Spelling suggestions: "subject:"epsilon"" "subject:"kepsilon""
11 |
Numerical Study on Hydrodynamic Characteristics of Flood Discharge Tunnel in Zipingpu Water Conservancy Project : Using RANS equations and the VOF modelHamberg, Micaela, Dahlin, Signe January 2019 (has links)
To avoid the large amount of damage that floods can cause, spillway tunnels are used to control water levels. To ensure the safety of water transportation through spillway tunnels, the behaviour of the water throughout the tunnel is important to know. Physical experiments are time consuming and expensive, hence CFD simulations are a profitable option for investigating the performance of the spillway tunnel. In this project, simulations of water flow in a spillway tunnel were executed. A three dimensional model of the spillway tunnel in Zipingpu Water Conservancy Project was created in the software ANSYS Gambit. A coarse, middle and fine mesh with both hexahedral- and tetrahedral elements were also created for the model in ANSYS Gambit. The meshes were imported to ANSYS Fluent where the simulations, and a convergence analysis were made. The water flow was set to be described by the Reynolds-Averaged Navier-Stokes model, using the pressure solver, k-epsilon model and the VOF model. Physical experiments had previously been performed, and the simulated results were compared to these, in an attempt to find the parameters to replicate the experimental results to the greatest extent possible. The inlet velocity of the tunnel was known and the inlet boundary was set as a velocity inlet. The ceiling of the tunnel was set as a pressure inlet, the floor and walls were set as wall, and the outlet was set as pressure outlet. The simulated results showed similar behavior as the experimental results, but all differed from the experimental results. The grid convergence index, estimating the results' dependency on the mesh was 6.044 %. The flow was analyzed, and where the flow had unfavorable characteristics, such as a high cavitation number, the geometry of the spillway was altered in ANSYS Gambit to investigate if an improved geometry for the spillway tunnel could be found. The water flow in the revised geometry was simulated in ANSYS Fluent, and results showing flow with lower cavitation numbers was found.
|
12 |
Simulação numérica do escoamento turbulento em bomba ejetora.Glauber Cruz 17 October 2006 (has links)
As bombas ejetoras são dispositivos apropriados para aspirar e bombear um fluido que pode ser líquido, gás ou vapor ou uma mistura bifásica. Tais dispositivos são caracterizados pela troca da energia cinética de uma corrente de fluido primária com a uma corrente de fluido secundária em uma câmara de mistura. Devido à simplicidade na estrutura, na ausência de partes móveis e na conveniência da manutenção, bombas ejetoras têm sido usadas extensivamente em muitos campos da Engenharia para várias finalidades. Bombas ejetoras são usadas principalmente em atividades como: bombeamento ou sucção de fluidos, dragas, bombeamento de produtos químicos, transporte de partículas sólidas grandes ou até mesmos produtos alimentícios. Uma bomba ejetora é geometricamente simples consistindo de 4 componentes principais: um bocal, câmara de sucção, garganta misturadora e difusor. Nesta dissertação, a ferramenta de Dinâmica dos Fluidos Computacional (DFC) foi utilizada para calcular o escoamento tridimensional no interior de uma bomba ejetora com dados geométricos e de desempenho disponíveis na literatura com o objetivo principal de avaliar a qualidade dos resultados obtidos. Para tanto as equações de conservação da massa, 2 Lei de Newton, conservação de energia e para o modelo de turbulência k- foram resolvidas utilizando o método de volumes finitos com um algoritmo segregado para o acoplamento dos campos de velocidade e pressão. Para obtenção da solução foi utilizado o código comercial Fluent versão 6.3.17. Os resultados numéricos obtidos para eficiência da bomba ejetora foram comparados com resultados experimentais e com os de uma formulação unidimensional onde os coeficientes de perda por atrito foram medidos experimentalmente nas seções da bomba ejetora ensaiada experimentalmente e simulada numericamente. Os resultados apresentaram boa concordância em toda a faixa disponível de resultados experimentais. A ferramenta de CFD também permitiu analisar os campos de velocidade e a distribuição de pressão nos componentes da bomba ejetora (bocal, garganta misturadora e difusor).
