• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 22
  • 8
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 87
  • 87
  • 57
  • 34
  • 19
  • 16
  • 15
  • 12
  • 11
  • 11
  • 11
  • 11
  • 10
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Effect of polymerisation by microwave on the physical properties of molecularly imprinted polymers (MIPs) specific for caffeine

Brahmbhatt, H.A., Surtees, Alexander P.H., Tierney, C., Ige, O.A., Piletska, E.V., Swift, Thomas, Turner, N.W. 14 October 2020 (has links)
Yes / Molecularly Imprinted Polymers (MIPs) are a class of polymeric materials that exhibit highly specific recognition properties towards a chosen target. These “smart materials” offer robustness to work in extreme environmental conditions and cost effectiveness; and have shown themselves capable of the affinities/specificities observed of their biomolecular counterparts. Despite this, in many MIP systems heterogeneity generated in the polymerisation process is known to affect the performance. Microwave reactors have been extensively studied in organic chemistry because they can afford fast and well-controlled reactions, and have been used for polymerisation reactions; however, their use for creating MIPs is limited. Here we report a case study of a model MIP system imprinted for caffeine, using microwave initiation. Experimental parameters such as polymerisation time, temperature and applied microwave power have been investigated and compared with polymers prepared by oven and UV irradiation. MIPs have been characterised by BET, SEM, DSC, TGA, NMR, and HPLC for their physical properties and analyte recognition performance. The results suggest that the performance of these polymers correlates to their physical characteristics. These characteristics were significantly influenced by changes in the experimental polymerisation parameters, and the complexity of the component mixture. A series of trends were observed as each parameter was altered, suggesting that the performance of a generated polymer could be possible to predict. As expected, component selection is shown to be a major factor in the success of an imprint using this method, but this also has a significant effect on the quality of resultant polymers suggesting that only certain types of MIPs can be made using microwave irradiation. This work also indicates that the controlled polymerisation conditions offered by microwave reactors could open a promising future in the development of MIPs with more predictable analyte recognition performance, assuming material selection lends itself to this type of initiation. / DMU School of Pharmacy undergraduate project scheme for financial support.
42

Estudo teórico e experimental da síntese racional de polímeros de impressão molecular para extração seletiva de canabinoides em amostras de esgoto doméstico

