Spelling suggestions: "subject:"biokinetik."" "subject:"abbaukinetik.""
81 |
Interactions of proteins with soft polymeric surfaces / driving forces and kineticsWelsch, Nicole 15 November 2012 (has links)
Im Rahmen der vorliegenden Arbeit wurde die Thermodynamik und Kinetik der Proteinadsorption auf neutralen sowie geladenen, kolloidalen Kern-Schale-Mikrogelen untersucht. Die weiche polymere Schicht der Schale reagiert mit großen Volumenänderungen auf Änderungen der Umgebungstemperatur, des pH-Wertes oder der Salzkonzentration. Untersuchungen mit Fourier-Transform-Infrarotspektroskopie (FT-IR) zeigten, dass generell die native Sekundärstruktur der verwendeten Proteine, die auf den Mikrogelen adsorbiert wurden, erhalten blieb. Im Gegensatz zur Proteinadsorption auf festen Oberflächen wurde zudem eine hohe katalytische Aktivität der Enzyme nach der Immobilisierung verzeichnet, die gegenüber derjenigen der freien Enzyme in manchen Fällen sogar erhöht war. Mithilfe der isothermalen Titrationskalorimetrie (ITC) und FT-IR Spektroskopie wurden als treibende Kräfte des Adsorptionsprozesses elektrostatische und hydrophobe Wechselwirkungen identifiziert. Weitere Untersuchungen zeigten, dass im Falle von geladenen Mikrogelen das elektrostatische Potential wie auch der abgesenkte lokale pH-Wert innerhalb des Netzwerks eine Änderung des Ladungszustands der adsorbierenden Proteine zur Folge hat. Zusätzlich konnte mithilfe der Fluoreszenzspektroskopie und der Verwendung Fluoreszenz-markierter Proteine die kinetische Aufnahme in die Mikrogele als auch die Reversibilität der Reaktion analysiert werden. Es wurde dabei ein dynamischer Austausch zwischen gebundenen und freien Proteinmolekülen nachgewiesen, welcher die Verwendung von Gleichgewichtsmodellen für die Beschreibung der Proteinadsorption rechtfertigt. Außerdem erfolgt der Vorgang in zwei Schritten: i) ein schneller diffusionslimitierter Schritt, in dem der Hauptteil der gesamten Proteinmenge bindet und ii) ein anschließender wesentlich langsamerer Bindungsvorgang. Die Adsorptionsexperimente wurden anschließend auf Untersuchungen in binären Proteinmischungen ausgedehnt, um die kompetitive Proteinadsorption zu studieren. / In the present work the thermodynamics and the kinetic mechanism of protein adsorption to charged and uncharged core-shell microgels of colloidal dimension were explored. The soft polymeric layer of the shell is sensitive towards changes of the temperature, pH value, and salt concentration of the solution which results in a drastic volume change upon change of one of these triggers. Studies with Fourier-transform infrared (FT-IR) spectroscopy showed, that the secondary structure of the proteins used was significantly retained after immobilisation regardless of the charge state of the microgels employed. Moreover, unlike protein adsorption onto solid surfaces immobilisation into the networks did not compromise the catalytic activity of the proteins. Actually, an enhanced activity was found for some cases. The thermodynamic analysis performed by isothermal titration calorimetry (ITC) and structural investigations by FT-IR spectroscopy experiments led to the identification of the electrostatic and hydrophobic interactions as the main driving forces of protein adsorption. Further studies showed that proteins bound to negatively charged gel networks regulate their charge according to the electrostatic potential and to the lowered local pH value around the hydrogels. Fluorescence spectroscopy experiments with fluorescent-tagged proteins were suitable to analyse the kinetic uptake of the proteins into the gel networks as well as the reversibility of binding. It was demonstrated that bound proteins are dynamically exchanged by proteins in solution which justifies the application of equilibrium binding models to quantify the adsorption data. Moreover, the adsorption of proteins proceeds in two steps: i) a fast, diffusion-limited binding regime in which the majority of proteins is bound and ii) a second slow binding regime. The adsorption experiments were extended to binary protein mixtures in order to study competitive protein adsorption.
