-Laplacien discrets sur graphes. Plus précisé- ment, nous considérons une suite de graphes (déterministes) convergeant vers un objet connu sous le nom de graphon. Si les problèmes d’évolution et variationnel associés au p-Laplacien continu non local sont discrétisés de manière appropriée sur cette suite de graphes, nous montrons que la suite des solutions des problèmes discrets converge vers la solution du problème continu régi par le graphon, lorsque le nombre de sommets tend vers l’infini. Ce faisant, nous fournissons des bornes d’erreur/consistance.Cela permet à son tour d’établir les taux de convergence pour différents modèles de graphes. En parti- culier, nous mettons en exergue le rôle de la géométrie/régularité des graphons. Pour les séquences de graphes aléatoires, en utilisant des inégalités de déviation (concentration), nous fournissons des taux de convergence nonasymptotiques en probabilité et présentons les différents régimes en fonction de p, de la régularité du graphon et des données initiales. / The non-local p-Laplacian operator, the associated evolution equation and variational regularization, governed by a given kernel, have applications in various areas of science and engineering. In particular, they are modern tools for massive data processing (including signals, images, geometry), and machine learning tasks such as classification. In practice, however, these models are implemented in discrete form (in space and time, or in space for variational regularization) as a numerical approximation to a continuous problem, where the kernel is replaced by an adjacency matrix of a graph. Yet, few results on the consistency of these discretization are available. In particular it is largely open to determine when do the solutions of either the evolution equation or the variational problem of graph-based tasks converge (in an appropriate sense), as the number of vertices increases, to a well-defined object in the continuum setting, and if yes, at which rate. In this manuscript, we lay the foundations to address these questions.Combining tools from graph theory, convex analysis, nonlinear semigroup theory and evolution equa- tions, we give a rigorous interpretation to the continuous limit of the discrete nonlocal p-Laplacian evolution and variational problems on graphs. More specifically, we consider a sequence of (determin- istic) graphs converging to a so-called limit object known as the graphon. If the continuous p-Laplacian evolution and variational problems are properly discretized on this graph sequence, we prove that the solutions of the sequence of discrete problems converge to the solution of the continuous problem governed by the graphon, as the number of graph vertices grows to infinity. Along the way, we provide a consistency/error bounds. In turn, this allows to establish the convergence rates for different graph models. In particular, we highlight the role of the graphon geometry/regularity. For random graph se- quences, using sharp deviation inequalities, we deliver nonasymptotic convergence rates in probability and exhibit the different regimes depending on p, the regularity of the graphon and the initial data.
474

Edge partitioning of large graphs / Partitionnement de grands graphes

Li, Yifan 15 December 2017 (has links)
Dans cette thèse nous étudions un problème fondamental, le partitionnement de graphe, dans le contexte de la croissance rapide des données, le volume des données continues à augmenter, allant des réseaux sociaux à l'internet des objets. En particulier, afin de vaincre les propriétés intraitables existant dans de nombreuses graphies, par exemple, la distribution des degrés en loi de puissance, nous appliquons un nouveau mode pour coupe de sommet, à la place de la méthode traditionnelle (coupe de bord), ainsi que pour assurer une charge de travail équilibrée et raisonnablement dans le traitement de graphe distribué. En outre, pour réduire le coût de communication inter-partitions, nous proposons une méthode de partition de bord basée sur les blocs, qui peut explorer efficacement les structures graphiques sous-jacentes au niveau local. , afin d'optimiser l'exécution de l'algorithme de graphe. Par cette méthode, le temps d'exécution et des communications généraux peuvent être considérablement réduits par rapport aux approches existantes. Les challenges qui se posent dans les grands graphiques comprennent également leur grande variété. Comme nous le savons, la plupart des applications graphiques au monde réel produisent des ensembles de données hétérogènes, dans lesquels les sommets et / ou les arêtes peuvent avoir des différents types ou des différentes étiquettes. De nombreuses algorithmes de fouille de graphes sont également proposés avec beaucoup d'intérêt pour les attributs d'étiquette. Pour cette raison, notre travail est étendu aux graphes de multicouches en prenant en compte la proximité des arêtes et la distribution des étiquettes lors du processus de partitionnement. En fin de cette thèse, Nous démontré à la ses performances exceptionnelles sur les ensembles de données du monde réel. / In this thesis, we mainly focus on a fundamental problem, graph partitioning, in the context of unexpectedly fast growth of data sources, ranging from social networks to internet of things. Particularly, to conquer intractable properties existing in many graphs, e.g. power-law degree distribution, we apply the novel fashion vertex-cut, instead of the traditional edge-cut method, for achieving balanced workload in distributed graph processing. Besides, to reduce the inter-partition communication cost, we present a block-based edge partition method who can efficiently explore the locality underlying graphical structures, to enhance the execution of graph algorithm. With this method, the overhead of both communication and runtime can be decreased greatly, compared to existing approaches. The challenges arising in big graphs also include their high-variety. As we know, most of real life graph applications produce heterogenous datasets, in which the vertices and/or edges are allowed to have different types or labels. A big number of graph mining algorithms are also proposed with much concern for the label attributes. For this reason, our work is extended to multi-layer graphs with taking into account the edges closeness and labels distribution during partitioning process. Its outstanding performance over real-world datasets is demonstrated finally.
475