Fernandes, Luciana Sarmento January 2014 (has links)
Orientadora: Profa. Dra. Káthia Maria Honório / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Ciência & Tecnologia - Química, 2014. / Polimeros de impressao molecular (MIPs) sao materiais sinteticos que possuem sitios de reconhecimento molecular especificos para determinado analito de interesse (molecula molde), e tem sido empregados para a pre-concentracao e extracao em amostras complexas, considerando a maior seletividade em relacao aos sorventes convencionais empregados na extracao em fase solida. A escolha dos reagentes utilizados na sintese de um MIP deve ser criteriosa, a fim de que sejam criados sitios de ligacoes especificos. Metodos computacionais de Quimica Teorica podem ser empregados para racionalizar o planejamento de MIPs, por intermedio do estudo de parametros fisico-quimicos das moleculas envolvidas e as interacoes que ocorrem no sistema de pre-polimerizacao. Com a utilizacao de metodos de quimica quantica, foi objetivo desse trabalho o estudo previo das interacoes entre as moleculas moldes e os possiveis reagentes empregados na sintese de MIPs, como forma de predicao das melhores interacoes que promovam um MIP de desempenho ideal. O estudo teorico foi direcionado para a molecula de ¿¢9-tetrahidrocanabinol (¿¢9-THC), substancia presente na planta Cannabis sativa e que e a substancia ilicita mais produzida e consumida mundialmente, e seu principal metabolito de excrecao urinario, o 11-nor-9-carboxi-¿¢9-THC (THC-COOH). A simulacao computacional foi realizada utilizando a Teoria do Funcional da Densidade (DFT), e a metodologia envolveu a comparacao das energias de interacao (¿¢E) dos adutos de pre-polimerizacao entre a molecula molde e os reagentes de sintese. Com os resultados das simulacoes, verificou-se que as melhores interacoes ocorrem quando o monomero utilizado tem caracteristica acida, como o acido acrilico e o acido metacrilico; e que o solvente mais adequado para a sintese sao os que apresentam baixa constante dieletrica, como o cloroformio e o tolueno, por interferirem menos na formacao do complexo de interacao entre a molecula molde e o monomero na etapa de pre-polimerizacao. Detalhes das interacoes existentes entre as moleculas do meio reacional tambem foram analisadas e forneceram informacoes sobre a possivel competicao entre as moleculas no acesso aos sitios de interacao das moleculas moldes, informacao crucial para obtencao de MIPs seletivos e de grande afinidade a molecula molde desejada. A partir das predicoes do estudo computacional, os MIPs de THC-COOH foram sintetizados com os monomeros indicados, juntamente com o polimero nao impresso (NIP), em alguns dos solventes simulados (agua, acetonitrila, metanol e agua), para avaliacao da interferencia do solvente na eficiencia do MIP obtido. Foi realizada a analise dos MIPs por espectroscopia vibracional na regiao do infravermelho, e avaliada as bandas de absorcao nas regioes dos grupos C=O e O-H, para analise da formacao de interacoes por ligacao de hidrogenio. Concluiu-se, portanto, que sem substituir os ensaios experimentais, a abordagem computacional pode ser utilizada como uma ferramenta preliminar e complementar a selecao experimental. / Molecularly imprinted polymers (MIPs) are synthetic materials with specific sites of molecular recognition for a given analyte of interest (template molecule), and have been used for the extraction and pre-concentration in complex samples, considering the higher selectivity presented in relation to the sorbent employed in conventional solid phase extraction. The choice of the reagents used in the synthesis of a MIP must be chosen carefully, so that site-specific linkages are created. Computational methods in Theoretical Chemistry can be used to rationalize the planning of MIPs through the study of physico-chemical parameters of the molecules involved and the interactions that occur in the pre-polymerization system. Using quantum chemical methods, the aim of this study was a preliminary investigation of the interactions between the template molecules and the possible reagents used in the synthesis of MIPs, as a way to predict the best interactions that promote MIPs with optimal performance. The theoretical study was directed to the molecule of Ä9-tetrahydrocannabinol (Ä9-THC), present in the plant Cannabis sativa, and that is the illicit substance most widely produced and consumed globally, as well as its major metabolite urinary excretion, 11 -nor-9-carboxy-Ä9-THC (THC-COOH). The computational simulation was performed using the Density Functional Theory (DFT), and the methodology involved the comparison of the interaction energies (ÄE) of adducts in pre-polymerization between the template molecule and reagents for synthesis. From the results of the simulations, it was found that the best interactions occur when the monomer has acid characteristic, such as acrylic acid and methacrylic acid; and that the most suitable solvent for synthesis are those with low dielectric constant such as toluene and chloroform, by interfering less in the formation of complex interaction between the template molecule and monomer in the pre-polymerization step. Details of the existing interactions between the molecules of the reactional medium were analyzed and provided information about the possible competition between the molecules in the access to the interaction sites of the template molecules, which is a crucial information for obtaining selective MIPs and with high affinity to the template molecule desired. From the computational predictions obtainde in this study, the MIPs of THC-COOH was synthesized with the indicated monomers, and also a non-imprinted polymer (NIP), considering some of simulated solvents (water, acetonitrile, methanol and water) for evaluation of the interference of solvent in the efficiency of the MIP obtained. Analyses on the formed MIPs were performed by spectroscopy in the infrared region, and the absorption bands in the regions of the groups C=O and OH were evaluated with the aim of analysing the formation of hydrogen bond interactions. Therefore, it is possible to conclude that, without replacing the experimental trials, the computational approach can be used as a preliminary and complementary tool to experimental selection.
43

Katalytische molekular geprägte Polymere : Herstellung und Anwendung in einem Thermistor / Catalytically molecular imprinted polymers : synthesis and application in a thermistor