|
13 |
Estudo numérico de cavitação em bomba ejetora.Jeferson Brambatti Granjeiro 02 December 2009 (has links)
Simulações são realizadas utilizando a dinâmica de fluidos computacional (DFC) para prever o desempenho e características de escoamento em uma bomba ejetora anular. A simulação numérica do escoamento no interior da bomba ejetora anular é realizada utilizando o código FLUENT 6.3.26. No presente estudo, o método de volumes finitos é utilizado para resolver um escoamento tridimensional, em regime permanente e incompressível modelado pelas seguintes equações matemáticas: continuidade, momentum e modelo de turbulência . Uma boa concordância foi obtida na comparação entre os resultados numéricos e experimentais disponíveis. Então, os resultados numéricos são utilizados para analisar as seguintes dependências: razão de altura manométrica versus razão de vazão volumétrica e a eficiência global versus razão de vazão volumétrica. Os perfis de velocidade e pressão estática também são usados para estudar o processo de mistura entre as duas correntes na câmara de mistura da bomba ejetora. A boa concordância com os resultados experimentais e a compreensão do escoamento de água obtidos nesta análise numérica mostram que uma abordagem adequada do DFC pode ser utilizada para melhorar o desempenho da bomba ejetora.
|
14 |
Mechanistic modeling of evaporating thin liquid film instability on a bwr fuel rod with parallel and cross vapor flowHu, Chih-Chieh 20 January 2009 (has links)
This work has been aimed at developing a mechanistic, transient, 3-D numerical model to predict the behavior of an evaporating thin liquid film on a non-uniformly heated cylindrical rod with simultaneous parallel and cross flow of vapor. Interest in this problem has been motivated by the fact that the liquid film on a full-length boiling water reactor fuel rod may experience significant axial and azimuthal heat flux gradients and cross flow due to variations in the thermal-hydraulic conditions in surrounding subchannels caused by proximity to inserted control blade tip and/or the top of part-length fuel rods. Such heat flux gradients coupled with localized cross flow may cause the liquid film on the fuel rod surface to rupture, thereby forming a dry hot spot. These localized dryout phenomena can not be accurately predicted by traditional subchannel analysis methods in conjunction with empirical dryout correlations. To this end, a numerical model based on the Level Contour Reconstruction Method was developed. The Standard k- turbulence model is included. A cylindrical coordinate system has been used to enhance the resolution of the Level Contour Reconstruction Model. Satisfactory agreement has been achieved between the model predictions and experimental data.
A model of this type is necessary to supplement current state-of-the-art BWR core thermal-hydraulic design methods based on subchannel analysis techniques coupled with empirical dry out correlations. In essence, such a model would provide the core designer with a "magnifying glass" by which the behavior of the liquid film at specific locations within the core (specific axial node on specific location within a specific bundle in the subchannel analysis model) can be closely examined. A tool of this type would allow the designer to examine the effectiveness of possible design changes and/or modified control strategies to prevent conditions leading to localized film instability and possible fuel failure.
|
15 |
An experimental investigation of the drag on idealised rigid, emergent vegetation and other obstacles in turbulent free-surface flowsRobertson, Francis January 2016 (has links)
Vegetation is commonly modelled as emergent arrays of rigid, circular cylinders. However, the drag coefficient (CD) of real stems or trunks is closer to that of cylinders with a square cross-section. In this thesis, vegetation has been idealised as square cylinders in laboratory experiments with a turbulence intensity of the order of 10% which is similar to that of typical river flows. These cylinders may also represent other obstacles such as architectural structures. This research has determined CD of an isolated cylinder and cylinder pairs as a function of position as well as the average drag coefficient (CDv) of larger arrays. A strain gauge was used to measure CD whilst CDv was computed with a momentum balance which was validated by strain gauge measurements for a regularly spaced array. The velocity and turbulence intensity surrounding a pair of cylinders arranged one behind the other with respect to mean flow (in tandem) were also measured with an Acoustic Doppler Velocimeter. The isolated cylinder CD was found to be 2.11 in close agreement with other researchers. Under fixed flow conditions CD for a cylinder in a pair was found to be as low as -0.40 and as high as 3.46 depending on their relative positioning. For arrays, CDv was influenced more by the distribution of cylinders than the flow conditions over the range of conditions tested. Mean values of CDv for each array were found to be between 1.52 and 3.06. This new insight therefore suggests that CDv for vegetation in bulk may actually be much higher than the typical value of 1 which is often assumed to apply in practice. If little other information is available, a crude estimate of CDv = 2 would be reasonable for many practical applications. The validity of a 2D realizable k-epsilon turbulence model for predicting the flow around square cylinders was evaluated. The model was successful in predicting CD for an isolated cylinder. In this regard the model performed as well as Large Eddy Simulations by other authors with a significant increase in computational efficiency. However, the numerical model underestimates CD of downstream cylinders in tandem pairs and overestimates velocities in their wake. This suggests it may be necessary to expand the model to three-dimensions when attempting to simulate the flow around two or more bluff obstacles with sharp edges.
