Spelling suggestions: "subject:"human error."" "subject:"suman error.""
41 |
Grundstötningsolyckor på svenskt farvatten och bland svenskflaggade fartyg / Grounding accidents on Swedish waters and among Swedish flagged shipsLindqvist, Michael, Andersson, Simon January 2019 (has links)
Trots att det finns många tekniska hjälpmedel ombord, vilka har i uppgift att hjälpa navigatören att framföra fartyget på ett säkert sätt, så fortsätter grundstötningar att inträffa. Denna litteraturstudie sammanställer och granskar grundstötningsolyckor som inträffat på svenska fartyg och på utländska fartyg som befunnit sig på svenskt territorialvatten under åren 2011-2016. Studien behandlar frågeställningar om vilka huvudsakliga faktorer som ligger till grund för att grundstötningar inträffar. Studien omfattar såväl inre som yttre faktorer. De inre faktorerna som behandlas är styrmetod, bryggbemanning och vilken typ av sjökort som använts. Våghöjd, vindstyrka, typ av farvatten, sikt- och ljusförhållande ingår i de yttre faktorerna. Både de inre- och yttre faktorerna sammanställs och presenteras för att kunna ge en bild av vad som kan ha föranlett grundstötningarna. Studiens resultatet visar att passagerar- och bulkfartyg av det mindre tonnaget står för majoriteten av olyckorna. I likhet med tidigare studier är antalet olyckor som beror på den mänskliga faktorn hög. / Even though there are plenty of technological aids onboard modern-day merchant vessels, intended to help the Officer on watch to drive his vessel safely, groundings continue to happen. This literature study summarises and reviews data from several groundings that involved Swedish-registered ships and ships within Swedish territory during the period 2011-2016. This study covers questions about the main factors that have caused the groundings. It covers both internal and external factors. Method of steering, bridge manning and type of chart belong to the internal factors. Factors such as wave height, wind force, type of waters, visibility and light conditons are part of the external factors. This data is then discussed and analysed to give a picture of what may have caused the groundings. The results show that the smaller tonnage passenger and bulk carriers account for the majority of the accidents. Like previous studies the number of accidents due to human factors are high.
|
42 |
Análise de risco para embarcações com sistemas de alarmes com foco nos fatores humanos e organizacionais. / Risk analysis for ships with alarm systems, focusing on human and organizational factors.Barbarini, Luiz Henrique Maiorino 11 May 2012 (has links)
Este trabalho apresenta uma proposta de modelo de análise de risco para embarcações, incorporando em sua formulação a influência das interações entre os sistemas de alarmes e os fatores humanos e organizacionais presentes a bordo. De acordo com estatísticas de sociedades classificadoras, o homem é o maior responsável por acidentes marítimos, e, desta forma, é um dos principais componentes da segurança de uma embarcação. A relevância do elemento humano se dá pelo fato de que ações e decisões humanas estão relacionadas tanto à causa, quanto à prevenção de acidentes. O sistema de alarmes é um equipamento de segurança obrigatório, e com direta participação na dinâmica de um acidente, fornecendo informação para a tomada de decisão das ações por parte da tripulação na resolução do problema. O estudo da interação entre este equipamento e o elemento humano a bordo permite a gestores e armadores elaborar diretrizes para investimentos em sistemas de segurança e políticas que influenciam o desempenho humano, e, portanto, a segurança a bordo. O modelo proposto, inspirado em relatório de acidentes marítimos, tem como ponto de partida uma estrutura sequencial do acidente e leva em consideração uma sucessão usual e simplificada dos eventos ocorridos, iniciando a partir de uma falha no sistema físico. O elemento humano, então, é incorporado à análise de risco através das técnicas de análise de confiabilidade humana, as quais têm como princípio a visão do homem como mais um componente do sistema, ou o liveware interagindo com software e hardware. Sob este ponto de vista, uma abordagem sócio-técnica é aplicada, ou seja, considera-se que um navio é composto não apenas de sua estrutura e máquinas, mas também de toda a tripulação. Com o objetivo de exemplificar passos e hipóteses de uma aplicação do modelo proposto, é apresentada a aplicação ao caso do acidente da embarcação Maersk Doha, ocorrido em outubro de 2006 nos Estados Unidos, cujo relatório de investigação do acidente é de acesso público via Internet, no