Lettau, Kristian January 2007 (has links)
Biomakromoleküle sind in der Natur für viele Abläufe in lebenden Organismen verantwortlich. Dies reicht vom Aufbau der extrazellulären Matrix und dem Cytoskelett über die Erkennung von Botenstoffen durch Rezeptoren bis hin zur Katalyse der verschiedensten Reaktionen in den Zellen selbst. Diese Aufgaben werden zum größten Teil von Proteinen übernommen, und besonders das spezifische Erkennen der Interaktionspartner ist für alle diese Moleküle äußerst wichtig, um eine fehlerfreie Funktion zu gewährleisten. Als Alternative zur evolutiven Erzeugung von optimalen Bindern und Katalysatoren auf der Basis von Aminosäuren und Nukleotiden wurden von Wulff, Shea und Mosbach synthetische molekular geprägte Polymere (molecularly imprinted polymers, MIPs) konzipiert. Das Prinzip dieser künstlichen Erkennungselemente beruht auf der Tatsache, dass sich funktionelle Monomere spezifisch um eine Schablone (Templat) anordnen. Werden diese Monomere dann vernetzend polymerisiert, entsteht ein Polymer mit molekularen Kavitäten, in denen die Funktionalitäten komplementär zum Templat fixiert sind. Dadurch ist die selektive Bindung des Templats in diese Kavitäten möglich. Aufgrund ihrer hohen chemischen und thermischen Stabilität und ihrer geringen Kosten haben “bio-inspirierte” molekular geprägte Polymere das Potential, biologische Erkennungselemente in der Affinitätschromatographie sowie in Biosensoren und Biochips zu ersetzen. Trotz einiger publizierter Sensorkonfigurationen steht der große Durchbruch noch aus. Ein Hindernis für Routineanwendungen ist die Signalgenerierung bei Bindung des Analyten an das Polymer. Eine Möglichkeit für die markerfreie Detektion ist die Benutzung von Kalorimetern, die Bindungs- oder Reaktionswärmen direkt messen können. In der Enzymtechnologie wird der Enzym-Thermistor für diesen Zweck eingesetzt, da enzymatische Reaktionen eine Enthalpie in einer Größenordnung von 5 – 100 kJ/mol besitzen. In dieser Arbeit wird die Herstellung von katalytisch geprägten Polymeren nach dem Verfahren des Oberflächenprägens erstmalig beschrieben. Die Methode zur Immobilisierung des Templats auf der Oberfläche von porösem Kieselgel sowie die Polymerzusammensetzung wurden optimiert. Weiter wird die Evaluation der katalytischen Eigenschaften über einen optischen Test, sowie das erste Mal die Kombination eines kalorimetrischen Transduktors – des Thermistors – mit der Analyterkennung durch ein katalytisch aktives MIP gezeigt. Bei diesen Messungen konnte zum ersten Mal gleichzeitig die Bindung/Desorption, sowie die katalytische Umwandlung des Substrats durch konzentrationsabhängige Wärmesignale nachgewiesen werden. / Bio macromolecules are responsible in nature for many reactions in living organisms. This reaches from the structure of the extra cellular matrix and the cytoskeleton over the recognition of ligands by receptors up to the catalysis of the most diverse reactions in the cells themselves. These tasks are taken over to the largest part by proteins, and particularly specific recognizing of the interaction partners is extremely important for all these molecules, in order to ensure an error free function. As alternative to the evolutionary production of optimal binders and catalysts on the basis of amino acids and nucleotides, synthetic molecularly imprinted polymer (MIPs) were invented by Wulff, Shea and Moosbach. The principle of these artificial recognition elements is based on the fact that functional monomers specifically arrange themselves around a template. If these monomers are copolymerized with crosslinking monomers, a polymer with molecular cavities is created, in which the functionalities are fixed complementary to the template. Thus the selective binding of the template is possible into these cavities. Due to their high chemical and thermal stability and their small costs "bioinspired" molecularly imprinted polymers have the potential to replace biological recognition elements in affinity chromatography as well as in biosensors and biochips. Despite some published sensor configurations the large break-through is still pending. An obstacle for routine application of is the signal generation on connection of the analyte to the polymer. A possibility for marker-free detection is the use of calorimeters, which can measure heats of reaction or adsorption directly. In enzyme technology the enzyme thermistor is used for this purpose, as enzymatic reactions possess enthalpies in an order of 5 - 100 kJ/mol. In this work the production of catalytically imprinted polymers is described for the first time by the procedure of surface imprinting. The method for immobilization of the template on the surface of porous silicagel as well as the polymer composition were optimized. The evaluation of the catalytic characteristics is shown by an optical test, as well as the first time the combination of a calorimetric transducer - the thermistor - with the analyte recognition by a catalytically active MIP. With these measurements for the first time the binding/desorption, as well as the catalytic transformation of the substrate could be proven at the same time by concentration-dependent heat signals.
44

