• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 23
  • 22
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 167
  • 167
  • 167
  • 27
  • 24
  • 22
  • 20
  • 18
  • 17
  • 17
  • 17
  • 16
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Identification of Heat Shock Factor Binding Sites in the Drosophila Genome

Gonsalves, Sarah E. 12 December 2012 (has links)
The heat shock response (HSR) is a highly conserved mechanism that enables organisms to survive environmental and pathophysiological stress. In Drosophila, the HSR is regulated by a single transcription factor, heat shock factor (HSF). During stress, HSF trimerizes and binds to over 200 loci on Drosophila polytene chromosomes with only nine mapping to major heat shock (HS) inducible gene loci. The function of HSF binding to the other sites in the genome is currently unknown. Some of these sites may contain yet unidentified “minor” HS genes. Interestingly, the binding of HSF also coincides with puff regression at some sites. Two such sites contain the major developmentally regulated genes Eip74 and Eip75: key regulators in the response to 20-hydroxyecdysone (20E), the main hormone responsible for the temporal co-ordination of post-embryonic development in Drosophila. Previous work in our and other labs indicates that the regression of non-HS puffs during the HSR is dependent on the presence of functional HSF. Using chromatin immunoprecipitation (ChIP) followed by hybridization to genome tiling arrays (Chip), I have identified 434 regions in the Drosophila Kc cell genome that are bound by HSF during HS, and have determined that 57% of these sites are located within the transcribed regions of genes. By examining the transcriptional response to HS in Kc cells and third instar larvae using expression microarrays, I found that only about 10% of all genes within 1250 bp of an HSF binding site are transcriptionally regulated by HS and many genes whose transcript levels change during HS do not appear to be near an HSF binding site. Furthermore, genes with an HSF binding site within their introns are significantly enriched (modified Fisher Exact p-value between 2.0x10-3 and 1.5x10-6) in gene ontology terms related to developmental processes and reproduction. Using expression microarray technology, I characterized the transcriptional response to 20E and its structural analog ponasterone A. I have identified multiple HSF binding sites within Eip74 and Eip75, and show that induction of the HSR correlates with repression of these genes and all other 20E-inducible genes. Taken together, this work provides a basis for further investigation into the role of HSF binding to sites not associated with HS genes and its possible function as a repressor of gene transcription during conditions of stress and as a regulator of developmental genes under stress and non-stress conditions.
152

EFEITOS DO ORGANOFOSFORADO PARATIONATO METÍLICO SOBRE O EIXO HIPOTÁLAMO-HIPÓFISE-INTERRENAL EM PEIXE-ZEBRA (Danio rerio) / EFFECTS OF ORGANOPHOSPHATE METHYL-PARATHION ON THE HYPOTHALAMIC-PITUITARY-INTERRENAL AXIS IN ZEBRAFISH (DANIO RERIO)

Rosa, João Gabriel Santos 18 April 2013 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Organophosphorus compounds such as methyl-parathion are used in the various stages of production to control pests both in agricultural activity as in aquaculture. The mechanism of action of this type of compound is the inhibition of the enzyme acetylcholinesterase. The zebrafish (Danio rerio) has been increasingly used as an experimental model in varied fields such as development, genetics and pharmacological research. The methyl-parathion has been characterized as endocrine disruptor of the hypothalamic-pituitary-interrenal axis (HHI). An experiment was carried out of 96 hours of exposure of adult fish to the substance tested, at the concentration of 5.2 mg/L. Was evaluated the whole-body cortisol level in order to measure the endocrine response to a stressful event. Were also investigated the gene expression of glucocorticoid receptor (GR), steroidogenic acute regulatory protein (StAR) and heat shock protein 70 (HSP 70). Fish exposed that have undergone a stressor event demonstrated low levels of cortisol. In addition, the fish stressed and exposed to agro-chemical showed a decreased expression of the StAR, HSP 70 and GR genes. The data indicate that exposure to methyl-parathion causes a decrease in the ability to respond appropriately to a stressor. Fish that have an inability to produce a satisfactory answer by the HHI axis are not able to make the necessary metabolic and ion adjustments for recovery the homeostasis, getting vulnerable to stress caused by aquaculture practices or environmental changes. / Compostos organofosforados como o parationato metílico são utilizados nas diversas etapas de produção para controlar pragas tanto na atividade agrícola como na aquicultura. O mecanismo de ação desse tipo de composto é a inibição da enzima acetilcolinesterase. O peixe-zebra (Danio rerio) vem sendo cada vez mais usado como modelo experimental em variados campos, como desenvolvimento, genética e pesquisa farmacológica. O parationato metílico já foi caracterizado como interruptor endócrino do eixo hipotálamo-hipófise-interrenal (HHI). Foi realizado um experimento de 96 horas de exposição de peixes adultos à substância testada, na concentração de 5,2 mg/L. Foi avaliado o nível de cortisol de corpo inteiro, visando medir a resposta endócrina a um evento estressor. Também foram investigadas a expressão dos genes do receptor de glicocorticoide (GR), da proteína regulatória de esteroidogenese aguda (StAR) e a proteína do choque térmico 70 (HSP 70). Os peixes expostos que foram submetidos a um evento estressor demonstraram baixos níveis de cortisol de corpo inteiro. Além disso, os peixes estressados e expostos ao agroquímico apresentaram uma diminuição da expressão dos genes GR, StAR e HSP 70. Os dados indicam que a exposição ao parationato metílico provoca uma diminuição da capacidade de responder adequadamente a um evento estressor. Peixes que possuem uma incapacidade em produzir uma resposta satisfatória do eixo HHI, não são capazes de realizar os ajustes iônicos e metabólicos necessários à recuperação da homeostase, ficando vulneráveis ao estresse causado pelas práticas aquícolas ou por alterações ambientais.
153