site da Marine Accident Investigation Branch MAIB. / This work presents a risk analysis model for ships, focusing on the scenarios where the crew interacts with the alarm and monitoring system. According to statistics of classification societies, humans are largely responsible for accidents on board and, therefore, are considered a major component of the safety of vessels. The relevance of the human element is given by the fact that human decisions and actions are related to the cause of accidents, either being the direct causative factor of failure or influencing the probability of failure, and the prevention of accidents or mitigation of the consequences. The alarm system is a mandatory component of certified vessels, with direct participation in an accident. It supplies information for the decision making process of the crew, considering their actions to recover the system. The study of the interactions between this automation equipment and the human element on board provides guidelines to managers and owners to invest in proper security systems and policies that influence human behavior, and therefore the safety on board. The model, inspired in accident reports, has as starting point a sequential structure of the accident, and takes into account a typical and simplified sequence of events, starting from a failure in the physical system. The human element is incorporated into the risk analysis through techniques of human reliability analysis, which place man as another component of the system, or the \"liveware\" interacting with software and hardware. From this point of view, a socio-technical approach is applied, considering that a ship is composed of not only its structure and machinery, but also of the entire crew. In order to illustrate the steps and assumptions to be done by an analyst applying the proposed model, the accident of the vessel Maersk Doha, occurred in October of 2006 in the United States, is analyzed. The report on the investigation of this accident is public and accessible via the Internet site of the Marine Accident Investigation Branch MAIB.
|
43 |
The Validation of a Methodology for Assessing the Impact of Hybrid Simulation Training in the Minimization of Adverse Outcomes in SurgeryFabri, Peter J 05 June 2007 (has links)
The Institute of Medicine report "To Err is Human," released in late 1999, raised the issue of human error in medicine to a new level of attention. This study examines the frequency, severity, and type (FST) of errors associated with postoperative surgical complications at a tertiary care, university-based medical center, addressing the intersection of three domains: patient safety, graduate medical education, and simulation-based training. The study develops and validates a classification system for medical error that is specific to surgery, affirming reliability internally and externally. Baseline data on the FST of errors is collected over a 12-month period. A hybrid, simulation based training session is developed, validated, and applied to a cohort of surgical residents, focusing on the three most common types of errors identified from pilot data, namely judgment error, incomplete understanding of the problem, and inattention to detail, all human factor errors. The impact of the training is evaluated by measuring the FST of errors occurring during the 6-month period following the training sessions. The study demonstrates that there is a continuous decrement in the incidence of postoperative complications and a proportional decrease in error, which starts at the beginning of the baseline data collection and continues linearly throughout the 12 baseline months and subsequent 6 post-training months. There is no additional decrement in the rate of change following training, and no change in the rate of the index errors following the training. This study suggests that surgical error is frequent (>2%) and principally due to human factors rather than systems or communication. This study demonstrates that creating an environment where residents are continuously involved in identifying and characterizing errors results in a significant and sustained decrease in postoperative complications and the errors specifically associated with them. Contrary to expectations, a validated, well-designed, active-learning training module does not result in an additional identifiable improvement in patient outcome or in the incidence of index errors. These results are at variance with many recent studies addressing medical error and, if verified by additional studies, challenge several strongly held ideas related to patient safety training.
