Spelling suggestions: "subject:"integrals"" "subject:"ntegrals""
281 |
Numerical evaluation of Mellin-Barnes integrals in Minkowskian regions and their application to two-loop bosonic electroweak contributions to the weak mixing angle of the Zbb(bar)-vertexUsovitsch, Johann 24 October 2018 (has links)
In der Z-Boson-Resonanzphysik sind mehrere Präzisionsobservablen in einem perfekten Zustand, bei dem die theoretische Unsicherheit niedriger ist als die gegenwärtige experimentelle Unsicherheit.
Das Konzept für den zukünftigen Teilchenbeschleuniger Future Circular Collider (FCC), will eine Verbesserung der Messungen für die Präzisionsobservablen um ein bis zwei signifikante Stellen erreichen.
Damit werden die Vorhersagen des elektroschwachen Standardmodells in eine Situation versetzt, in der vollständige Zweischleifenkorrekturen zusammen mit den führenden Dreischleifenkorrekturen obligatorisch werden.
2016 wurden die vollständigen Zweischleifenkorrekturen für den effektiven schwachen Mischungswinkel für die bottom Quarks sin^2/theta/^b_eff berechnet, indem die fehlenden bosonischen Zweischleifenkorrekturen bereitgestellt wurden.
Dabei liegt die Schwierigkeit in der Berechnung der entsprechenden Zwei-Schleifen Vertex-Feynman-Integrale, die mehrere massive Teilchen einschließen.
Gegenwärtig ist die analytische Rechnung der meisten dieser Integrale schwierig und deswegen werden rein numerische Techniken, mittels Sektorzerlegungsansatz und der Integralansatz nach Mellin-Barnes, angewandt.
Es war bis vor kurzem nicht bekannt, wie Mellin-Barnes-Integraldarstellungen in den minkowskischen Integrationsgebieten numerisch behandelt werden können.
Um dieses Problem anzugehen, stellen wir eine Vielzahl von ein- und mehrdimensionaler Techniken vor, die ein Teil des neuen Programms MBnumerics.m sind, welches in dieser Dissertation entwickelt wurde.
Der Sektorzerlegungsansatz und der Integralansatz nach Mellin-Barnes sind zusammen ausreichend, um elektroschwache Zweischleifenkorrekturen für die Präzisionsobservablen der Annihilation von e^+e^- in zwei Fermionen in der Z-Bosonresonanz auszurechnen.
Aktuell führt dies zu der genauesten Vorhersage für den effektiven elektroschwachen Mischungswinkel für bottom Quarks sin^2/theta/^b_eff = 0.232312. / In the Z-boson resonance physics several precision observables are in a perfect state, where the theory uncertainty is lower than the present experimental uncertainty.
The ambitious concepts for the future collider, Future Circular Collider (FCC), aim for an improvement of measurements for the precision observables by one to two significant digits.
This will put the Electroweak Standard Model predictions in a situation where complete two-loop corrections together with the leading three-loop corrections will become mandatory.
The complete two-loop corrections for effective weak mixing angle for bottom quarks sin^2/theta/^b_eff were reported recently, by providing the missing bosonic two-loop corrections.
The difficult task in this computation is the calculation of the corresponding two-loop vertex Feynman integrals which include several massive particles.
At present the analytic evaluation for most of these integrals is out of reach and purely numerical techniques were applied.
Only two methods, sector decomposition approach and the Mellin-Barnes integral approach, are known to extract infrared and ultraviolet singularities in a systematic way for a general Feynman integral with fully automatized algorithms.
It was not known until recently how to treat Mellin-Barnes integral representations in Minkowskian regions numerically. To address this problem we introduce and discuss in detail a variety of one- and multi-dimensional techniques, which are part of a new program MBnumerics.m developed in this thesis work.
Two techniques, sector decomposition and Mellin-Barnes integral approach, are together sufficient to treat electroweak two-loop corrections to the precision observables for the e^+e^- annihilation into two fermions at the Z-boson resonance.
