Spelling suggestions: "subject:"invertible"" "subject:"onvertible""
21 |
Hyperholomorphic structures and corresponding explicit orthogonal function systems in 3D and 4DLe, Thu Hoai 20 June 2014 (has links)
Die Reichhaltigkeit und breite Anwendbarkeit der Theorie der holomorphen Funktionen in der komplexen Ebene ist stark motivierend eine ähnliche Theorie für höhere Dimensionen zu entwickeln. Viele Forscher waren und sind in diese Aufgaben involviert, insbesondere in der Entwicklung der Quaternionenanalysis. In den letzten Jahren wurde die Quaternionenanalysis bereits erfolgreich auf eine Vielzahl von Problemen der mathematischen Physik angewandt.
Das Ziel der Dissertation besteht darin, holomorphe Strukturen in höheren Dimensionen zu studieren. Zunächst wird ein neues Holomorphiekonzept vorgelegt, was auf der Theorie rechtsinvertierbarer Operatoren basiert und nicht auf Verallgemeinerungen des Cauchy-Riemann-Systems wie üblich. Dieser Begriff umfasst die meisten der gut bekannten holomorphen Strukturen in höheren Dimensionen. Unter anderem sind die üblichen Modelle für reelle und komplexe quaternionenwertige Funktionen sowie Clifford-algebra-wertige Funktionen enthalten. Außerdem werden holomorphe Funktionen mittels einer geeignete Formel vom Taylor-Typ durch spezielle Funktionen lokal approximiert.
Um globale Approximationen für holomorphe Funktionen zu erhalten, werden im zweiten Teil der Arbeit verschiedene Systeme holomorpher Basisfunktionen in drei und vier Dimensionen mittels geeigneter Fourier-Entwicklungen explizit konstruiert. Das Konzept der Holomorphie ist verbunden mit der Lösung verallgemeinerter Cauchy-Riemann Systeme, deren Funktionswerte reellen Quaternionen bzw. reduzierte Quaternionen sind. In expliziter Form werden orthogonale holomorphe Funktionensysteme konstruiert, die Lösungen des Riesz-Systems bzw. des Moisil-Teodorescu Systems über zylindrischen Gebieten im R3, sowie Lösungen des Riesz-Systems in Kugeln des R4 sind. Um konkrete Anwendungen auf Randwertprobleme realisieren zu können wird eine orthogonale Zerlegung eines Rechts-Quasi-Hilbert-Moduls komplex-quaternionischer Funktionen unter gegebenen Bedingungen studiert. Die Ergebnisse werden auf die Behandlung von Maxwell-Gleichungen mit zeitvariabler elektrischer Dielektrizitätskonstante und magnetischer Permeabilität angewandt. / The richness and widely applicability of the theory of holomorphic functions in complex analysis requires to perform a similar theory in higher dimensions. It has been developed by many researchers so far, especially in quaternionic analysis. Over the last years, it has been successfully applied to a vast array of problems in mathematical physics.
The aim of this thesis is to study the structure of holomorphy in higher dimensions. First, a new concept of holomorphy is introduced based on the theory of right invertible operators, and not by means of an analogue of the Cauchy-Riemann operator as usual. This notion covers most of the well-known holomorphic structures in higher dimensions including real, complex, quaternionic, Clifford analysis, among others. In addition, from our operators a local approximation of a holomorphic function is attained by the Taylor type formula.
In order to obtain the global approximation for holomorphic functions, the second part of the thesis deals with the construction of different systems of basis holomorphic functions in three and four dimensions by means of Fourier analysis. The concept of holomorphy is related to the null-solutions of generalized Cauchy-Riemann systems, which take either values in the reduced quaternions or real quaternions. We obtain several explicit orthogonal holomorphic function systems: solutions to the Riesz and Moisil-Teodorescu systems over cylindrical domains in R3, and solutions to the Riesz system over spherical domains in R4. Having in mind concrete applications to boundary value problems, we investigate an orthogonal decomposition of complex-quaternionic functions over a right quasi-Hilbert module under given conditions. It is then applied to the treatment of Maxwell’s equations with electric permittivity and magnetic permeability depending on the time variable.
|
22 |
Evaluation of Target Tracking Using Multiple Sensors and Non-Causal AlgorithmsVestin, Albin, Strandberg, Gustav January 2019 (has links)
Today, the main research field for the automotive industry is to find solutions for active safety. In order to perceive the surrounding environment, tracking nearby traffic objects plays an important role. Validation of the tracking performance is often done in staged traffic scenarios, where additional sensors, mounted on the vehicles, are used to obtain their true positions and velocities. The difficulty of evaluating the tracking performance complicates its development. An alternative approach studied in this thesis, is to record sequences and use non-causal algorithms, such as smoothing, instead of filtering to estimate the true target states. With this method, validation data for online, causal, target tracking algorithms can be obtained for all traffic scenarios without the need of extra sensors. We investigate how non-causal algorithms affects the target tracking performance using multiple sensors and dynamic models of different complexity. This is done to evaluate real-time methods against estimates obtained from non-causal filtering. Two different measurement units, a monocular camera and a LIDAR sensor, and two dynamic models are evaluated and compared using both causal and non-causal methods. The system is tested in two single object scenarios where ground truth is available and in three multi object scenarios without ground truth. Results from the two single object scenarios shows that tracking using only a monocular camera performs poorly since it is unable to measure the distance to objects. Here, a complementary LIDAR sensor improves the tracking performance significantly. The dynamic models are shown to have a small impact on the tracking performance, while the non-causal application gives a distinct improvement when tracking objects at large distances. Since the sequence can be reversed, the non-causal estimates are propagated from more certain states when the target is closer to the ego vehicle. For multiple object tracking, we find that correct associations between measurements and tracks are crucial for improving the tracking performance with non-causal algorithms.
|
Page generated in 0.0398 seconds