Évaluation dynamique de risque et calcul de réponses basés sur des modèles d’attaques bayésiens / Dynamic risk assessment and response computation using Bayesian attack models

Aguessy, François-Xavier 22 September 2016 (has links)
Les systèmes d'information sont une cible de plus en plus attractive pour les attaquants. Dans cette thèse de doctorat, nous construisons une méthodologie complète d'analyse statique et dynamique de risque prenant en compte la connaissance à priori d'un système avec les événements dynamiques, afin de proposer des réponses permettant d'empêcher les attaques futures. Tout d'abord, nous étudions comment corriger les attaques potentielles qui peuvent arriver dans un système, en s'appuyant sur les graphes d'attaque logiques. Nous proposons une méthodologie de remédiation corrigeant les chemins d'attaque les plus significatifs. Les remédiations candidates sont classées en fonction de leur coût opérationnel et leur impact sur le système. Les graphes d'attaques ne peuvent pas être directement utilisés pour l'évaluation dynamique de risque. Nous étendons donc ce modèle pour construire des modèles d'analyse dynamique de risque basés sur des réseaux bayésiens. Le modèle hybride d'évaluation de risque se divise en deux modèles complémentaires: (1) Les modèles de corrélation de risque, permettant d'analyser les attaques en cours et fournir les probabilités de compromission des états du système, (2) les modèles d'évaluation du risque futur, permettant évaluer les attaques futures les plus probables. Nous analysons la sensibilité des paramètres probabilistes du modèle et en validons les résultats à partir de graphes d'attaque topologiques / Information systems constitute an increasingly attractive target for attackers. Given the number and complexity of attacks, security teams need to focus their actions, in order to select the most appropriate security controls. Because of the threat posed by advanced multi-step attacks, it is difficult for security operators to fully cover all vulnerabilities when deploying countermeasures. In this PhD thesis, we build a complete framework for static and dynamic risk assessment including prior knowledge on the information system and dynamic events, proposing responses to prevent future attacks. First, we study how to remediate the potential attacks that can happen in a system, using logical attack graphs. We build a remediation methodology to prevent the most relevant attack paths extracted from a logical attack graph. In order to help an operator to choose between several remediation candidates, we rank them according to a cost of remediation combining operational and impact costs. Then, we study the dynamic attacks that can occur in a system. Attack graphs are not directly suited for dynamic risk assessment. Thus, we extend this mode to build dynamic risk assessment models to evaluate the attacks that are the most likely. The hybrid model is subdivided in two complementary models: (1) the first ones analysing ongoing attacks and provide the hosts' compromise probabilities, and (2) the second ones assessing the most likely future attacks. We study the sensitivity of their probabilistic parameters. Finally, we validate the accuracy and usage of both models in the domain of cybersecurity, by building them from a topological attack graph
476

Information Diffusion in Complex Networks : Measurement-Based Analysis Applied to Modelling / Phénomènes de diffusion sur les grands réseaux : mesure et analyse pour la modélisation