Development of Liquid-based Separation Techniques using Tailored Surfaces for Analysis of Biological Samples

Hardenborg, Emilia January 2008 (has links)
Development and improvement of analytical techniques are vital in analytical chemistry research. This thesis describes the development and use of tailored surfaces for bioanalytical applications. In sample preparation, solid phase extraction is often used and the development of a protocol for extraction on a molecular imprinted polymer (MISPE) directly from plasma sample is presented. Molecular imprinted polymers (MIP) offer selective sorbents for the imprinted analyte. MISPE has mainly been used in organic phase but in this thesis the development of a protocol for direct extraction of the analyte form an aqueous phase is described. For analysis of complex samples a separation step is often needed. The growing interest in analysis of biological samples and analysis of the human proteome and potential biomarkers has increased the interest in developing new separation techniques. Capillary electrophoresis (CE) has evolved into an important technique for use in analysis of body fluids. In this thesis a novel polyamine coating named PolyE 323 tailored for minimizing the adsorption of basic proteins to the surface is introduced. A straightforward coating protocol, with four simple rinsing steps, was developed. The coating was highly reproducible and useable over a wide pH range. Successful protein separations on PolyE-323-coated capillaries coupled to electrospray ionization mass spectrometry (ESI-MS) were demonstrated. The coated capillaries were also used in studies of protein content of aqueous humor samples from cataract patients as a complement to capillary liquid chromatography. In the studies presented the protein content of aqueous humor samples from two clinical groups was compared. By using capillary liquid separation techniques coupled to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and MS/MS in combination with isobaric tags for relative and absolute quantitation (iTRAQ) the identity and relative concentrations of proteins in the samples were evaluated. Earlier studies of the proteins in these kinds of samples have mainly been done with techniques using immunological detection where the proteins of interest were chosen in advance. In this thesis it was shown that liquid-based separation techniques are a good complement and by using the mass spectrometry approach presented the protein content of the samples could be evaluated without bias.
45

Development and characterization of sensing layers based on molecularly imprinted conducting polymers for the electrochemical and gravimetrical detection of small organic molecules

Lattach, Youssef 18 October 2011 (has links) (PDF)
In the field of chemical and biological sensors, the increased need for better sensitivity, faster response and higher selectivity during an analysis process, requires the development of more and more efficient transducing sensing layers. In this context, and with the aim to detect small non-electroactive molecules, such as atrazine (ATZ), we designed, characterized and developed sensing layers constituted by functionalized Molecularly Imprinted Conducting Polymers (MICP) and we integrated them into electrochemical and gravimetrical sensors. Starting from acetonitrile pre-polymerization media containing ATZ as template molecules in the presence of thiophene-based functional monomers (FM, namely TMA, TAA, EDOT, TMeOH or Th), differently functionalized and structurally different polythiophene-based FM-MICP films were electrosynthesized onto gold substrates and used for ATZ detection. The sensing properties of FM-MICP layers were shown to result from the presence in their backbones of pre-shaped FM-functionalized imprinted cavities which keep the memory of the targets. Nevertheless, non-specific adsorption onto the surface of the sensing layers takes place systematically, which affects the selectivity of the recognition process. Thanks to surface characterization techniques, we highlighted the influence of the thickness and of the structural properties of the layers on the efficiency of the recognition process. Besides, this latter was shown to operate in the bulk of the polymer matrixes thanks to layers porosity. On another hand, electrochemical measurements correlated with semi-empirical calculations demonstrated the influence of the nature of FM on the strength of the ATZ-FM interaction in the pre-polymerization medium, and then on the number of ATZ molecular imprints and on the sensitivity towards ATZ of the FM-MICP layers. We showed that TAA-MICP, which presents a low limit of detection (10-9 mol L-1) and a large dynamic range (10-8 to 10-4 mol L-1), is the best sensing layer since it offers the best compromise between high level of specific detection of ATZ and low level of non-specific adsorption. Finally, TAA-MICP was used as sensitive layer in an original Electrochemical Surface Acoustic Wave sensor (ESAW) which enabled simultaneous coupled gravimetric and electrochemical measurements.
46