Associação entre a pressão arterial ambulatorial, eHSP70, estado redox e nível de atividade física em hipertensos / Association between ambulatory blood pressure, eHSP70, redox status and level of physical activity in hypertensive

Santos, Rafaella Zulianello dos 29 July 2015 (has links)
Made available in DSpace on 2016-12-08T15:59:06Z (GMT). No. of bitstreams: 1 Rafaella Santos.pdf: 19865129 bytes, checksum: eb985146ffff941f87977dbb7f5d7b13 (MD5) Previous issue date: 2015-07-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The 72kDa heat shock proteins are synthesized in our cells and are exported to the blood (eHSP72) in situations changed as oxidative stress and cardiovascular disease. However, both eHSP72 levels as impaired endothelial function has been associated with worse cardiovascular prognosis, including increased mortality. However, little is known about the association of these variables with 24h blood pressure in hypertensive. The aim of this study was to investigate the association between 24h blood pressure and levels of plasma eHSP72, oxidative stress parameters, endotelial function, body composition and physical activity in hypertensive patients. Methods: This is a cross-sectional study which evaluated 140 hypertensive patients (age 61 } 11.1 years) treated and followed by a Basic Health Unit. Were analyzed: 24h blood pressure, level of physical activity, usual by pedometer and endothelial function by plethysmography. In plasma concentrations were evaluated eHSP72 (by ELISA), the activity of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) and lipid peroxidation levels (TBARS). Results: Hypertensive patients were classified as insufficiently active (8089.7 } 4287.9 steps/day). A binary logistic regression showed that those with overweight and obesity are more likely to have daytime systolic blood pressure (SBP) increased wakefulness compared to eutrophic. The same analysis also showed that the increase in vasodilatory capacity by reactive hyperemia (1ml/100ml tissue /min) reduces the chances of having daytime SBP change. Another important finding was that hypertensive patients with detectable eHSP72 were more likely to have nocturnal dipping present. There was no association between the variables of 24h blood pressure and the variables of oxidative stress. Conclusion: altered anthropometric indicators are associated with the daytime SBP uncontrolled, which may be indicative of cardiovascular overload. The night-time fall of blood pressure during sleep is associated with the expression of eHSP72, indicating that this protein may be associated in the modulation of a protective vascular function. / Proteínas de choque térmico de 72kDa são sintetizadas em nossas células e são exportadas para a corrente sanguínea (eHSP72) diante de situações como estresse oxidativo alterado e doenças cardiovasculares. Além disso, tanto os níveis de eHSP72 como a função endotelial prejudicada têm sido associados ao pior prognostico cardiovascular, incluindo aumento de mortalidade. No entanto, pouco se sabe sobre a associação destas variáveis com a pressão arterial de 24h em hipertensos. O objetivo deste estudo foi investigar a associação entre a pressão arterial de 24h e os níveis de eHSP72 plasmático, parâmetros de estresse oxidativo, função endotelial, composição corporal e o nível de atividade física em hipertensos. Métodos: Este é um estudo transversal no qual foram avaliados 140 hipertensos (idade 61±11,1 anos) tratados e acompanhados por uma Unidade básica de Saúde. Foram analisados: pressão arterial de 24h por monitorização ambulatorial (MAPA), nível de atividade física habitual por pedômetro e função endotelial por pletismografia. No plasma foram avaliadas as concentrações de eHSP72 (por ELISA), a atividade de enzimas antioxidantes catalase (CAT) e superóxido dismutase (SOD) e os níveis de lipoperoxidação (TBARS). Resultados: Os hipertensos foram classificados como pouco ativos (8089,7±4287,9 passos/dia). A regressão logística binária apresentou que aqueles com sobrepeso e obesidade têm mais chances de ter pressão arterial sistólica (PAS) da vigília aumentada em relação aos eutróficos. A mesma análise mostrou ainda que o aumento da capacidade vasodilatadora por hiperemia reativa (1 ml/100ml de tecido/min) reduz as chances de ter a PAS da vigília alterada. Outro achado de destaque e também inovador foi que hipertensos com eHSP72 detectável apresentaram mais chances de ter o descenso noturno sistólico presente. Não houve associação entre as variáveis da pressão arterial de 24h e as variáveis de estresse oxidativo. Conclusão: Indicadores antropométricos alterados se associam com a PAS da vigília descontrolada, o que pode ser um indicativo de sobrecarga cardiovascular. A queda da pressão arterial no período do sono está associada com a expressão de eHSP72, indicativo de que esta proteína pode estar envolvida como protetora na modulação da função vascular.
154