|
16 |
CFD Simulations of Flow Characteristics of a Piano Key Weir SpillwaySjösten, William, Vadling, Victor January 2020 (has links)
Comprehensive rehabilitation projects of dam spillways are made in Sweden, due to stricter dam safety guidelines for their discharge capacity. The Piano Key Weir (PKW) is an innovative design which has proven effective through several renovation projects made in many countries including France. In this study we investigate the flow patterns around a prototype PKW, located in Escouloubre dam in southern France, with numerical simulations through three different flow cases in Ansys Fluent. A computational domain containing the PKW is created in the CAD software Ansys SpaceClaim for the simulations. Three polyhexcore meshes are further generated using Ansys Fluent Meshing. The three flow cases are then simulated with a Reynolds-averaged Navier-Stokes (RANS) model, coupled with realizable k-epsilon and volume of fluid models. Through an assessment of the discretization error between three meshes, a relative error of one percent is obtained for the discharge rate. The numerical results are qualitatively compared with results from previously conducted physical experiments on this PKW. The RANS model does not capture the water surface undulations (due to turbulence) around the PKW. The effects from under modelled surface undulations are alleviated by inserting an air vent to the PKW, which results in a flow behaviour in good agreement with the physical experiments. Through this alteration, water discharge rates are computed with a maximum discrepancy of five percent compared with the corresponding experimental values. A large eddy simulation should be conducted in the future, to bring further light on air exchange and water interaction phenomena present in the PKW flow pattern.
|
17 |
Análisis del flujo ambiental y propuesta metodológica para simulaciones CFD aplicadas a la ventilación natural de invernaderosGranell Ruiz, Rafael 30 April 2014 (has links)
El cultivo protegido bajo invernadero tiene altos costes energéticos
derivados de la ventilación forzada. En cambio, la ventilación natural puede ser una
solución barata que reduzca el consumo energético. No obstante, un diseño que
permita la ventilación natural del invernadero supone un reto debido a la
complejidad del fenómeno físico. Frente a otros métodos de diseño, como los
métodos experimentales o analíticos, en los últimos tiempos la dinámica de fluidos
computacional (CFD por sus siglas en inglés) se ha convertido en la herramienta
más utilizada para estudiar este tipo de fenómenos, gracias a su relativo bajo coste
y a la rapidez en la obtención de resultados. No obstante, los modelos CFD deben
refrendarse mediante validaciones realizadas a través de datos experimentales. Un
análisis bibliográfico detallado del uso de la CFD aplicada a invernaderos muestra,
en general, que los trabajos carecen de suficientes datos experimentales,
seguramente debido al alto coste de los sensores para adquirirlos y la dificultad que
conlleva el trabajo en condiciones de campo. Además, se observa que las
simulaciones CFD en invernaderos no se realizan con un procedimiento
sistematizado. Por ello, la presente tesis, por un lado describe un dispositivo y unos
métodos sencillos y baratos para obtener datos atmosféricos, y por otro, propone
una visión crítica sobre la investigación realizada hasta el momento, con el fin de
sistematizar la manera de generar modelos CFD aplicados a la ventilación natural
de invernaderos. Finalmente, la tesis se complementa con un ejemplo sobre un caso
práctico.