Towards controlled release of Vanillin and bio-sensing of Adenosine monophosphate using molecularly imprinted polymers / Vers la libération contrôlée de Vanilline et le biocapteur d'Adénosine monophosphate en utilisant polymères à empreintes moléculaires

Puzio, Kinga 19 December 2012 (has links)
Ce mémoire présente une exploration des polymères à empreintes moléculaires (MIP) comme outils d’une libération contrôlée de bioactifs olfactifs ou pour le criblage/préselection de composés à activité antivirales ou anti-tumorales sur le site actif d’une enzyme. La première partie est une étude de la complexation de la vanilline sur des billes polymériques sphériques en vue d’une libération contrôlée (pH, salinité, …). Ces études portent sur les caractéristiques de l'absorption et la libération de la molécule d'intérêt dans le milieu aqueux sur les microsphères fonctionnalisées fourni par Merck ESTAPOR® Microsphères. Nous avons ensuite synthétisé divers MIP de vanilline au format monolithique. Plusieurs stratégies d’impression ont été étudiées: non covalente, covalente et semi-covalente. La composition du MIP préparé dans chaque approche a été optimisée pour obtenir les meilleures propriétés et performances. L'affinité, la sélectivité et la capacité du MIP ont été déterminées. Les MIPs ont été évalués par extraction en phase solide (SPE) d'analogues structuraux de la vanilline dans des échantillons naturels (extrait de vanille, vin). La deuxième partie de ce mémoire concerne l’évaluation de MIPs de l’adénosine 5’-monophosphate (AMP) Le polymère a été préparé par une approche non-covalente et son efficacité de recapture a été caractérisée par analyse frontale (FA). L’analyse frontale est une technique qui permet de discriminer des interactions spécifiques des non spécifiques et de comprendre les mécanismes de liaison dans des cavités spécifiques. / This thesis report presents the exploration of molecularly imprinted polymers (MIP) for the application in controlled release and targeting antivirus and anticancer drugs. The first part of this study describes the imprinting of vanillin as a monolith. Several strategies were studied: non-covalent, covalent and semi-covalent. The composition of the MIP prepared in each approach was optimized to obtain the best properties and performance. The affinity, selectivity and capacity of MIP were determined. MIPs were evaluated in solid-phase extraction (SPE) of structural analogues in natural samples (vanilla extract, wine). We also present the study of the exploration of spherical beads as potential tools for the controlled release of vanillin. These studies concern the characteristics of uptake and release of the molecule of interest in the aqueous medium on functionalised microspheres supplied by Merck ESTAPOR Microspheres®. The second part of this thesis is devoted to studies on the evaluation of MIP of adenosine 5'-monophosphate (AMP). The polymer was prepared in non-covalent approach and efficiency of binding was characterised using frontal analysis (FA). FA is a useful technique that allows discriminate specific and nonspecific interactions and to understand the binding mechanisms in specific cavities.
47

Desenvolvimento de sensor baseado em polímeros molecularmente impressos para determinação de álcoois superiores em óleo fúsel / Development of a molecularly imprinted polymer based sensor for determination of higher alcohols in fusel oil