This leads to the most precise prediction at present for the effective weak mixing angle for bottom quarks: sin^2/theta/^b_eff=0.232312.
|
282 |
Análise de problemas de trincas em materiais anisotrópicos usando o método dos elementos finitos: abordagem pela integral Jk / Analysis of crack problems in anisotropic materials based on the finite element method: using the integral Jk approachNeilor Cesar dos Santos 17 February 2006 (has links)
Apresenta-se um estudo, por meio do método dos elementos finitos, de problemas quase-estáticos de trincas em materiais anisotrópicos. Os fatores de intensidade de tensão em modo misto de carregamento foram determinados utilizando-se as metodologias da integral Jk, da correlação dos deslocamentos e da integral de fechamento de trinca modificada. Para a integral Jk, foi desenvolvida uma formulação baseada nas leis da conservação da elasto-estática e das integrais independentes do percurso. Na expressão, para a integral J2 levou-se em consideração o termo não singular da representação analítica do campo de tensões. Desta forma, foi obtida uma expressão analítica para a descontinuidade na densidade de energia de deformação, presente na integral J2. Com os valores da integral Jk, os fatores de intensidade de tensão puderam ser determinados diretamente. Com a mesma sistemática, desenvolvida para a integral J2, determinou-se a integral J1 para problemas envolvendo carregamento nas faces da trinca. Os resultados obtidos estão de acordo com os resultados presentes na literatura considerando ortotropia de material, ainda que para algumas configurações o mesmo é tratado como um caso de anisotropia geral. Assim como a integral J1 a integral J2 mostrou-se independente do contorno envolvendo a ponta da trinca. / A study is proposed based on crack quasi-static problems in anisotropic materials by the finite element method. The mixed-mode stress intensity factors were determined by the Jk integral, displacement correlation and modified crack closure integral methodologies. The Jk integral was derived from a conservation law of linear elasticity theory. In the formulation to obtain the J2 integral the non-singular term in the stress fields was considered. An analytical expression was obtained to discontinuity of the strain energy density in the crack faces, presented by J2 integral. A similar approach was applied to determine J1 integral in crack surface traction problems. The results confer with the results present in the literature considering orthotropic materials. In some configurations the problem is treated from general anisotropy theory. In the same way that J1 integral the path-independence property was established to J2 integral.
|
283 |
Análise de problemas de trincas em materiais anisotrópicos usando o método dos elementos finitos: abordagem pela integral Jk / Analysis of crack problems in anisotropic materials based on the finite element method: using the integral Jk approachSantos, Neilor Cesar dos 17 February 2006 (has links)
Apresenta-se um estudo, por meio do método dos elementos finitos, de problemas quase-estáticos de trincas em materiais anisotrópicos. Os fatores de intensidade de tensão em modo misto de carregamento foram determinados utilizando-se as metodologias da integral Jk, da correlação dos deslocamentos e da integral de fechamento de trinca modificada. Para a integral Jk, foi desenvolvida uma formulação baseada nas leis da conservação da elasto-estática e das integrais independentes do percurso. Na expressão, para a integral J2 levou-se em consideração o termo não singular da representação analítica do campo de tensões. Desta forma, foi obtida uma expressão analítica para a descontinuidade na densidade de energia de deformação, presente na integral J2. Com os valores da integral Jk, os fatores de intensidade de tensão puderam ser determinados diretamente. Com a mesma sistemática, desenvolvida para a integral J2, determinou-se a integral J1 para problemas envolvendo carregamento nas faces da trinca. Os resultados obtidos estão de acordo com os resultados presentes na literatura considerando ortotropia de material, ainda que para algumas configurações o mesmo é tratado como um caso de anisotropia geral. Assim como a integral J1 a integral J2 mostrou-se independente do contorno envolvendo a ponta da trinca. / A study is proposed based on crack quasi-static problems in anisotropic materials by the finite element method. The mixed-mode stress intensity factors were determined by the Jk integral, displacement correlation and modified crack closure integral methodologies. The Jk integral was derived from a conservation law of linear elasticity theory. In the formulation to obtain the J2 integral the non-singular term in the stress fields was considered. An analytical expression was obtained to discontinuity of the strain energy density in the crack faces, presented by J2 integral. A similar approach was applied to determine J1 integral in crack surface traction problems. The results confer with the results present in the literature considering orthotropic materials. In some configurations the problem is treated from general anisotropy theory. In the same way that J1 integral the path-independence property was established to J2 integral.