Faria Bernardes, Daniel 21 March 2014 (has links)
Dans cette thèse nous avons étudié la diffusion de l'information dans les grands graphes de terrain, en se focalisant sur les patterns structurels de la propagation. Sur le plan empirique, il s'est avéré difficile de capturer la structure des cascades de diffusion en termes de mesures simples. Sur le plan théorique, l'approche classique consiste à étudier des modèles stochastiques de contagion. Néanmoins, l'analyse formelle de ces modèles reste limité, car les graphes de terrain ont généralement une topologie complexe et le processus de diffusion se produit dans une fenêtre de temps limitée. Par conséquent, une meilleure compréhension des données empiriques, des modèles théoriques et du lien entre les deux est également cruciale pour la caractérisation de la diffusion dans les grands graphes de terrain. Après un état de l'art sur les graphes de terrain et la diffusion dans ce contexte au premier chapitre, nous décrivons notre jeu de données et discutons sa pertinence au chapitre 2. Ensuite, dans le chapitre 3, nous évaluons la pertinence du modèle SIR simple et de deux extensions qui prennent en compte des hétérogénéités de notre jeu de données. Dans le chapitre 4, nous explorons la prise en compte du temps dans l'évolution du réseau sous-jacent et dans le modèle de diffusion. Dans le chapitre 5, nous évaluons l'impacte de la structure du graphe sous-jacent sur la structure des cascades de diffusion générées avec les modèles étudiés dans les chapitres précédents. Nous terminons la thèse par un bilan des résultats et des perspectives ouvertes par les travaux menés dans cette thèse. / Understanding information diffusion on complex networks is a key issue from a theoretical and applied perspective. Epidemiology-inspired SIR models have been proposed to model information diffusion. Recent papers have analyzed this question from a data-driven perspective. We complement these findings investigating if epidemic models calibrate with a systematic procedure are capable of reproducing key spreading cascade properties. We first identify a large-scale, rich dataset from which we can reconstruct the diffusion trail and the underlying network. Secondly, we examine the simple SIR model as a baseline model and conclude that it was unable to generate structurally realistic spreading cascades. We found the same result examining model extensions to which take into account heterogeneities observed in the data. In contrast, other models which take into account time patterns available in the data generate qualitatively more similar cascades. Although one key property was not reproduced in any model, this result highlights the importance of taking time patterns into account. We have also analyzed the impact of the underlying network structure on the models examined. In our data the observed cascades were constrained in time, so we could not rely on the theoretical results relating the asymptotic behavior of the epidemic and network topological features. Performing simulations we assessed the impact of these common topological properties in time-bounded epidemic and identified that the distribution of neighbors of seed nodes had the most impact among the investigated properties in our context. We conclude discussing identifying perspectives opened by this work.
477

Certified algorithms for program slicing / Algorithmes certifiés pour la simplification syntaxique de programmes

Léchenet, Jean-Christophe 19 July 2018 (has links)
La simplification syntaxique, ou slicing, est une technique permettant d’extraire, à partir d’un programme et d’un critère consistant en une ou plusieurs instructions de ce programme, un programme plus simple, appelé slice, ayant le même comportement que le programme initial vis-à-vis de ce critère. Les méthodes d’analyse de code permettent d’établir les propriétés d’un programme. Ces méthodes sont souvent coûteuses, et leur complexité augmente rapidement avec la taille du code. Il serait donc souhaitable d’appliquer ces techniques sur des slices plutôt que sur le programme initial, mais cela nécessite de pouvoir justifier théoriquement l’interprétation des résultats obtenus sur les slices. Cette thèse apporte cette justification pour le cas de la recherche d’erreurs à l’exécution. Dans ce cadre, deux questions se posent. Si une erreur est détectée dans une slice, cela veut-il dire qu’elle se déclenchera aussi dans le programme initial ? Et inversement, si l’absence d’erreurs est prouvée dans une slice, cela veut-il dire que le programme initial en est lui aussi exempt ? Nous modélisons ce problème sur un mini-langage impératif représentatif, autorisant les erreurs et la non-terminaison, et montrons le lien entre la sémantique du programme initial et la sémantique de sa slice, ce qui nous permet de répondre aux deux questions précédentes. Pour généraliser ces résultats, nous nous intéressons à la première brique d’un slicer indépendant du langage : le calcul générique des dépendances de contrôle. Nous formalisons une théorie élégante de dépendances de contrôle sur des graphes orientés finis arbitraires prise dans la littérature et améliorons l’algorithme de calcul proposé.Pour garantir un maximum de confiance dans les résultats, tous ces travaux sont prouvés dans l’assistant de preuve Coq ou dans l’outil de preuve Why3. / Program slicing is a technique that extracts, given a program and a criterion that is one or several instructions in this program, a simpler program, called a slice, that has the same behavior as the initial program with respect to the criterion. Program analysis techniques focus on establishing the properties of a program. These techniques are costly, and their complexity increases with the size of the program. Therefore, it would be interesting to apply these techniques on slices rather than the initial program, but it requires theoretical foundations to interpret the results obtained on the slices. This thesis provides this justification for runtime error detection. In this context, two questions arise. If an error is detected in the slice, does this mean that it can also be triggered in the initial program? On the contrary, if the slice is proved to be error-free, does this mean that the initial program is error-free too? We model this problem using a small representative imperative language containing errors and non-termination, and establish the link between the semantics of the initial program and of its slice, which allows to give a precise answer to the two questions raised above. To apply these results in a more general context, we focus on the first step towards a language-independent slicer: an algorithm computing control dependence. We formalize an elegant theory of control dependence on arbitrary finite directed graphs taken from the literature and improve the proposed algorithm. To ensure a high confidence in the results, we prove them in the Coq proof assistant or in the Why3 proof plateform.
478