|
44 |
Military Aviation Incident Reporting from an HTO PerspectiveThor, Sara, Rosén, Anna-Karin January 2009 (has links)
<p>The purpose of this study is to find out if the Swedish Air Force and the military aviation industry, Saab Aerosystems, use an HTO perspective in incident investigations. The research objectives are to explore existing organizational and accident models, analyze the reporting system using the models, and suggest possible improvements to the existing incident investigation system. Fishman’s (1999) model for pragmatic studies was used to describe the study’s theoretical approach. Triangulation by literary review, case study and interviews were used to ensure validity and reliability.</p><p>Three models were chosen: Rollenhagen’s HTO model (1997), Leveson’s STAMP (2002), and Shappell and Wiegmann’s HFACS (2000). The models were further tested in the case study, revealing that their usefulness depends on type of incident, and that they leave a lot up to the investigator.</p><p>Interviews were conducted with key individuals at Saab Aerosystems as well as at the Swedish Armed Forces’ Headquarters. The interviews showed that the incident reporting system in question is a well functioning one, mainly due to the blame-free culture, multidisciplinary investigative teams, good feedback and a generally good knowledge of the HTO concept. Difficulties within the organizations exist due to organizational boundaries between the manufacturer and the operator, and recurring structural reorganizations within the Swedish Armed Forces. Saab acknowledges the emphasis on technical issues. The Flight Safety department at the headquarters is currently working with implementing HFACS into the Flight Safety Database.</p><p>Our recommendations for Saab Aerosystems and the Air Force include:</p><p>For Saab Aerosystems:</p><ul><li>Evaluate and learn from existing HTO work within the organization, and incorporate the results into existing processes and instructions for incident investigations.</li><li>Make use of the theoretical models, where applicable, in the processes as well.</li><li>Focus on HFACS in order to synchronize with the Air Force.</li><li>Consider employing an HTO specialist.</li></ul><p>For the Air Force:</p><ul><li>Consider influences from other HTO models, like Rollenhagen’s or Leveson’s models, while still in the development phase of implementing HFACS.</li><li>Perform risk analyses regarding the effects on flight safety when doing reorganizations.</li></ul><p>For both Saab Aerosystems and the Air Force we recommend:</p><p>Use Leveson’s model STAMP for complex and serious incidents, comprising of organizational, human and technical aspects.</p> / <p>Denna studie har som syfte att ta reda på om det svenska Flygvapnet och den militära flygindustrin, Saab Aerosystems, använder ett MTO-perspektiv vid incidentutredningar. Forskningsmålen är att utforska befintliga organisations- och olycksmodeller, att analysera rapporteringssystemet med hjälp av modellerna, samt att föreslå möjliga förbättringar på det existerande incidentrapporterings- och utredningssystemet. Fishmans (1999) modell för pragmatiska studier användes som teoretisk utgångspunkt. För att säkerställa validitet och reliabilitet användes triangulering, bestående av litteraturstudie, fallstudie, samt intervjuer.</p><p>Tre modeller valdes ut: Rollenhagens MTO-modell (1997), Levesons STAMP (2002) och Shappell och Wiegmanns HFACS (2000). Modellerna användes i fallstudien, med resultatet att modellernas användbarhet bedömdes variera beroende på typ av incident, samt att de lämnar mycket åt utredarens erfarenhet.</p><p>Intervjuer genomfördes med nyckelpersoner på Saab Aerosystems och på Försvarsmaktens Högkvarter. Intervjuerna visade att rapporteringssystemet i fråga är väl fungerande, främst tack vare rapporteringskulturen, de multidisciplinära utredningsgrupperna, god återkoppling och en generellt sett god kännedom om MTO-konceptet. Organisatoriska svårigheter är dels gränsdragningen mellan tillverkare och användare, dels återkommande omstruktureringar inom Försvarsmakten. Saab medger också att deras fokus ligger främst på det tekniska. Flygsäkerhetsavdelningen på Högkvarteret arbetar med att införa HFACS i flygsäkerhetsdatabasen.</p><p>Våra rekommendationer till Saab Aerosystems och till Flygvapnet inkluderar:</p><p>Till Saab Aerosystems:</p><ul><li>Utvärdera och drag lärdom av befintligt MTO-arbete inom organisationen, inkludera dessa resultat i befintliga processer och instruktioner för incidentutredningar.