|
284 |
Computer-aided Computation of Abelian integrals and Robust Normal FormsJohnson, Tomas January 2009 (has links)
This PhD thesis consists of a summary and seven papers, where various applications of auto-validated computations are studied. In the first paper we describe a rigorous method to determine unknown parameters in a system of ordinary differential equations from measured data with known bounds on the noise of the measurements. Papers II, III, IV, and V are concerned with Abelian integrals. In Paper II, we construct an auto-validated algorithm to compute Abelian integrals. In Paper III we investigate, via an example, how one can use this algorithm to determine the possible configurations of limit cycles that can bifurcate from a given Hamiltonian vector field. In Paper IV we construct an example of a perturbation of degree five of a Hamiltonian vector field of degree five, with 27 limit cycles, and in Paper V we construct an example of a perturbation of degree seven of a Hamiltonian vector field of degree seven, with 53 limit cycles. These are new lower bounds for the maximum number of limit cycles that can bifurcate from a Hamiltonian vector field for those degrees. In Papers VI, and VII, we study a certain kind of normal form for real hyperbolic saddles, which is numerically robust. In Paper VI we describe an algorithm how to automatically compute these normal forms in the planar case. In Paper VII we use the properties of the normal form to compute local invariant manifolds in a neighbourhood of the saddle.
|
285 |
Hierarchische Integration und der Strahlungstransport in streuenden MedienMeszmer, Peter 07 November 2012 (has links) (PDF)
Der Strahlungstransport stellt eine von drei Arten des Wärmetransports zwischen Gebieten unterschiedlicher Temperatur dar. Eine der einfachsten Formen bildet der Strahlungstransport im Vakuum, ein Vorgang, der im kosmischen Umfeld, beispielsweise bei der Energieübertragung von einem Stern auf seine Planeten, beobachtbar ist. Hierbei ist es hinreichend, sich auf die Betrachtung von Oberflächen zu beschränken. Strahlungstransport kann jedoch auch in semitransparenten Medien, wie biologischem Gewebe oder Glas, beobachtet werden. Das Medium, in dem der Strahlungstransport erfolgt, wirkt sich durch Vorgänge wie Absorption, Emission, Reflexion oder Streuung auf den Strahlungstransport aus. Für die Modellierung des Strahlungstransports in einem solchen Umfeld können verschiedene Modelle, darunter das Strahlenmodell, genutzt werden. Dieses Modell beschreibt den Wärmetransport anhand einer skalaren Größe, die Strahlungsintensität genannt wird. Betrachtet wird die Strahlungsintensität in diesem Modell entlang eines Strahls in eine vorgegebene Richtung. Die mathematische Darstellung des Strahlenmodells des Strahlungstransports in partizipierenden Medien führt auf eine richtungsabhängige Integro-Differentialgleichung. Ist die Richtungsabhängigkeit nicht von Interesse, so kann der Übergang zu einer winkelintegrierten Form erfolgen. Dieser Übergang führt schließlich auf ein System schwach singulärer fredholmscher Integralgleichungen zweiter Art. Dieses charakterisiert nun nicht mehr die erwähnte Strahlungsintensität, sondern beschreibt die sogenannte Einstrahlung sowie den Strahlungsfluss.
Das System singulärer Integralgleichungen kann mittels eines Galerkin-Ansatzes numerisch gelöst werden. Geht man von einer hinreichenden Glattheit des Randes aus, kann die Kompaktheit des Operators der Integralgleichungen gezeigt werden. Dies wiederum erlaubt Rückschlüsse auf die Existenz und Eindeutigkeit einer Lösung.
Ein Augenmerk bei der Ermittlung der Galerkin-Näherung ist auf die Bestimmung der singulären Integrale der Galerkin-Diskretisierung zu richten. Für die Bestimmung multidimensionaler, singulärer Integrale stellt die Arbeit das Verfahren der hierarchischen Integration vor. Basierend auf einer Zerlegung des Integrationsgebietes, erfolgt die Beschreibung singulärer Integrale durch ein Gleichungssystem, dessen rechte Seite nur von regulären Integralen abhängig ist. Können diese regulären Integrale sowie die Lösung des Gleichungssystems exakt bestimmt werden, so sind auch die singulären Integrale exakt bestimmt. Bei einer numerischen Bestimmung der regulären Integrale ist die Fehlerordnung ausschlaggebend für den Fehler der singulären Integrale. Als Integrationsgebiete werden Hyperwürfel beliebiger Dimension sowie Simplizes bis einschließlich Dimension 3 als Integrationsgebiete betrachtet. Als Voraussetzungen an den Kern des Doppelintegrals sind nur die Eigenschaften der Translationsinvarianz sowie der Homogenität zu richten. Kann ein nicht translationsinvarianter oder nicht homogener Kern eines Integrals in Summanden zerlegt werden, die selbst translationsinvariant und homogen sind, ist auch die Bestimmung solcher Integrale möglich. Darüber hinaus stellt die Arbeit Verbindungen zu dem Begriff des Hadamard partie finie her. Auf diese Weise lässt sich das Verfahren der hierarchischen Integration für beliebige Dimensionen und beliebige Singularitätsordnungen anwenden.