Vias de inibição da apoptose em macrófagos J774 infectados com Leishmania (Leishmania) chagasi / Apoptosis inhibition pathways in J774 macrophages infected by Leishmania (L.) chagasi

Edna Barbosa de Souza 17 August 2006 (has links)
Macrófagos infectados com Leishmania são protegidos de apoptose, entretanto não se conhece o mecanismo de transdução de sinal intracelular que interfere neste processo de morte. Neste trabalho, células J 774 em cultura, com privação de nutrientes, sofrem apoptose, a qual aumenta na presença dos indutores camptotecina (CPT) ou fator de necrose tumoral recombinante (rTNF). Estas células quando infectadas com amastigotas ou promastigotas de Leishmania (L.) chagasi (5 parasitos/uma célula) são protegidas de apoptose. Avaliando as possíveis vias intracelulares envolvidas nesse processo, observamos que a privação de nutrientes altera o potencial de membrana da mitocôndria, havendo reversão com a infecção tanto com promastigotas e amastigotas, entretanto a reversão da alteração do potencial de membrana induzida por rTNF só foi observada com infecção com promastigotas. Tanto a atividade de caspase 3, como a detecção de caspase 3 clivada induzidas por H202 são revertidas com a infecção com promastigotas ou amastigotas. Quando analisamos a expressão de poli (ADP ribose) polimerase (PARP), em relação às células sem indução, a indução por CPT não levou ao aumento da PARP de 116 kDa, mas, aumento da banda de 24 kDA. Por outro lado, a infecção por amastigota de Leishmania (L.) chagasi em células J774 levou à diminuição da expressão de PARP de 116 kDa, mas aumento da de 24 kDa. Nas células infectadas por promastigotas de Leishmania (L.) chagasi, observamos uma diminuição da banda de 116 kDa, aparecimento de uma molécula de 89kDa e diminuição da expressão da de 24 kDa. Nas células sob indução por CPT, a infecção levou a resultados similares, exceto a diminuição da molécula de 24 kDa quando infectado por amastigota. Avaliando-se a influência da proteína do choque térmico de 83 kDa de Leishmania infantum, como possível fator que interferiria no processo de apoptose, observamos que a fagocitose de bactérias Escherichia coli (M15) contendo plasmídio com gene de HSP83 expressando essa proteína, leva a diminuição da apoptose nessas células, mesmo quando induzidas por CPT ou rTNF. Nossos dados mostram que a infecção de macrófagos J774 in vitro por Leishmania (L.) chagasi, interfere no processo de apoptose afetando diversas vias de sinalização intracelular de apoptose, tanto extrínsecas quanto intrínsecas, sendo que promastigota é mais efetiva em inibir apoptose nesta linhagem macrofágica. / Macrophages infected by Leishmania are protected from apoptosis, however the mechanism of intracellular signal transduction that interferes in this death process remains unknown. In this work, J774 cells in culture, under nutrient deprivation undergo apoptosis, which is increased in the presence of inducers: camptothecin (CPT) or recombinant tumoral necrosis factor (rTNF). These cells infected by amastigotes or promastigotes of Leishmania (L.) chagasi (5 parasites per cell) are protected from apoptosis. Evaluating the possible intracellular pathways involved in this process, we observed nutrient deprivation alters the mitochondrial membrane potential, reversed by both amastigote and promastigote infection, in contrast, mitochondrial membrane potential was altered by rTNF and it was reversed only by promastigotes. Both caspase 3 activity and caspase 3 cleavage detection induced by H2O2 are reversed with amastigote or promastigote infection. When we analysed the expression of poly (ADP-ribose) polymerase, related to no induced cells . CPT induction didnLt increase 116 kDa PARP, but increased a 24 kDa fragment. Otherwise, Leishmania (L.) chagasi amastigote infection in J774 cells decreased 116 kDa PARP, but increased a 24 kDa fragment. Incells infected by Leishmania (L.) chagasi , we observed a decrease of 116 kDa fragment, appearance of a 89 kDa fragment and a decreasing of a 24 kDa fragment. In the cells under CPT induction similar results were found, except a decreasing of a 24 kDa when infected by amastigote. Evaluating the Leishmania (L.) infantum Heat Shock Protein of 83 kDa, as a possible factor that interferes in the apoptosis process, we observed that a phagocytosis of Escherichia coli (M15) bacteria with a HSP83 gene within a plasmid expressing this protein induced by isopropyl β - D- tiogalactopiranosideo (IPTG), considerably diminished apoptosis in these cells even when induced by CPT or rTNF. Our data show that Leishmania (L.) chagasi infection in J774 macrophages in vitro notoriously interferes in the apoptosis process affecting several intracellular pathways involved in both extrinsic and intrinsic pathways, more prominently with promastigote in this macrophage cell lineage.
155