</li><li>Utnyttja fler teoretiska modeller i processen, där så är lämpligt.</li><li>Fokusera på HFACS för att synkronisera med Flygvapnet. <ul><li>Fundera på att anställa en MTO-specialist.</li></ul></li></ul><p>Till Flygvapnet:</p><ul><li>Fundera på att också införa delar av andra MTO-modeller, som Rollenhagens eller Levesons modeller, under implementeringsfasen av HFACS. </li><li>Genomför riskanalyser av påverkan på flygsäkerhet vid omorganisationer.</li></ul><p>Till både Saab Aerosystems och Flygvapnet rekommenderar vi:</p><p>använd Levesons modell STAMP vid mer komplexa och allvarliga incidenter som innefattar organisatoriska, mänskliga och tekniska aspekter.</p>
|
45 |
Military Aviation Incident Reporting from an HTO PerspectiveThor, Sara, Rosén, Anna-Karin January 2009 (has links)
The purpose of this study is to find out if the Swedish Air Force and the military aviation industry, Saab Aerosystems, use an HTO perspective in incident investigations. The research objectives are to explore existing organizational and accident models, analyze the reporting system using the models, and suggest possible improvements to the existing incident investigation system. Fishman’s (1999) model for pragmatic studies was used to describe the study’s theoretical approach. Triangulation by literary review, case study and interviews were used to ensure validity and reliability. Three models were chosen: Rollenhagen’s HTO model (1997), Leveson’s STAMP (2002), and Shappell and Wiegmann’s HFACS (2000). The models were further tested in the case study, revealing that their usefulness depends on type of incident, and that they leave a lot up to the investigator. Interviews were conducted with key individuals at Saab Aerosystems as well as at the Swedish Armed Forces’ Headquarters. The interviews showed that the incident reporting system in question is a well functioning one, mainly due to the blame-free culture, multidisciplinary investigative teams, good feedback and a generally good knowledge of the HTO concept. Difficulties within the organizations exist due to organizational boundaries between the manufacturer and the operator, and recurring structural reorganizations within the Swedish Armed Forces. Saab acknowledges the emphasis on technical issues. The Flight Safety department at the headquarters is currently working with implementing HFACS into the Flight Safety Database. Our recommendations for Saab Aerosystems and the Air Force include: For Saab Aerosystems: Evaluate and learn from existing HTO work within the organization, and incorporate the results into existing processes and instructions for incident investigations. Make use of the theoretical models, where applicable, in the processes as well. Focus on HFACS in order to synchronize with the Air Force. Consider employing an HTO specialist. For the Air Force: Consider influences from other HTO models, like Rollenhagen’s or Leveson’s models, while still in the development phase of implementing HFACS. Perform risk analyses regarding the effects on flight safety when doing reorganizations. For both Saab Aerosystems and the Air Force we recommend: Use Leveson’s model STAMP for complex and serious incidents, comprising of organizational, human and technical aspects. / Denna studie har som syfte att ta reda på om det svenska Flygvapnet och den militära flygindustrin, Saab Aerosystems, använder ett MTO-perspektiv vid incidentutredningar. Forskningsmålen är att utforska befintliga organisations- och olycksmodeller, att analysera rapporteringssystemet med hjälp av modellerna, samt att föreslå möjliga förbättringar på det existerande incidentrapporterings- och utredningssystemet. Fishmans (1999) modell för pragmatiska studier användes som teoretisk utgångspunkt. För att säkerställa validitet och reliabilitet användes triangulering, bestående av litteraturstudie, fallstudie, samt intervjuer. Tre modeller valdes ut: Rollenhagens MTO-modell (1997), Levesons STAMP (2002) och Shappell och Wiegmanns HFACS (2000). Modellerna användes i fallstudien, med resultatet att modellernas användbarhet bedömdes variera beroende på typ av incident, samt att de lämnar mycket åt utredarens erfarenhet. Intervjuer genomfördes med nyckelpersoner på Saab Aerosystems och på Försvarsmaktens Högkvarter. Intervjuerna visade att rapporteringssystemet i fråga är väl fungerande, främst tack vare rapporteringskulturen, de multidisciplinära utredningsgrupperna, god återkoppling