Mariano, Thiago de Morais [UNESP] 11 March 2016 (has links)
Submitted by THIAGO DE MORAIS MARIANO null (thiaguitobatera@gmail.com) on 2016-03-24T18:46:42Z No. of bitstreams: 1 DISSERTAÇÃO-VERSÃO FINAL.pdf: 1116395 bytes, checksum: 647c9edcd2f39b64fa625d689d79f620 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-03-24T19:59:05Z (GMT) No. of bitstreams: 1 mariano_tm_me_araiq.pdf: 1116395 bytes, checksum: 647c9edcd2f39b64fa625d689d79f620 (MD5) / Made available in DSpace on 2016-03-24T19:59:05Z (GMT). No. of bitstreams: 1 mariano_tm_me_araiq.pdf: 1116395 bytes, checksum: 647c9edcd2f39b64fa625d689d79f620 (MD5) Previous issue date: 2016-03-11 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O óleo fúsel é o co-produto da destilação do etanol e é formado pela mistura de álcoois superiores (álcoois com mais de 3 carbonos), ésteres, aldeídos, entre outros. O volume de óleo fúsel produzido em média é 2,5 L de óleo fúsel por 1000 L de etanol, sendo utilizado como combustível nas caldeiras das usinas, bem como precursores de ésteres utilizados em indústrias de cosméticos e em fabricação de plásticos. O presente trabalho teve como objetivo desenvolver um sensor eletroquimico (GCE/RGO/AuNP/MIP) baseado em polímeros molecularmente impressos (MIP), utilizando o pirrol (Py) como monômero, contendo nanopartículas de ouro (AuNP) e óxido de grafeno reduzido (RGO) para a determinação do álcool isoamílico, um dos componentes do óleo fusel. Foram realizados estudos eletroquímicos, como estudo de velocidade de varredura, para determinar reversibilidade do sistema e diagnosticar o controle do processo eletródico. Após os estudos eletroquímicos, foram realizadas caracterização morfológica por Microscopia Eletrônica de Varredura com Canhão de Emissão de Eletrons com efeito de campo (MEV-FEG) e caracterização eletroquimica por Espectroscopia de Impedancia Eletroquímica (EIS). Após a caracterização, foi avaliada a performance analítica do sensor GCE/RGO/AuNP/MIP, utilizando um intervalo de concentração de 1,0×10-7 até 1,0×10-4 mol L-1, encontrando um limite de detecção de 8,2×10-8 mol L-1. Foi determinada a concentração de álcool isoamílico em amostra de óleo fúsel pelo método de adição de padrão e o valor encontrado foi de 1,6×10-4 mol L-1. O método foi validado através de ensaio de recuperação, mostrando que o sensor desenvolvido é promissor para a utilização em determinação de álcool isoamílico em óleo fúsel. / The fusel oil is co-product of the distillation of ethanol and is formed by the mixture of higher alcohols (alcohols having more than 3 carbons) esters, aldehydes, etc. The volume of fusel oil produced on average is 2.5 L fusel oil by 1000 L of ethanol, used as fuel in the boilers of the plants, as well as esters of precursors used in the cosmetics and plastics manufacturing. This study aimed to develop an electrochemical sensor (GCE/RGO/AuNP/MIP) based on molecularly imprinted polymers (MIP), using pyrrole (Py) as the monomer, containing gold nanoparticles (AUNP) and reduced graphene oxide (RGO) for determining the isoamyl alcohol, one of fusel oil components. They were conducted electrochemical studies, such as study of scanning speed, to determine system reversibility and diagnose the control of the electrode process. After the electrochemical studies were conducted morphological caractrização by Scanning Electron Microscopy with Electrons Emission Cannon with field effect (SEM-FEG) and electrochemical characterization by spectroscopy Electrochemical Impedance (EIS). After the characterization, the analytical performance of the GCE/RGO/AuNP/MIP sensor was evaluated using a concentration range of 1.0×10-7 to 1.0×10-4 mol L-1, encountering a detection limit 8.2×10-8 mol L-1. Was determined the concentration of isoamyl alcohol in a sample of fusel oil by standard addition method and the value found was 1.6×10-4 mol L-1. The method was validated by recovery test, showing that the sensor is designed promising for use in determining isoamyl alcohol fusel oil.
48

Desenvolvimento e aplicação de polímeros de impressão molecular em extração em fase sólida para determinação de fluoxetina em efluente