Understanding in vivo Significance of Allosteric Regulation in mtHsp70s : Revealing its Implications in Parkinson's Disease Progression

Samaddar, Madhuja January 2015 (has links) (PDF)
Mitochondria are essential eukaryotic organelles, acting as the sites for numerous crucial metabolic and signalling pathways. The biogenesis of mitochondria requires efficient targeting of several hundreds of proteins from the cytosol, to their varied functional locations within the organelle. The translocation of localized proteins across the inner membrane, and their subsequent folding is achieved by the ATP-dependent function of mitochondrial Hsp70 (mtHsp70). It is a bonafide member of the Hsp70 chaperone family, which are involved in a multitude of functions, together aimed at protein quality control and maintenance of cellular homeostasis. These varied functions of Hsp70 proteins require binding to exposed hydrophobic patches in substrate polypeptides thus preventing non-productive associations. The interaction with substrates occurs through the substrate-binding domain (SBD) and is regulated by the ATPase activity of the nucleotide-binding domain (NBD), through a series of conformational changes. Conversely, substrate binding to the SBD also stimulates ATP hydrolysis, and thereby the core activities of the two domains are regulated by mutual allosteric signalling. This mechanism of bidirectional inter-domain communication is indispensable for Hsp70 function, which is characterized by cycles of substrate binding and release, coupled to cycles of ATP binding and hydrolysis. The process of allosteric regulation in Hsp70 proteins has been comprehensively investigated, especially in the bacterial homolog, DnaK. However, the in vivo functional significance of inter-domain communication in the eukaryotic mtHsp70 system and the mechanism of its regulation remain unexplored. Furthermore, the complex physiological implications of impairment in allosteric communication and their correlation with diverse disease conditions, including Myelodysplastic syndrome (MDS), and Parkinson’s disease (PD), are yet to be elucidated. Based on this brief introduction, the primary research objectives set out in the present thesis were to: 1. uncover the regulation of ligand-modulated allosteric communication between the two domains of mtHsp70; and its in vivo significance in the context of protein import into the organelle. (Chapter 2) 2. understand the role of mtHsp70 in progression of Parkinson’s disease; and to study the modulation of α-synuclein toxicity by the protein quality control function of the mtHsp70 chaperone network. (Chapters 3 and 4) We have employed a battery of genetic and biochemical approaches to investigate the above questions using the Saccharomyces cerevisiae mtHsp70 protein, Ssc1; an essential protein that is involved in a plethora of critical functions in this eukaryotic model system. Objective 1: Structural studies, primarily in bacterial DnaK, have yielded mechanistic insights into its interactions with ligands and cochaperones, as well as conformational transitions in different ligand-bound states. In recent years, the availability of crystal structures of full-length DnaK and detailed information from NMR studies and single-molecule resolution spectroscopic analyses (both DnaK and eukaryotic Hsp70s), have significantly contributed to our understanding of the inter-domain interface, critical residues and contacts, and the energetics of the entire process of ligand-modulated conformational changes. Although eukaryotic mtHsp70s have a high degree of conservation with DnaK, they possess significant differences in their conformational and biochemical properties. They are essential for a vast repertoire of physiological functions, which are distinctly different from their bacterial counterpart. Using a combined in vivo and in vitro approach, we have uncovered specific structural elements within mtHsp70s, which are required for allosteric modulation of the chaperone cycle and maintenance of in vivo functions of the protein. Foremost, we demonstrate that a conserved SBD loop, L4,5 plays a critical role in inter-domain communication, and multiple mutations in this loop result in significant growth and protein translocation defects. The mutants are associated with a specific set of altered biochemical properties, which are indicative of impaired inter-domain communication. Using the loop L4,5 mutant, E467A as a template for genetic screening, we report a series of intragenic suppressor mutations, which are capable of correcting a distinct subset of the altered properties, and thereby leading to restoration of in vivo functions, including growth, preprotein import and mitochondria biogenesis. The suppressors modify the altered conformational landscape associated with E467A, and also provide us with information regarding unique aspects governing the regulation of allosteric communication, especially in physiological contexts. Strikingly, they reveal that restoration of communication in the NBD to SBD direction is sufficient for function, when the protein is primed in a high ATPase activity state. In this unique scenario, the requirement for ATPase stimulation upon substrate binding is rendered unnecessary, thereby making conformational changes in the SBD to NBD direction, dispensable for function. Further, we provide evidence to show that loop L4,5 functions synergistically with the linker region, working in tandem for organization of the inter-domain interface and propagation of communication. Together, our analyses provide the first insights into regulation of allosteric inter-domain communication in vivo and their implications in mitochondrial protein translocation and organelle biogenesis. Objective 2: Point mutations in the loop L4,5 have been associated with Myelodysplastic syndrome. Additionally, a mutation isolated in clinical cases of Parkinson’s disease was found to be impaired in allosteric communication. These observations further highlight the importance of efficient inter-domain communication in mtHsp70 in the complex physiological scenario of eukaryotic cells. Independent clinical screens of PD patients have revealed unique point mutations in the mtHsp70 and a strong association of the gene locus with the disease progression. This is also correlated with decreased mtHsp70 levels in affected neurons and the interactions of this protein with established PD-candidate proteins like α-synuclein and Dj-1. Further, mitochondrial dysfunction is a common phenomenon associated with neurodegenerative disorders. To understand the specific role of mtHsp70 in PD, we have developed a yeast model for studying the disease variants in isolation from other players of the multifactorial disease, and in complete absence of the wild type protein. We generated two analogous PD-mutations in Ssc1, R103W and P486S; which recapitulated the symptoms of mitochondrial dysfunction in affected neurons, including cell death, inner membrane depolarization, increased generation of ROS, and respiratory incompetence. At the molecular level, we observed an increased aggregation propensity of R103W, while P486S exhibited futile enhanced interaction with J-protein cochaperone partners thereby resulting in loss of chaperoning activity and impaired mitochondrial protein quality control. Remarkably, these altered biochemical properties mimicked similar defects in the human mtHsp70 variants, therefore, affirming the involvement of mtHsp70 in PD progression. To further investigate the relevance of impaired mitochondrial protein quality control in PD, we have explored whether mtHsp70 can act as a genetic modifier of α-synuclein toxicity. It is known that α-synuclein can act as an unfolded substrate for the Hsp70 chaperone system and also deposits as intracellular aggregates in PD-affected brains. Intriguingly, it is known to translocate into mitochondria under conditions of neuronal stress in spite of lacking a canonical mitochondrial signal sequence. Utilizing our yeast-PD model, we find that targeting of α-synuclein A30P disease variant into mitochondria leads to a severe mitochondrial dysfunction phenotype in the wild type Ssc1 background, but not the P486S mutant background. This results in multiple cellular manifestations, which are reversed upon overexpression of the Ssc1 chaperone. Significantly, increasing the J-protein cochaperone availability also leads to reversal of the mutant-associated defects. However, the simultaneous overexpression of both together does not additively improve the protective effects; highlighting the importance of the relative availability of chaperone and cochaperone proteins in preventing aggregation. Our analyses further reveal that while both the wild type and P486S Ssc1 proteins are equally capable of delaying aggregation of α-synuclein, only the wild-type chaperone is better able to prevent aggregation in the presence of its J-protein cochaperone, leading to accumulation of soluble oligomeric species. These observations raised the intriguing possibility, that the reduced chaperoning ability of the proline to serine PD-mutant is, in fact, a compensatory adaptation, favoring the aggregation of α-synuclein over its more toxic soluble oligomeric form. We verify this hypothesis with the aggregation kinetics of A30P α-synuclein, whose intrinsically lower aggregation tendency results in a pronounced delay in aggregation with the wild-type chaperone, thereby strongly favoring the toxic oligomeric species and correlating with the observed lethality in yeast cells. In conclusion, our study provides a model of α-synuclein aggregation-related toxicity and its modulation by the extent of protein quality control within the mitochondrial matrix, through the action of the mtHsp70 chaperone network.
156