och en generellt sett god kännedom om MTO-konceptet. Organisatoriska svårigheter är dels gränsdragningen mellan tillverkare och användare, dels återkommande omstruktureringar inom Försvarsmakten. Saab medger också att deras fokus ligger främst på det tekniska. Flygsäkerhetsavdelningen på Högkvarteret arbetar med att införa HFACS i flygsäkerhetsdatabasen. Våra rekommendationer till Saab Aerosystems och till Flygvapnet inkluderar: Till Saab Aerosystems: Utvärdera och drag lärdom av befintligt MTO-arbete inom organisationen, inkludera dessa resultat i befintliga processer och instruktioner för incidentutredningar. Utnyttja fler teoretiska modeller i processen, där så är lämpligt. Fokusera på HFACS för att synkronisera med Flygvapnet. Fundera på att anställa en MTO-specialist. Till Flygvapnet: Fundera på att också införa delar av andra MTO-modeller, som Rollenhagens eller Levesons modeller, under implementeringsfasen av HFACS. Genomför riskanalyser av påverkan på flygsäkerhet vid omorganisationer. Till både Saab Aerosystems och Flygvapnet rekommenderar vi: använd Levesons modell STAMP vid mer komplexa och allvarliga incidenter som innefattar organisatoriska, mänskliga och tekniska aspekter.
|
46 |
Desenvolvimento de ferramentas de sistemas inteligentes na análise de confiabilidade humana em sistemas industriais. / Development of tools for intelligent systems in reliability analysis of humans systems industrial.Murari, Mariana Lima Acioli 18 June 2012 (has links)
The human reliability analysis has been researched and developed for decades in different branches of industry: civil, chemical, petroleum, petrochemical, energy, among others. The increasingly strict legislation and the current public opinion factor due to accidents are even more crucial than the material losses and may order a company to bankruptcy. On the other hand beyond the corporate investment in risk prevention automation systems has been widely used both to reduce the exposure of people at risk and for financial gain with stabilizing and balancing processes, avoiding loss of raw materials and supplies , energy costs among others. However, this automation does not exempt people in their control arise some questions about the adequacy of the needs of operators, which factors most influence on your performance and what is the probability of human error during an emergency situation. To address these questions is necessary to use subjective variables without rigid boundaries that carry large uncertainties from the human knowledge and that in classical programming languages are not represented effectively. So Fuzzy logic has shown interesting results in the representation of these systems. In this work it was found that fuzzy logic is a powerful tool in determining factors that influence human performance and error probability based on experience of experts. / Conselho Nacional de Desenvolvimento Científico e Tecnológico / A análise de confiabilidade humana vem sendo pesquisada e desenvolvida durante décadas em indústrias de diferentes ramos: civil, química, petróleo, petroquímica de energia, entre outras. A legislação cada vez mais rígida e o atual fator de opinião público em decorrência de acidentes são ainda mais cruciais do que as perdas materiais e pode condenar uma empresa a falência. Por outro lado além dos investimentos das empresas na prevenção de risco a automatização dos sistemas vem sendo amplamente utilizada tanto para reduzir a exposição de pessoas ao risco quanto para obtenção de ganhos financeiros com a estabilização e balanceamento dos processos, evitando perda de matéria prima e insumos, gastos com energia entre outros. No entanto, esta automatização não dispensa pessoas em seu controle surgindo alguns questionamentos a respeito da adequação dos sistemas às necessidades dos operadores, quais fatores mais influenciam em seu desempenho e qual a probabilidade de um erro humano durante uma situação de emergência. Para sanar esses questionamentos é necessário o uso de variáveis subjetivas sem limites rígidos que carregam grandes incertezas provenientes do conhecimento humano e que nas linguagens de programação clássicas não são representadas de forma eficaz. Assim a lógica Fuzzy vem apresentando resultados interessantes na representação desses sistemas. Neste trabalho verificou-se que a lógica Fuzzy é uma ferramenta poderosa na determinação de fatores que influenciam o desempenho humano e a probabilidade de erro baseado na experiência de especialistas.