Die Strahlungstransportgleichung ist im Allgemeinen mittels eines Galerkin-Ansatzes lösbar, führt jedoch auf eine voll besetzte Systemmatrix. Numerische Beispiele beleuchten daher Methoden der Matrixkompression mittels hierarchischer Matrizen sowie der direkten Erzeugung schwach besetzter Matrizen über regulären Gittern und Gittern mit hängenden Knoten und skizziert Ansätze zur Parallelisierung auf entsprechenden Computersystemen.
|
286 |
Multiscale description of dynamical processes in magnetic media : from atomistic models to mesoscopic stochastic processes / Simulation multi-échelle des processus dynamiques dans les milieux magnétiques : depuis une modélisation atomistique vers la simulation de processsus mésoscopiques stochastiquesTranchida, Julien 01 December 2016 (has links)
Les propriétés magnétiques détaillées des solides peuvent être vu comme le résultat de l'interaction de plusieurs sous-systèmes: celui des spins effectifs, portant l'aimantation, celui des électrons et celui du réseau crystallin. Différents processus permettent à ces sous-systèmes d'échanger de l'énergie. Parmis ceux-ci, les phénomènes de relaxation jouent un rôle prépondérants. Cependant, la complexité de ces processus en rend leur modélisation ardue. Afin de prendre en compte ces interactions de façon abordable aux calculs, l'approche de Langevin est depuis longtemps appliquée à la dynamique d'aimantation, qui peut être vue comme la réponse collective des spins. Elle consiste à modéliser les interactions entre les trois sous-systèmes par des interactions effectives entre le sous-système d'intérêt, les spins, et un bain thermique, dont seulement la densité de probabilité constituerait une quantité pertinente. Après avoir présenté cette approche, nous verrons en quoi elle permet de bâtir une dynamique atomique de spin. Une fois son implémentation détaillée, cette méthodologie sera appliquée à un exemple tiré de la littérature et basé sur le superparamagnétisme de nanoaimants de fer. / Detailed magnetic properties of solids can be regarded as the result of the interaction between three subsystems: the effective spins, that will be our focus in this thesis, the electrons and the crystalline lattice. These three subsystems exchange energy, in many ways, in particular, through relaxation processes. The nature of these processes remains extremely hard to understand, and even harder to simulate. A practical approach, for performing such simulations, involves adapting the description of random processes by Langevin to the collective dynamics of the spins, usually called the magnetization dynamics. It consists in describing the, complicated, interactions between the subsystems, by the effective interactions of the subsystem of interest, the spins, and a thermal bath, whose probability density is only of relevance. This approach allows us to interpret the results of atomistic spin dynamics simulations in appropriate macroscopic terms. After presenting the numerical implementation of this methodology, a typical study of a magnetic device based on superparamagnetic iron monolayers is presented, as an example. The results are compared to experimental data and allow us to validate the atomistic spin dynamics simulations.