Para ello, en primer lugar, se realizó una revisión bibliográfica de las
diferentes guías de buenas prácticas en diferentes campos de la tecnología principalmente en edificación, para sistematizar y adaptar las recomendaciones para
generar modelos CFD en invernaderos. En segundo lugar, se desarrolló un sistema
de adquisición de datos sencillo, consistente en una red de sensores, que permite
medir simultáneamente la velocidad y dirección de viento en 20 puntos. Este
sistema de sensores fue calibrado y probado en campo satisfactoriamente
obteniendo una precisión similar a los anemómetros comerciales con un precio 30
veces superior. En tercer lugar, se generaron 24 modelos del flujo de aire alrededor
del invernadero, resultantes de la combinación de cuatro modelos de turbulencia (k-
¿; RNG k-¿; k-¿ y RSM); dos esquemas de discretización (primer orden y segundo
orden) y tres velocidades de viento exterior (3; 3,5 y 4 m/s) con el fin de analizar
sus diferencias y demostrar sus ventajas e inconvenientes. Por este motivo, en
cuarto lugar, se comprobó su capacidad de ajustarse a los datos de campo, validando
los modelos con un análisis de regresión lineal sobre los datos experimentales. Con
este estudió se reveló que los modelos SST k-¿ y el RSM (segundo orden) son los
que mejor representan el flujo de ventilación y se demostró que el modelo k-¿
estándar (primer orden), el más utilizado en la bibliografía, no sólo ofrece
resultados diferentes al resto de modelos, sino que su rendimiento es pobre para
predecir el flujo de ventilación. / Granell Ruiz, R. (2014). Análisis del flujo ambiental y propuesta metodológica para simulaciones CFD aplicadas a la ventilación natural de invernaderos [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/37194
|
18 |
Análise e implementação de esquemas de convecção e modelos de turbulência para simulação de escoamentos incompressíveis envolvendo superfícies livres. / Analysis and implementation of convection schemes and turbulence models for simulation of incompressible flows involving free surfaces.Ferreira, Valdemir Garcia 26 September 2001 (has links)
Uma parte significativa dos escoamentos encontrados em aplicações tecnológicas é caracterizada por envolver altos números de Reynolds, principalmente aqueles em regime turbulento e com superfície livre. Obter soluções numéricas representativas para essa classe de problemas é extremamente difícil, devido à natureza não-linear das equações diferenciais parciais envolvidas nos modelos. Conseqüentemente, o tema tem sido uma das principais preocupações da comunidade científica moderna em dinâmica de fluidos computacional. Aproximações de primeira ordem para os termos convectivos são as mais adequadas para amortecer oscilações que estão associadas às aproximações de alta ordem não-limitadas. Todavia, elas introduzem dissipação artificial nas representações discretas comprometendo os resultados numéricos. Para minimizar esse efeito não-físico e, ao mesmo tempo, conseguir aproximações incondicionalmente estáveis, é indispensável adotar uma estratégia que combine aproximações de primeira ordem com as de ordem mais alta e que leve em conta a propagação de informações físicas. Os resultados dessa composição são os esquemas "upwind" limitados de alta ordem. Em geral, espera-se que esses esquemas sejam apropriados para a representação das derivadas convectivas nos modelos de turbulência kappa-varepsilon. No contexto de diferenças finitas, a presente tese dedica-se à solução numérica das equações de Navier-Stokes no regime de números de Reynolds elevados. Em particular, ela contém uma análise de algoritmos monotônicos e antidifusivos e modelos de turbulência kappa-varepsilon para a simulação de escoamentos incompressíveis envolvendo superfícies livres. Esquemas de convecção são implementados nos códigos GENSMAC para proporcionar um tratamento robusto dos termos convectivos nas equações de transporte. Duas versões do modelo kappa-varepsilon de turbulência são implementadas nos códigos GENSMAC, para problems bidimensionais e com simetria radial, para descrever os efeitos da turbulência sobre o escoamento médio. Resultados numéricos de escoamentos com simetria radial são comparados com resultados experimentais e analíticos. Simulações numéricas de problemas tridimensionais complexos são apresentadas para avaliar o desempenho de esquemas "upwind". Finalmente, os modelos de turbulência kappa-varepsilon são utilizados para a simulação de escoamentos confinados e com superfícies livres. / A considerable part of fluid flows encountered in technological applications is characterised by involving high-Reynolds numbers, especially those in turbulent regime and with free-surface. It is extremely difficult to obtain representative numerical solutions for this class of problems, due to the non-linear nature of the partial differential equations involved in the models. Consequently, this subject has been one of main concerns in the modern computational fluid dynamics community. First-order approximation to the convective terms is one of the most appropriate to smooth out oscilations/instabilities which are associated with high-order unlimited approximation. However, it introduces numerical dissipation in the discrete representation jeopardizing the numerical results. In order to minimize this non-physical effect and, at the same time, to obtain unconditionally stable approximation, it is essential to adopt a strategy that combines first and high-order approximations and takes into account the propagation of physical information. The results of this composition are the high-order bounded upwind techniques. In general, it is expected that these algorithms are satisfactory for the representation of the convective derivatives in the kappa-varepsilon turbulence model. In the context of finite-difference, the present thesis deals with the numerical solution of the Navier-Stokes equations at high-Reynolds number regimes. In particular, it contains an analysis of monotonic and anti-difusive convection schemes and kappa-varepsilon turbulence models for the simulation of free-surface fluid flows. Upwinding methods are implemented into the GENSMAC codes to provide a robust treatment of the convective terms in the transport equations. Two versions of the K-Epsilon turbulence model are implemented into the two-dimensional and axisymmetric GENSMAC codes, in order to describe the turbulent effects on the average flow. Numerical results of axisymmetric flows are compared with experimental and analytical results. Numerical simulations of complex three-dimensional problems are presented to assess the performance of high-order bounded upwind schemes. Finally, the K-Epsilon turbulence models are employed in the simulation of confined and free-surface flows.