Bianchi, Viviane do Nascimento January 2017 (has links)
Orientadora: Profa Dra Elizabete Campos de Lima / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, 2017. / Nos efluentes, estão presentes as mais variadas misturas de fármacos, produtos de limpeza, de higiene, derivados de processos industriais, entre outros. Mesmo após o tratamento, estudos indicam que esses compostos podem continuar presentes, sendo despejados nos corpos hídricos, representando riscos para o ecossistema aquático, os quais só se tornam conhecidos após estudos científicos. Dentre essas substâncias, os fármacos são grandes representantes e a fluoxetina é um antidepressivo massivamente utilizado, capaz de promover alterações comportamentais em espécies aquáticas expostas a mesma concentração em que essa substância é encontrada em matrizes ambientais. Para controle de compostos considerados potencialmente nocivos ao ecossistema e à saúde humana, é indispensável conhecer suas concentrações em efluentes e corpos d'água. Contudo, esse tipo de matriz contém impurezas e compostos que não são de interesse, necessitando preparo de amostra para limpeza e pré-concentração do analito alvo. Nesse contexto, o objetivo deste trabalho foi desenvolver um polímero de impressão molecular para extração em fase sólida como preparo de amostra para determinação de fluoxetina em efluentes por cromatografia líquida acoplada a detector de arranjo de diodos, HPLC-DAD. Foram sintetizados polímeros de impressão molecular com ácido acrílico, ácido metacrílico e estireno como monômeros funcionais. Os rendimentos de síntese foram de 67,2% para estireno, 64,0% para ácido acrílico e 62,2% para ácido metacrílico. Foi avaliada a seletividade entre cafeína e fluoxetina, resultando em melhor afinidade do polímero com o antidepressivo. A adsorção ocorre como reação de pseudo segunda ordem, com melhor adsorção do polímero impresso do que o polímero não impresso. Ao aplicar a extração em fase sólida em efluente e analisá-lo pelo método HPLC-DAD desenvolvido e validado, o valor de recuperação do polímero molecularmente impresso (30,6%), apesar de estar abaixo do desejado, se mostrou bastante superior ao valor de recuperação do cartucho comercial C18 (2,1%). / In the sewage, there are the most varied mixtures of medicines, cleaning products, hygiene products, industrial processes derivatives, among others. Even after treatment, studies indicate that these compounds may remain in wastewater, being discharged into the water bodies, representing risks to the aquatic ecosystem, risks which only become known after scientific studies. Among these substances, the pharmaceuticals are great representatives and fluoxetine is a massively used antidepressant, capable of promoting behavioral changes in aquatic species exposed to the same concentration in which this substance is found in environmental matrices. For control of compounds considered potentially harmful to the ecosystem and to human health, it is indispensable to know their concentrations in effluents and water bodies. However, such matrix contains impurities and compounds that are not of interest, thus it is necessary some sample preparation for cleaning and preconcentration of the target analyte. In this context, the objective of this work was to develop a molecularly imprinted polymer for solid phase extraction as sample preparation for the determination of fluoxetine in effluents by liquid chromatography coupled to a diode arrangement detector, HPLC-DAD. Molecularly imprinted polymers were synthesized with acrylic acid, methacrylic acid and styrene as functional monomers. The yields of synthesis were 67.2% for styrene, 64.0% for acrylic acid and 62.2% for methacrylic acid. The selectivity between caffeine and fluoxetine was evaluated, resulting in better affinity of the polymer with the antidepressant. The adsorption occurs as a pseudo second order reaction, with better adsorption of the imprinted polymer than the non-imprinted polymer. By applying the solid phase extraction in effluent and analyzing it by the developed and validated HPLC-DAD method, the recovery value for the molecularly imprinted polymer (30.6%), although below the desired one, was shown to be much higher than the recovey value for commercial C18 cartridge (2.1%).
49

Oxidative desulfurization of fuel oils-catalytic oxidation and adsorptive removal of organosulfur compounds