Unfolded Protein Response in Malaria Parasite

Chaubey, Shwetha January 2014 (has links) (PDF)
Plasmodium falciparum is responsible for the most virulent form of human malaria. The biology of the intra-erythrocytic stage of P. falciparum is the most well studied as it is this stage that marks the clinical manifestation of malaria. To establish a successful infection, P. falciparum brings about extensive remodeling of erythrocytes, its host compartment. The infected erythrocytes harbor several parasite induced membranous structures. Most importantly, pathogenesis related structures termed knobs, which impart cytoadherence, appear on the cell surface of the infected erythrocytes. For bringing about such eccentric renovations in its host compartment, the parasite exports 8% of its genome (~400 proteins) to various destinations in the host cell. Studies from our lab have shown that proteins belonging to heat shock protein40 (Hsp40) and heat shock protein70 (Hsp70) group of chaperones are also exported to the host compartment. We and others have implicated these chaperones in important processes such as protein trafficking and chaperoning assembly of parasitic proteins into the cytoadherent knobs. As detailed above, malaria parasite invests a lot of energy in exporting a large number of proteins including chaperones in the red blood cell to meet its pathogenic demands. In order to do so, it heavily relies on its secretory pathway. However, it is known that the parasite experiences a significant amount of oxidative stress on account of heme detoxification, its own metabolism and the immune system of the host. The parasite also effluxes large quantities of reduced thiols such as glutathione and homocysteine into the extracellular milieu indicative of redox perturbation. Additionally, the parasite lacks Peroxiredoxin IV, which otherwise localizes in the ER and carries out detoxification of peroxide generated as a result of oxidative protein folding. Together, these factors indicate that maintaining redox homeostasis is a challenging task for the parasite. It also implies that the ER, where the redox balance is even more critical as it requires oxidising environment for protein folding, is predisposed to stress. In light of this fact and the importance of secretory pathway in malaria pathogenesis, we decided to address the ways and mechanisms used by the parasite to tackle perturbations in its secretory pathway. Examination of a canonical unfolded protein response pathway in P. falciparum ER-stress is a condition arising whenever the load of unfolded proteins increases the folding capacity of the ER. However, eukaryotes have evolved a fairly well conserved homeostatic response pathway known as unfolded protein response (UPR) to tackle ER-stress. This signal transduction pathway is composed of three arms involving three ER-transmembrane signal transducers namely; IRE1, ATF6 and PERK. IRE1 brings about splicing of a bZIP transcription factor, XBP1/Hac1 and ATF6 becomes activated upon getting proteolytically cleaved in the Golgi. These transcription factors then migrate to the nucleus where they bind onto the ER-stress elements thereby, leading to the transcriptional up-regulation of the UPR targets such as ER chaperones and components of ER associated degradation (ERAD) pathway which rescue the function of the ER. PERK on the other hand brings about translational attenuation by phosphorylating eIF2α, thereby providing parasite the benefit of time to recover. We started our examination on UPR in Plasmodium by carrying out in silico analysis of the major components of UPR in the parasite by using Homo sapiens protein sequences as the query. We found that the parasite lacks the homologues of all the transcriptional regulators of canonical UPR. Only PERK component of the UPR was found to be present in the parasite. To rule out the existence of the canonical UPR in P. falciparum, we examined the status of UPR targets by subjecting the parasites to treatment with DTT. DTT perturbs the disulfide oxidation in the ER and thereby inhibits protein folding leading to ER-stress. Owing to the missing components of a canonical UPR, we did not find up-regulation of known UPR targets such as ER-chaperones including PfBiP, PfGrp94, PfPDI and ERAD marker Derlin1 at transcript as well as protein level. Owing to the presence of a PERK homologue, phosphorylation of eIF2α followed by attenuation of protein synthesis was observed upon subjecting the parasites to DTT mediated ER-stress. In the absence of a canonical UPR, the parasites were found to be hypersensitive to ER-stress in comparison to the mammalian counterpart. In the presence of DTT, the parasites showed perturbation in the redox homeostasis as indicated by increase in the levels of ROS. Next, we sought to examine if the parasites resorted to any alternate means of increasing the availability of chaperones in the ER. For this, we analysed the involvement of another Hsp70 family member, Hsp70-x which is homologous to BiP and which is known to traverse the ER while getting exported to the erythrocyte compartment. Interestingly, we found that upon exposure to ER-stress, the export of this protein is partially blocked and around 30% of the protein is retained in the ER. On the other hand, there was no effect on the trafficking of another exported chaperone KAHsp40. This indicates that the parasite possibly recruits this pool of retained Hsp70-x for the chaperoning of unfolded proteins in the ER. Global response to ER-stress in P. falciparum To dig deeper into the parasite specific strategies employed for dealing with ER-stress at a global level, we carried out high throughput transcriptomic and proteomic