|
47 |
CÃdigos de barra e criptografia / Bar codes and cryptographyAurÃlio EugÃnio Aguiar de Lima 26 April 2014 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Descreveremos o surgimento e o desenvolvimento dos cÃdigos de barra. Explicaremos como funcionam os cÃdigos UPC, EAN, ISBN e o QR Code. Enfatizaremos o EAN â 13 â o mais usado atualmente -, mostrando em que casos e como esse cÃdigo consegue detectar erros cometidos por falha humana. AlÃm disso, faremos um estudo da criptografia, citando o cÃdigo de CÃsar e o cÃdigo de blocos. Faremos tambÃm um estudo mais detalhado da criptografia RSA, exemplificando a codificaÃÃo e a decodificaÃÃo. / We will describe the emergence and development of the barcodes. Weâll explain how the UPC, EAN, ISBN and QR codes work. We will emphasize the EAN-13 â the most currently used-showing where and how this code can detect errors committed by human error. In addition, we make a study of cryptography, quoting the code of Caesar and the code block. We will also do a more detailed study of RSA encryption, exemplifying encoding and decoding.
|
48 |
Análise de risco para embarcações com sistemas de alarmes com foco nos fatores humanos e organizacionais. / Risk analysis for ships with alarm systems, focusing on human and organizational factors.Luiz Henrique Maiorino Barbarini 11 May 2012 (has links)
Este trabalho apresenta uma proposta de modelo de análise de risco para embarcações, incorporando em sua formulação a influência das interações entre os sistemas de alarmes e os fatores humanos e organizacionais presentes a bordo. De acordo com estatísticas de sociedades classificadoras, o homem é o maior responsável por acidentes marítimos, e, desta forma, é um dos principais componentes da segurança de uma embarcação. A relevância do elemento humano se dá pelo fato de que ações e decisões humanas estão relacionadas tanto à causa, quanto à prevenção de acidentes. O sistema de alarmes é um equipamento de segurança obrigatório, e com direta participação na dinâmica de um acidente, fornecendo informação para a tomada de decisão das ações por parte da tripulação na resolução do problema. O estudo da interação entre este equipamento e o elemento humano a bordo permite a gestores e armadores elaborar diretrizes para investimentos em sistemas de segurança e políticas que influenciam o desempenho humano, e, portanto, a segurança a bordo. O modelo proposto, inspirado em relatório de acidentes marítimos, tem como ponto de partida uma estrutura sequencial do acidente e leva em consideração uma sucessão usual e simplificada dos eventos ocorridos, iniciando a partir de uma falha no sistema físico. O elemento humano, então, é incorporado à análise de risco através das técnicas de análise de confiabilidade humana, as quais têm como princípio a visão do homem como mais um componente do sistema, ou o liveware interagindo com software e hardware. Sob este ponto de vista, uma abordagem sócio-técnica é aplicada, ou seja, considera-se que um navio é composto não apenas de sua estrutura e máquinas, mas também de toda a tripulação. Com o objetivo de exemplificar passos e hipóteses de uma aplicação do modelo proposto, é apresentada a aplicação ao caso do acidente da embarcação Maersk Doha, ocorrido em outubro de 2006 nos Estados Unidos, cujo relatório de investigação do acidente é de acesso público via Internet, no site da Marine Accident Investigation Branch MAIB. / This work presents a risk analysis model for ships, focusing on the scenarios where the crew interacts with the alarm and monitoring system. According to statistics of classification societies, humans are largely responsible for accidents on board and, therefore, are considered a major component of the safety of vessels. The relevance of the human element is given by the fact that human decisions and actions are related to the cause of accidents, either being the direct causative factor of failure or influencing the probability of failure, and the prevention of accidents or mitigation of the consequences. The alarm system is a mandatory component of certified vessels, with direct participation in an accident. It supplies information for the decision making process of the crew, considering their actions to recover the system. The study of the interactions between this automation equipment and