|
19 |
Finite-element simulation of buoyancy-driven turbulent flows / Finite-Elemente Simulation auftriebsgetriebener turbulenter StrömungenKnopp, Tobias 04 June 2003 (has links)
No description available.
|
20 |
Análise e implementação de esquemas de convecção e modelos de turbulência para simulação de escoamentos incompressíveis envolvendo superfícies livres. / Analysis and implementation of convection schemes and turbulence models for simulation of incompressible flows involving free surfaces.Valdemir Garcia Ferreira 26 September 2001 (has links)
Uma parte significativa dos escoamentos encontrados em aplicações tecnológicas é caracterizada por envolver altos números de Reynolds, principalmente aqueles em regime turbulento e com superfície livre. Obter soluções numéricas representativas para essa classe de problemas é extremamente difícil, devido à natureza não-linear das equações diferenciais parciais envolvidas nos modelos. Conseqüentemente, o tema tem sido uma das principais preocupações da comunidade científica moderna em dinâmica de fluidos computacional. Aproximações de primeira ordem para os termos convectivos são as mais adequadas para amortecer oscilações que estão associadas às aproximações de alta ordem não-limitadas. Todavia, elas introduzem dissipação artificial nas representações discretas comprometendo os resultados numéricos. Para minimizar esse efeito não-físico e, ao mesmo tempo, conseguir aproximações incondicionalmente estáveis, é indispensável adotar uma estratégia que combine aproximações de primeira ordem com as de ordem mais alta e que leve em conta a propagação de informações físicas. Os resultados dessa composição são os esquemas "upwind" limitados de alta ordem. Em geral, espera-se que esses esquemas sejam apropriados para a representação das derivadas convectivas nos modelos de turbulência kappa-varepsilon. No contexto de diferenças finitas, a presente tese dedica-se à solução numérica das equações de Navier-Stokes no regime de números de Reynolds elevados. Em particular, ela contém uma análise de algoritmos monotônicos e antidifusivos e modelos de turbulência kappa-varepsilon para a simulação de escoamentos incompressíveis envolvendo superfícies livres. Esquemas de convecção são implementados nos códigos GENSMAC para proporcionar um tratamento robusto dos termos convectivos nas equações de transporte. Duas versões do modelo kappa-varepsilon de turbulência são implementadas nos códigos GENSMAC, para problems bidimensionais e com simetria radial, para descrever os efeitos da turbulência sobre o escoamento médio. Resultados numéricos de escoamentos com simetria radial são comparados com resultados experimentais e analíticos. Simulações numéricas de problemas tridimensionais complexos são apresentadas para avaliar o desempenho de esquemas "upwind". Finalmente, os modelos de turbulência kappa-varepsilon são utilizados para a simulação de escoamentos confinados e com superfícies livres. / A considerable part of fluid flows encountered in technological applications is characterised by involving high-Reynolds numbers, especially those in turbulent regime and with free-surface. It is extremely difficult to obtain representative numerical solutions for this class of problems, due to the non-linear nature of the partial differential equations involved in the models. Consequently, this subject has been one of main concerns in the modern computational fluid dynamics community. First-order approximation to the convective terms is one of the most appropriate to smooth out oscilations/instabilities which are associated with high-order unlimited approximation. However, it introduces numerical dissipation in the discrete representation jeopardizing the numerical results. In order to minimize this non-physical effect and, at the same time, to obtain unconditionally stable approximation, it is essential to adopt a strategy that combines first and high-order approximations and takes into account the propagation of physical information. The results of this composition are the high-order bounded upwind techniques. In general, it is expected that these algorithms are satisfactory for the representation of the convective derivatives in the kappa-varepsilon turbulence model. In the context of finite-difference, the present thesis deals with the numerical solution of the Navier-Stokes equations at high-Reynolds number regimes. In particular, it contains an analysis of monotonic and anti-difusive convection schemes and kappa-varepsilon turbulence models for the simulation of free-surface fluid flows. Upwinding methods are implemented into the GENSMAC codes to provide a robust treatment of the convective terms in the transport equations. Two versions of the K-Epsilon turbulence model are implemented into the two-dimensional and axisymmetric GENSMAC codes, in order to describe the turbulent effects on the average flow. Numerical results of axisymmetric flows are compared with experimental and analytical results. Numerical simulations of complex three-dimensional problems are presented to assess the performance of high-order bounded upwind schemes. Finally, the K-Epsilon turbulence models are employed in the simulation of confined and free-surface flows.
|
Page generated in 0.1154 seconds