analysis upon subjecting the parasites to DTT mediated ER-stress. Microarray based gene expression profiling was carried out upon subjecting the parasites to DTT mediated ER-stress. We found that the parasite mounts a transcriptional response as indicated by up-regulation of 155 transcripts. In congruence with our biochemical analysis, we did not find up-regulation of ER chaperones as well as ERAD proteins. Functional grouping of the up-regulated genes revealed large number of hypothetical proteins in our list of differentially expressed genes. The genes encoding exported proteins represent yet another abundant class. In the course of examining the involvement of Plasmodium specific transcriptional regulators mediating response to DTT induced ER-stress, we identified 4 genes belonging to the family of AP2 transcription factors. AP2 (Apetela-2) are specific transcription factors which are possessed by apicomplexa and bring about regulation of developmental processes and stress response in plants. On comparing our list of up-regulated genes with the previously known targets of AP2 factors, we found that an entire cascade of AP2 factors is up-regulated upon DTT-mediated ER stress. Thus, AP2 factors appear to be the major stress response mediators as they are together responsible for the up-regulation of 60% of genes identified in this study. In addition, another striking observation made, was the up-regulation of a few sexual stage specific transcripts. 2D Gel electrophoresis and 2D-DIGE based Proteomic analysis indicated an up-regulation of secretory proteins and some components of vesicular trafficking and secretory machinery possibly to overcome the block in the functions of the secretory pathway. ER-stress triggers stage transition in P. falciparum Intrigued by the up-regulation of a few sexual stage specific genes, we were curious to examine if there was a functional significance of this observation. To this end, we decided to investigate the effect of ER-stress on induction of gametocytes, the only sexual stage found in humans. Indeed, we found a two fold induction in the numbers of gametocytes formed upon challenging the parasite with DTT mediated ER-stress. The induction of gametocytogenesis was also observed by using a clinical isolate of P. falciparum for the assay. The DTT treated cultures progressed through the gametocytogenesis pathway normally forming all the five morphologically distinct stages. Then we sought to examine if this phenomenon could be simulated in the physiological scenario as well. For this, we made use of a rodent model of malaria, P. berghei. Two different treatment regimes involving 1) direct injection of increasing concentration of DTT into P. berghei infected mice and 2) injection of DTT pretreated P. berghei infected erythrocytes into healthy mice were followed. In both cases, a significant increase in the gametocyte induction was observed. Having seen that Plasmodium undergoes gametocytogenesis upon exposure to ER-stress not only in in vitro cultures but also in in vivo scenario, we wanted to identify the players involved in the commitment to sexual stage. Recently, a transcription factor belonging to AP2 class of transcription factors, referred to as AP2-G has been implicated in committing the asexual parasites for transition to gametocyte stage. To examine the role of this factor in the phenotype observed by us, we looked at the effect of DTT on AP2-G. Interestingly, we found around 6 folds up-regulation in the expression of AP2-G levels under ER-stress. The downstream targets of AP2-G, many of which are the markers of gametocyte were also found to be up-regulated upon being exposed to DTT mediated ER-stress indicating the launch of a transcriptional program which together works in the direction of transition to gametocytes. Having seen that P. falciparum undergoes ametocytogenesis in response to DTT treatment both under in vitro and in vivo conditions, we sought to look for probable physiological analogue of DTT. Since glutathione is the major cellular redox buffer, critical for redox homeostasis, we quantitated the levels of both oxidized and reduced forms of this non protein thiol using Mass Spectrometric approach. We found that the levels of reduced forms of glutathione significantly increased upon treating the parasites with DTT. This indicates that the levels of glutathione could be one of the physiological triggers of gametocytogenesis. Conclusion In conclusion, our study analyses the ways and mechanisms employed by malaria parasite to cope with perturbations to its secretory pathway. We have established the absence of a canonical UPR in this parasite and our results suggest that Plasmodium has developed a three stage response to cope with ER stress: 1) an early adaptation to increase the local concentration of chaperones in the ER by partially blocking the export of a Hsp70 family member, 2) activation of gene expression cascade involving AP2 transcription factors and 3) a consequent switch to the transmissible sexual stage. Hence, our study throws light on a novel physiological adaptation utilised by malaria parasite to tackle stress to its secretory pathway. Gametocytogenesis, which can be transmitted to the mosquito vector, could hence serve as an effective means to escape ER-stress altogether. Importantly, while it is widely known that stress brings about switch towards sexual stages in P. falciparum, the molecular triggers involved in this process remain obscure in the field of malaria biology. Therefore, our findings also address this long standing question by providing the evidence of ER-stress being one such trigger required for switching to the transmissible sexual stages.
157