Towards combining deep learning and statistical relational learning for reasoning on graphs

Qu, Meng 12 1900 (has links)
Cette thèse se focalise sur l'analyse de données structurées en graphes, un format de données répandu dans le monde réel. Le raisonnement dans ces données est un enjeu clé en apprentissage automatique, avec des applications allant de la classification de nœuds à la prédiction de liens. On distingue deux approches majeures pour le raisonnement dans les données en graphes : l'apprentissage relationnel statistique et l'apprentissage profond. L'apprentissage relationnel statistique construit des modèles graphiques probabilistes, efficaces pour capturer des dépendances complexes et intégrer des connaissances préexistantes, comme les règles logiques. Des méthodes notables incluent les réseaux logiques de Markov et les champs aléatoires conditionnels. L'apprentissage profond, quant à lui, se base sur l'apprentissage de représentations pertinentes des données observées pour une compréhension et un raisonnement rapides. Les réseaux neuronaux pour graphes (GNN) représentent un outil de pointe dans ce domaine. La combinaison de l'apprentissage relationnel statistique et de l'apprentissage profond offre une perspective enrichie sur le raisonnement, promettant un cadre plus robuste et efficace. Cette thèse explore cette combinaison, en développant des méthodes qui intègrent les deux approches. L'apprentissage profond renforce l'efficacité de l'apprentissage et de l'inférence dans l'apprentissage relationnel statistique, tandis que ce dernier affine les prédictions de l'apprentissage profond. Ce cadre intégré est appliqué à un éventail de tâches de raisonnement sur les graphes, démontrant son efficacité et ouvrant la voie à des recherches futures pour des cadres de raisonnement encore plus robustes. / This thesis centers on the analysis of graph-structured data, a ubiquitous data format in the real world. Reasoning within graph-structured data has long been a fundamental problem in machine learning, with applications spanning from node classification to link prediction. There are two principal approaches to tackle reasoning within graph-structured data: statistical relational learning and deep learning. Statistical relational learning techniques construct probabilistic graphical models based on observed data, excelling at capturing intricate dependencies of available evidence while accommodating prior knowledge, such as logic rules. Notable methods include Markov logic networks (MLNs) and conditional random fields (CRFs). In contrast, deep learning models harness the capability to learn meaningful representations from observed data, using these representations to rapidly comprehend and reason over the data. Graph neural networks (GNNs) have emerged as prominent tools in the realm of deep learning, achieving state-of-the-art results across a spectrum of tasks. Statistical relational learning and deep learning offer distinct perspectives on reasoning. Intuitively, combining these paradigms promises to create a more robust framework that inherits expressive power, efficiency, and the ability to model joint dependencies while simultaneously acquiring representations for more effective reasoning. In pursuit of this vision, this thesis explores the concept, developing methods that seamlessly integrate deep learning and statistical relational learning. Specifically, deep learning enhances the efficiency of learning and inference within statistical relational learning, while statistical relational learning, in turn, refines the predictions generated by deep learning to improve the accuracy. This integrated paradigm is applied across a diverse range of reasoning tasks on graphs. Empirical results demonstrate the effectiveness of this paradigm, encouraging further exploration to yield more robust reasoning frameworks.
479

Élaboration des éléments d'une simulation Monte Carlo permettant l'évaluation d'une planification de traitement en radiothérapie externe : compression d'images DICOM à l'aide d'un octree et modélisation de la tête d'un accélérateur linéaire