|
287 |
Méthode d'éléments finis d'ordre élevé et d'équations intégrales pour la résolution de problème de furtivité radar d'objets à symétrie de révolution / High order finite element methods and integral equations to solve scattering problems by axisymmetric bodiesCambon, Sebastien 02 July 2012 (has links)
Dans ce travail de thèse, nous nous sommes intéressés à la modélisation des phénomènes de diffraction d’ondes électromagnétiques par des objets à symétrie de révolution complexes et fortement hétérogènes. La méthode que nous développons ici consiste en un couplage entre équations aux dérivées partielles (EDP) et équations intégrales (EI). Cette idée est essentiellement connue pour avoir deux avantages. Le premier est que les hétérogénéités de l’objet sont prises en compte naturellement dans la formulation du problème. Le deuxième est dû à l’utilisation des équations intégrales qui donnent une représentation exacte des solutions dans le milieu extérieur en fonction des courants surfaciques. Le domaine de simulation peut ainsi être ramené à l’objet lui-même. L’utilisation de développements en séries de Fourier combinés à la propriété d’invariance par rotation de l’objet permet alors la réduction du problème global 3D à un ensemble dénombrable de problème 2D.L’étude de ces problèmes nous a conduit à décomposer notre analyse en plusieurs parties,chacune ayant à traiter une partie du problème complet ou les méthodes d’intégrations numériques. Ces dernières étant difficiles à réaliser dans le cas des équations intégrales.Nous avons tout d’abord étudié un problème de Maxwell intérieur pour lequel nous avons développé une nouvelle méthode d’éléments finis d’ordre élevé dont nous avons montré l’efficacité et la précision sur de multiples exemples. Puis, nous avons étudié le problème de diffraction d’ondes planes pour des objets parfaitement conducteurs. La méthode d’éléments finis de frontière employée est alors construite par extension de la méthode précédente via l’opérateur de trace tangentielle. En combinant ces deux études, nous avons résolu le problème couplé en introduisant la propriété de symétrie de révolution dans une formulation variationnelle bien choisie. Par construction, les éléments finis qui y sont utilisés sont alors naturellement adaptées. L’algorithme de parallélisation de la méthode de couplage est finalement présentée et des comparaisons entre notre code AxiMax et un code 3D sont illustrées. Dans tous les cas, nous montrons que la méthode d’éléments finis d’ordre élevé permet d’obtenir des résultats d’une grande précision en fonction de la qualité des paramètres de simulation. / In this thesis, we are interested in modeling diffraction of electromagnetic waves by axisymmetric and highly heterogeneous objects. Our method consists in a coupling between partial differential equations and integral equations. This idea is mainly interesting for two reasons : heterogeneities are handled naturally in the formulation and integral equations give an analytical representation of solutions outside the object based on surface currents.These advantages allow us to limit the domain of simulation to the object itself. In addition,using Fourier series combined with the rotational invariance property of the object, the 3D problem is reduced to a countable set of 2D problems. The study of these problems is split into several parts. Each part has to deal with aspecific problem as for example the numerical integration of singular integrals which is difficult to achieve. As a first step, we study time-harmonic Maxwell’s equations in a bounded domain for which we develop a new high-order finite element method and present its efficiency and accuracy on many examples. Secondly, we consider the diffraction of plane waves by perfect electric conductors to analyse integral equations for these kind of object.The boundary finite element method applied is defined by extension of the previous one via tangential trace operator. Then, we solve the coupled problem using a well chosen formulation based on the previous studies for which our finite element method is naturally adapted by construction. In order to evaluate its efficiency, a comparison is performed between our program « AxiMax » and one based on a purely 3D model. To conclude, in the last two chapters, we present the numerical integration method and the multi-processing algorithm developed in AxiMax. In all cases, we put forward the fact that our finite element method provides accurate results depending on the quality of the simulation parameters.
|
288 |
Métodos numéricos euleriano-lagrangeanos para leis de conservação / Eulerian-lagrangina numeric methods for conservation lawsSebastián Mancuso 30 April 2008 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho apresenta uma família de novos métodos numéricos euleriano-lagrangeanos localmente conservativos para leis de conservação hiperbólicas escalares. Estes métodos não utilizam soluções analíticas de problemas de Riemann e são bastante precisos na captura de saltos nas soluções. Estes métodos foram introduzidos, implementados computacionalmente e testados para leis de conservação em uma e duas dimensões espaciais. Foram consideradas as equações de Burgers e Buckley-Leverett. Nossos experimentos numéricos indicaram que os métodos são pouco difusivos e que as soluções não apresentam oscilações espúrias.
|
289 |
Métodos numéricos euleriano-lagrangeanos para leis de conservação / Eulerian-lagrangina numeric methods for conservation lawsSebastián Mancuso 30 April 2008 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho apresenta uma família de novos métodos numéricos euleriano-lagrangeanos localmente conservativos para leis de conservação hiperbólicas escalares. Estes métodos não utilizam soluções analíticas de problemas de Riemann e são bastante precisos na captura de saltos nas soluções. Estes métodos foram introduzidos, implementados computacionalmente e testados para leis de conservação em uma e duas dimensões espaciais. Foram consideradas as equações de Burgers e Buckley-Leverett. Nossos experimentos numéricos indicaram que os métodos são pouco difusivos e que as soluções não apresentam oscilações espúrias.