Down-regulation of Heat Shock Protein HSP90ab1 in Radiation-damaged Lung Cells other than Mast Cells

Haase, Michael G., Geyer, Peter, Fitze, Guido, Baretton, Gustavo B. 30 September 2019 (has links)
Ionizing radiation (IR) leads to fibrosing alveolitis (FA) after a lag period of several weeks to months. In a rat model, FA starts at 8 weeks after IR. Before that, at 5.5 weeks after IR, the transcription factors Sp1 (stimulating protein 1) and AP-1 (activator protein 1) are inactivated. To find genes/proteins that were down-regulated at that time, differentially expressed genes were identified in a subtractive cDNA library and verified by quantitative RT-PCR (reverse transcriptase polymerase chain reaction), western blotting and immunohistochemistry (IH). The mRNA of the molecular chaperone HSP90AB1 (heat shock protein 90 kDa alpha, class B member 1) was down-regulated 5.5 weeks after IR. Later, when FA manifested, HSP90ab1 protein was down-regulated by more than 90% in lung cells with the exception of mast cells. In most mast cells of the normal lung, both HSP90ab1 and HSP70, another major HSP, show a very low level of expression. HSP70 was massively up-regulated in all mast cells three months after irradiation whereas HSP90AB1 was up-regulated only in a portion of mast cells. The strong changes in the expression of central molecular chaperones may contribute to the well-known disturbance of cellular functions in radiation-damaged lung tissue. (J Histochem Cytochem 62:355–368, 2014)
158