Hubert-Tremblay, Vincent 11 April 2018 (has links)
L'objectif de ce travail est de développer deux modules pour créer une simulation Monte Carlo ayant comme objectif futur de calculer les doses de radiation d'un traitement en radiothérapie externe. Le premier module permet de lire, modéliser et réduire le nombre de voxels présent dans une série d'images médicales de type DICOM. La réduction doit se faire tout en gardant les informations essentielles pour une simulation Monte Carlo. Un algorithme a été développé pour appliquer une compression de type octree à la distribution des densités électroniques recueillies dans les images de tomodensitométrie. L'image résultante possède ainsi une certaine anisotropie au niveau de la résolution. Des résultats obtenus, la réduction du nombre total de voxels atteinte est de l'ordre de 75% de la taille initiale. Les simulations Monte Carlo démontrent qu'aucune information dosimétrique n'est perdue après la transformation. L'efficacité de la simulation se trouve améliorée tant au niveau de sa rapidité que de son utilisation de la mémoire. Le second module développé est un modèle d'accélérateur linéaire de type Primus (Siemens). Ce modèle permet d'obtenir des distributions de doses pour deux faisceaux de photons d'énergies différentes (6 et 23 megavolts [MV]). Dans les deux cas, les distributions de doses ont été comparées à des mesures expérimentales prises avec une chambre à ionisation. Les distributions de doses dans l'axe central du faisceau ont atteint un niveau de précision de 2%. Au niveau des distributions de doses hors axe, les déviations maximales sont de l'ordre de 5% et de 2mm dans les pénombres. Pour le faisceau de 23 MV, la géométrie présente une asymétrie qui devra être corrigée en modifiant le filtre égalisateur ou en utilisant une source de radiation asymétrique. Dans tous les cas, l'ouverture des collimateurs secondaires devra être optimisée afin d'éliminer les erreurs au niveau de la pénombre. Une fois ces modifications effectuées, les images DICOM compressées avec l'octree pourront être insérées à l'intérieur du modèle de l'accélérateur. Ce faisant, il suffirait d'ajuster la configuration des faisceaux et du patient pour évaluer un traitement en radiothérapie externe.
480

Indexation et recherche de similarités avec des descripteurs structurés par coupes d'images sur des graphes / Indexing and Searching for Similarities of Images with Structural Descriptors via Graph-cuttings Methods

Ren, Yi 20 November 2014 (has links)
Dans cette thèse, nous nous intéressons à la recherche d’images similaires avec des descripteurs structurés par découpages d’images sur les graphes.Nous proposons une nouvelle approche appelée “bag-of-bags of words” (BBoW) pour la recherche d’images par le contenu (CBIR). Il s’agit d’une extension du modèle classique dit sac-de-mots (bag of words - BoW). Dans notre approche, une image est représentée par un graphe placé sur une grille régulière de pixels d’image. Les poids sur les arêtes dépendent de caractéristiques locales de couleur et texture. Le graphe est découpé en un nombre fixe de régions qui constituent une partition irrégulière de l’image. Enfin, chaque partition est représentée par sa propre signature suivant le même schéma que le BoW. Une image est donc décrite par un ensemble de signatures qui sont ensuite combinées pour la recherche d’images similaires dans une base de données. Contrairement aux méthodes existantes telles que Spatial Pyramid Matching (SPM), le modèle BBoW proposé ne repose pas sur l’hypothèse que des parties similaires d’une scène apparaissent toujours au même endroit dans des images d’une même catégorie. L’extension de cette méthode ` a une approche multi-échelle, appelée Irregular Pyramid Matching (IPM), est ´ également décrite. Les résultats montrent la qualité de notre approche lorsque les partitions obtenues sont stables au sein d’une même catégorie d’images. Une analyse statistique est menée pour définir concrètement la notion de partition stable.Nous donnons nos résultats sur des bases de données pour la reconnaissance d’objets, d’indexation et de recherche d’images par le contenu afin de montrer le caractère général de nos contributions / Image representation is a fundamental question for several computer vision tasks. The contributions discussed in this thesis extend the basic bag-of-words representations for the tasks of object recognition and image retrieval.In the present thesis, we are interested in image description by structural graph descriptors. We propose a model, named bag-of-bags of words (BBoW), to address the problems of object recognition (for object search by similarity), and especially Content-Based Image Retrieval (CBIR) from image databases. The proposed BBoW model, is an approach based on irregular pyramid partitions over the image. An image is first represented as a connected graph of local features on a regular grid of pixels. Irregular partitions (subgraphs) of the image are further built by using graph partitioning methods. Each subgraph in the partition is then represented by its own signature. The BBoW model with the aid of graphs, extends the classical bag-of-words (BoW) model by embedding color homogeneity and limited spatial information through irregular partitions of an image. Compared to existing methods for image retrieval, such as Spatial Pyramid Matching (SPM), the BBoW model does not assume that similar parts of a scene always appear at the same location in images of the same category. The extension of the proposed model to pyramid gives rise to a method we named irregular pyramid matching (IPM).The experiments demonstrate the strength of our approach for image retrieval when the partitions are stable across an image category. The statistical analysisof subgraphs is fulfilled in the thesis. To validate our contributions, we report results on three related computer vision datasets for object recognition, (localized)content-based image retrieval and image indexing. The experimental results in a database of 13,044 general-purposed images demonstrate the efficiency and effectiveness of the proposed BBoW framework.

Page generated in 0.1008 seconds