|
290 |
Stark-Heegner points and p-adic L-functions / Points de Stark-Heegner et fonctions L p-adiquesCasazza, Daniele 28 October 2016 (has links)
Soit K|Q un corps de nombres et soit ζK(s) sa fonction L complexe associée. La formule analytique du nombre de classes fournit un lien entre les valeurs spéciales de ζK(s) et les invariants du corps K. Elle admet une version Galois-équivariante. On a un schema similaire pour les courbes elliptiques. Soit E/Q une courbe elliptique et soit L(E/Q, s) sa fonction L complexe associée. La conjecture de Birch et Swinnerton-Dyer prédit un lien entre le comportement de L(E/Q, s) au point s = 1 et la structure des solutions rationnelles de l’équation definie par E. Comme la formule analytique du nombre de classes, la conjecture de Birch et Swinnerton-Dyer admet une version équivariante. La conjecture de Stark elliptique formulée par H. Darmon, A. Lauder et V. Rotger propose un analogue p-adique de la conjecture de Birch et Swinnerton-Dyer équivariante, qui nécessite certaines hypothèses. Dans leur article, les auteurs formulent la conjecture et donnent une démonstration dans certains cas où E a bonne réduction en p. Pour cela, ils utilisent la méthode de Garrett-Hida qui conduit à une factorisation de fonctions L p-adiques. Dans cette thèse on se concentre sur la conjecture de Stark elliptique et l’on montre comme il est possible d’étendre le résultat de Darmon, Lauder et Rotger. Dans le cas où E a bonne réduction en p on peut étendre le résultat en utilisant la méthode de Hida- Rankin. Cette méthode nous donne un contrôle meilleur sur les constantes apparaissant dans les formules et nous amène à une formule explicite contenant les invariants de la courbe elliptique. Pour obtenir le résultat on adapte la preuve du théorème principal de Darmon, Lauder et Rotger à notre cas et on utilise une formule p-adique de Gross et Zagier qui relie les valeurs spéciales de la fonction L padique de Bertolini-Darmon-Prasanna et les points de Heegner. Ensuite on voit comment étendre notre résultat et celui de Darmon-Lauder-Rotger au cas où E a réduction multiplicative en p. Dans ce cadre, on ne peut pas utiliser la fonction L p-adique de Bertolini-Darmon-Prasanna en raison de problèmes techniques. Pour éliminer cette difficulté on consid`ere la fonction L p-adique de Castellà. On utilise aussi la méthode de Garrett-Hida ainsi que la méthode d’Hida-Rankin et l’on obtient des résultats similaires aux cas de bonne réduction. / Let K|Q be a number field and let ζK(s) be its associated complex L-function. The analytic class number formula relates special values of ζK(s) with algebraic invariants of the field K itself. It admits a Galois equivariant refinement known as Stark conjectures. We have a very similar picture in the case of elliptic curves. Let E/Q be an elliptic curve and let L(E/Q, s) be its associated complex L-function. The conjecture of Birch and Swinnerton-Dyer relates the behaviour of L(E/Q, s) at s = 1 to the structure of rational solutions of the equation defined by E. The equivariant Birch and Swinnerton- Dyer conjecture is obtained including in the picture the action of Galois groups. The elliptic Stark conjecture formulated by H. Darmon, A. Lauder and V. Rotger purposes a p-adic analogue of the equivariant Birch and Swinnerton-Dyer conjecture, under several assumption. In their paper, the authors formulate the conjecture and prove it in some cases of good reduction of E at p using Garrett-Hida method and performing a factorization of p-adic L-functions. In this dissertation we focus on the elliptic Stark conjecture and we show how it is possible to extend the result of Darmon, Lauder and Rotger. In the case of good reduction of E at p we can slightly extend the result using Hida- Rankin method. This method also gives us a better control of the constants appearing in the result, thus yielding an explicit formula which contains invariants associated with the elliptic curve. To achieve the proof we mimic the main result of Darmon, Lauder and Rotger in our setting and we make use of a p-adic Gross-Zagier formula which relates special values of the Bertolini-Darmon-Prasanna p-adic L-function to Heegner points. In a second moment we extend both our result and Darmon-Lauder-Rotger result to the case of multi- plicative reduction of E at p. In this setting we cannot use Bertolini- Darmon Prasanna p-adic L-function due to some technical reasons. In order to avoid the problem we consider Castellà’s two variables p-adic L-function. We use both Garrett-Hida method and Hida-Rankin method. In the two cases we obtain formulae which are similar to those of the good reduction setting.
|
Page generated in 0.0727 seconds