Ogunlaja, Adeniyi Sunday January 2014 (has links)
The syntheses and evaluation of oxidovanadium(IV) complexes as catalysts for the oxidation of refractory organosulfur compounds in fuels is presented. The sulfones produced from the oxidation reaction were removed from fuel oils by employing molecularly imprinted polymers (MIPs). The oxidovanadium(IV) homogeneous catalyst, [V ͥ ͮ O(sal-HBPD)], as well as its heterogeneous polymer supported derivatives, poly[V ͥ ͮ O(sal-AHBPD)] and poly[V ͥ ͮ O(allylSB-co-EGDMA)], were synthesized and fully characterized by elemental analysis, FTIR, UV-Vis, XPS, AFM, SEM, BET and single crystal XRD for [V ͥ ͮ O(sal-HBPD)]. The MIPs were also characterized by elemental analysis, FTIR, SEM, EDX and BET. The catalyzed oxidation of fuel oil model sulfur compounds, thiophene (TH), benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT), was conducted under batch and continuous flow processes at 40°C by using tert-butylhydroperoxide (t-BuOOH) as oxidant. The continuous flow oxidation process presented the highest overall conversions and very high selectivity for sulfones. Maximum oxidation conversions of 71%, 89%, 99% and 88% was achieved for TH, BT, DBT and 4,6-DMDBT respectively when poly[V ͥ ͮ O(allylSB-co-EGDMA)] was employed at a flow-rate of 1 mL/h with over 90% sulfone selectivity. The process was further applied to the oxidation of hydro-treated diesel containing 385 ± 4.6 ppm of sulfur (mainly dibenzothiophene and dibenzothiophene derivatives), and this resulted to a high sulfur oxidation yield (> 99%), thus producing polar sulfones which are extractible by polar solid phase extractants. Adsorption of the polar sulfone compounds was carried-out by employing MIPs which were fabricated through the formation of recognition sites complementary to oxidized sulfur-containing compounds (sulfones) on electrospun polybenzimidazole (PBI) nanofibers, cross-linked chitosan microspheres and electrospun chitosan nanofibers. Adsorption of benzothiophene sulfone (BTO₂), dibenzothiophene sulfone (DBTO₂) and 4,6-dimethyldibenzothiophene sulfone (4,6-DMDBTO₂) on the various molecularly imprinted adsorbents presented a Freundlich (multi-layered) adsorption isotherm which indicated interaction of adsorbed organosulfur compounds. Maximum adsorption observed for BTO₂, DBTO₂ and 4,6-DMDBTO₂ respectively was 8.5 ± 0.6 mg/g, 7.0 ± 0.5 mg/g and 6.6 ± 0.7 mg/g when imprinted chitosan nanofibers were employed, 4.9 ± 0.5 mg/g, 4.2 ± 0.7 mg/g and 3.9 ± 0.6 mg/g on molecularly imprinted chitosan microspheres, and 28.5 ± 0.4 mg/g, 29.8 ± 2.2 mg/g and 20.1 ± 1.4 mg/g on molecularly imprinted PBI nanofibers. Application of electrospun chitosan nanofibers on oxidized hydro-treated diesel presented a sulfur removal capacity of 84%, leaving 62 ± 3.2 ppm S in the fuel, while imprinted PBI electrospun nanofibers displayed excellent sulfur removal, keeping sulfur in the fuel after the oxidation/adsorption below the determined limit of detection (LOD), which is 2.4 ppm S. The high level of sulfur removal displayed by imprinted PBI nanofibers was ascribed to hydrogen bonding effects, and π-π stacking between aromatic sulfone compounds and the benzimidazole ring which were confirmed by chemical modelling with density functional theory (DFT) as well as the imprinting effect. The home-made pressurized hot water extraction (PHWE) system was applied for extraction/desorption of sulfone compounds adsorbed on the PBI nanofibers at a flow rate of 1 mL/min and at 150°C with an applied pressure of 30 bars. Application of molecularly imprinted PBI nanofibers for the desulfurization of oxidized hydro-treated fuel showed potential for use in refining industries to reach ultra-low sulfur fuel level, which falls below the 10 ppm sulfur limit which is mandated by the environmental protection agency (EPA) from 2015.
50

Molekulově imprintované polymery jako rekogniční elementy pro stanovení markerů onemocnění / Molecularly imprinted polymers as recognition elements for the determination of disease markers

Vodová, Milada January 2021 (has links)
The diploma thesis is focused on the preparation and optimization of molecularly imprinted polymers (MIP) selective for chymotrypsinogen A as well as on the use of these MIP as recognition entities in the sensor. MIP was prepared by suspension polymerization using a mixture of functional methacrylate-based monomers. Prepared MIP was optimized (e.g. binding properties, selectivity and isolation of chymotrypsinogen from a complex matrix of human breath) by capillary electrophoresis with fluorescence detection ( = 532 nm). Finally, the combination of MIP with quartz microbalances was demonstrated as a promising sensor for the detection of proteins from human breath condensate.

Page generated in 0.0801 seconds