the human element on board provides guidelines to managers and owners to invest in proper security systems and policies that influence human behavior, and therefore the safety on board. The model, inspired in accident reports, has as starting point a sequential structure of the accident, and takes into account a typical and simplified sequence of events, starting from a failure in the physical system. The human element is incorporated into the risk analysis through techniques of human reliability analysis, which place man as another component of the system, or the \"liveware\" interacting with software and hardware. From this point of view, a socio-technical approach is applied, considering that a ship is composed of not only its structure and machinery, but also of the entire crew. In order to illustrate the steps and assumptions to be done by an analyst applying the proposed model, the accident of the vessel Maersk Doha, occurred in October of 2006 in the United States, is analyzed. The report on the investigation of this accident is public and accessible via the Internet site of the Marine Accident Investigation Branch MAIB.
|
49 |
Emotional Intelligence in the Workplace : A study on Emotional Intelligence in Workers’ Occupational Health, Safety and Environment (HSE) in the workplace / :Mobli, Nasim, Ramlubhai Pillamari, Prasad January 2020 (has links)
Work-related accidents emerge from potential hazards that can cause different negative outcomes in different situations. Human errors are specific actions that can either directly (active errors) or indirectly (latent errors) cause an accident in the workplace. Nowadays in order to establish an applicable system in the way of maintenance and preferment of a work environment without any accidents that are trying to develop the HSE system. In fact, this management system has been using as a significant tool to control and improve the performance of health and safety and the environment in all development programs of industries and organizations. In this term, one of the important perspectives of HSE management is Emotional Intelligence which deals with the management’s ability and safety performance in the workplace. The purpose of this study is to investigate the relationship between Emotional Intelligence and Occupational Health, Safety and Environment (HSE) management in the workplace, to reduce industrial incidents of human factors. Therefore, there is a requirement for a better understanding of how Emotional Intelligence factors influence health and safety performance in the workplace. A qualitative study has been done to achieve this purpose. In this case, data has been collected through eight semi-structured interviews with HSE managers and officers that participated from different industries around the world. The main focus of this collection data was extracting the perspectives of the individual’s views. Afterward, to create a theory, the data has been analyzed according to different steps for a grounded analysis regarding discovering how the Emotional Intelligence factors of employees impact their health and safety performance in the workplace. The results of this study have shown that there are mainly two areas to study which are key roles of Emotional Intelligence in safety performance and key roles for effective Healthy, Safety, and Environment management. It has shown that the key roles of Emotional Intelligence in safety performance is being able to manage your own and being able to deal with other’s emotions. Besides, key roles for effective Healthy, Safety, and Environment management only three factors have been important to improve the safety act which is being able to make the correct decision in the emergency situation’ and ability to prevent incidents at the workplace as well as the level of perception of risk. These results demonstrated that strong factors of Emotional Intelligence are vital to improve the health and safety performance at the workplace and the improvement of these abilities should be approached for the workplace.
|
50 |
The human-machine teams create, explain, and recover from coordination breakdowns: a simulator study of disturbance management on modern flight decksNikolic, Mark I. 29 September 2004 (has links)
No description available.
|
Page generated in 0.0679 seconds