Magnetic Nanoparticle Hyperthermia-Mediated Clearance of Beta-amyloid Plaques: Implications in the Treatment of Alzheimer’s Disease

Dyne, Eric D. 20 April 2021 (has links)
No description available.
159

Functional Effects of ARV-1502 Analogs Against Bacterial Hsp70 and Implications for Antimicrobial Activity

Brakel, Alexandra, Kolano, Lisa, Kraus, Carl N., Otvos Jr, Laszlo, Hoffmann, Ralf 03 April 2023 (has links)
The antimicrobial peptide (AMP) ARV-1502 was designed based on naturally occurring short proline-rich AMPs, including pyrrhocoricin and drosocin. Identification of chaperone DnaK as a therapeutic target in Escherichia coli triggered intense research on the ligand- DnaK-interactions using fluorescence polarization and X-ray crystallography to reveal the binding motif and characterize the influence of the chaperone on protein refolding activity, especially in stress situations. In continuation of this research, 182 analogs of ARV-1502 were designed by substituting residues involved in antimicrobial activity against Gramnegative pathogens. The peptides synthesized on solid-phase were examined for their binding to E. coli and S. aureus DnaK providing 15 analogs with improved binding characteristics for at least one DnaK. These 15 analogs were distinguished from the original sequence by their increased hydrophobicity parameters. Additionally, the influence of the entire DnaK chaperone system, including co-chaperones DnaJ and GrpE on refolding and ATPase activity, was investigated. The increasingly hydrophobic peptides showed a stronger inhibitory effect on the refolding activity of E. coli chaperones, reducing protein refolding by up to 64%. However, these more hydrophobic peptides had only a minor effect on the ATPase activity. The most dramatic changes on the ATPase activity involved peptides with aspartate substitutions. Interestingly, these peptides resulted in a 59% reduction of the ATPase activity in the E. coli chaperone system whereas they stimulated the ATPase activity in the S. aureus system up to 220%. Of particular note is the improvement of the antimicrobial activity against S. aureus from originally >128 μg/mL to as low as 16 μg/mL. Only a single analog exhibited improved activity over the original value of 8 μg/mL against E. coli. Overall, the various moderate-throughput screenings established here allowed identifying (un)favored substitutions on 1) DnaK binding, 2) the ATPase activity of DnaK, 3) the refolding activity of DnaK alone or together with co-chaperones, and 4) the antimicrobial activity against both E. coli and S. aureus.
160

Räumlich-zeitliche Dynamik der laserinduzierten Hsp70-Expression in einem humanen Hautexplantatmodell

Konz, Maximilian 29 November 2016 (has links) (PDF)
Die Narbenbildung des Hautorgans stellt für die gegenwärtige Medizin weiterhin eine schwierige Aufgabe dar. Die frühzeitige Beeinflussung des Wundheilungspro- zesses hin zu einer verminderten oder narbenlosen Heilung scheint von entschei- dender Bedeutung. Ein vielversprechender Ansatz ist die präoperative Laserthe- rapie und dadurch erzeugte Hitzeschockantwort. Auf molekulare Ebene kommt es u.a. zur Expression von Hitzeschockproteine. Die vorliegende in-vitro Studie beschäftigte sich mit der laserinduzierten Hochregulation des Hitzeschockproteins 70 in den epidermalen Schichten. Hierfür wurden drei nicht ablative Lasersysteme mit insgesamt 12 verschiedenen Parametereinstellungen verwendet (1.540-nm Er:Glass- , 755-nm Alexandrit-, 1.064-nm Nd:YAG-Laser). Mithilfe eines humanen Hautexplantatmodells sollte unter gleichbleibenden Bedingungen Zeitpunkt und Konzentration der maximal induzierten Hsp70-Expression sowie epidermale Schä- digungen dargestellt werden. In der verfügbaren Literatur waren hierzu nur begrenzt Daten vorhanden. Alle drei Lasersysteme zeigten signifikante Hsp70-Expressionen. Der Zeitpunkt der maximalen Hsp70-Expression konnte zwischen Tag 1 und 3 festgehalten werden. Dabei zeigten die Lasersysteme unterschiedliche Hsp70- Maxima und unterschiedliche Epidermisschädigungen. Die Ergebnisse ließen schlussfolgern, dass eine potenzielle präoperative Narbenprävention tendeziell ein Tag vor dem chirurgischen Eingriff und mit den stärkeren Parametereinstellungen des 1.064-nm Nd:YAG Lasers durchgeführt werden sollte.

Page generated in 0.1113 seconds