|
82 |
Quantum Chemical Investigation of the Interaction of Hydrogen with Solid SurfacesMullan, Thomas 05 August 2022 (has links)
In dieser Arbeit werden die Wechselwirkungen von Wasserstoff mit festen Materialien und Oberflächen untersucht. Zunächst wird der Kontext unserer Untersuchung durch eine kurze Einordnung in die Geschichte der Naturwissenschaften im Allgemeinen, und der Oberflächenforschung im Speziellen, hergestellt. Anschließend wird der quanten-mechanische Apparat, welcher nötig ist um die betrachteten Systeme zu beschreiben, eingeführt um dann detailliert die Potentialhyperfläche der Entstehung von Wasser durch Adsoprtion von Wasserstoff auf einer teilweise oxidierten Ruthenium(0001) Metalloberfläche zu studieren. Zudem wird das gleiche System betrachtet, wenn die Metalloberfläche zusätzlich von einer biatomaren, kristallinen Lage Siliziumdioxid (SiO2) bedeckt ist, wodurch eine räumliche Beengung eintritt. Wir verwenden unsere Ergebnisse zusammen mit experimentellen Beobachtungen und mathematischen Methoden um ein vollständig theoretisches Modell zu entwerfen und das System grundlegend verstehen zu können. In einem weiteren Schritt werden die chemischen Änderungen der Siliziumdioxid Doppellage untersucht, wenn das System Wasserstoffplasma ausgesetzt wird. Es werden diverse mögliche Defektstrukturen diskutiert und mithilfe experimenteller Befunde die wahrscheinlichste Struktur isoliert. Im letzten Kapitel werden die typischen Näherungen untersucht, welche notwendig sind um quantenmechanische Methoden mit Hilfe von Computern durchführbar zu machen. Wir verwenden den sogenannten embedded-fragment Ansatz um die Diffusionsbarriere von Wasserstoff auf Aluminiumoxid mit chemischer Genauigkeit zu berechnen. Unsere Ergebnisse auf dem coupled-cluster with singles, doubles and perturbative triples (CCSD(T))-Niveau können sowohl als Referenz für experimentelle Untersuchungen, als auch für andere quantenmechanische Methoden wie z.B. die Dichtefunktionaltheorie, angesehen werden. / The present thesis aims at investigating the interactions of hydrogen with solid surfaces and materials. We first offer a brief historical context for surface science, as well as quantum mechanics and science is general, before deriving the mathematical apparatus necessary to investigate our systems of interest. We then move on to explore the potential energy surface of the water-formation-reaction on a partially oxidized ruthenium(0001) surface when confined under a two-atom thick sheet of silica (SiO2). We further employ our findings in conjunction with experimental observations and mathematical modeling to set up a fully theoretical model of the system in order to explain its behavior. In the second chapter we investigate the chemical alteration of the ultra-thin silica bilayer by means of exposing it to hydrogen plasma. We elucidate possible defects formed during the process and pin-point the most likely structure found. In the last chapter, we investigate the possible error sources that are inherent in quantum mechanical modeling and employ the so called embedded fragment approach to lift the approximations up to the coupled cluster singles and doubles with perturbative triples (CCSD(T)) level of theory. We then apply this methodology to the diffusion of hydrogen on aluminum oxide to obtain a diffusion barrier of chemical accuracy that may both be used to benchmark other approaches such as density functional theory, as well as experimental findings.
|
83 |
Synthesis, characterization and catalytic activity of immobilized metallic nanoparticlesWunder, Stefanie 10 June 2013 (has links)
Reprinted figure 3 with permission from American Physical Society. Readers may view, browse, and/or downloadmaterial for temporary copying purposes only, provided these uses are for noncommercial personal purposes.Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted,performed, displayed, published, or sold in whole or part, without prior written permission from the AmericanPhysical Society. / In dieser Arbeit wurden Gold- und PlatinNanopartikel in sphärischen Polyelektolyt-Bürsten (SPB) synthetisiert. Diese wurden zu mechanistischen Untersuchungen der p-Nitrophenol-Reduktion mittels Natriumborhydrid herangezogen. Dabei konnte der Mechanismus der Reaktion auf der Oberfläche der Nanopartikel aufgeklärt werden. Die Reaktion folgt einem Langmuir Hinshelwood (LH) Mechanismus. Hierbei adsorbieren beide Edukte auf die Oberfläche, bevor sie im zu p-Aminophenol umgesetzt werden. Nach der Reaktion desorbiert das Reaktionsprodukt. Mittels des LH Modells konnten für verschiedene Temperaturen die intrinsische Geschwindigkeitskonstante, sowie die Adsorptionskonstanten der Edukte bestimmt werden. Mit diesen Daten konnten dann die Enthalpie und Entropie der Adsorption der Edukte und die Aktivierungsenergie berechnet werden. Neben dem Reaktionsmechanismus wurde die Induktionszeit der p-Nitrophenol Reduktion untersucht. Hierbei konnte gezeigt werden, dass diese Totzeit der Reaktion wahrscheinlich auf eine Restrukturierung der Nanopartikeloberfläche zurückzuführen ist. Sie ist unabhängig von den eingesetzten Konzentrationen des Borhydrids, hingegen abhängig von der Konzentration an p-Nitrophenol auf der Oberfläche der Nanopartikel, was auf Restrukturierung der Nanopartikel durch p-Nitrophenol hindeutet. Zudem wurden Hinweise auf eine spontane Rekonstruktion der Nanopartikel gefunden, die unabhängig von der Konzentration des p-Nitrophenols ist. Des Weiteren wurde die katalytische Oxidation von Morin mit Manganoxid Nanopartikeln untersucht. Diese sind in der Polyelektrolytschale der SPB immobilisiert. Analysen der Reaktionskinetik der Morin Oxidation ergaben, dass auch in diesem Fall der LH Mechanismus vorliegt. Hierbei konnten die Adsorptionskonstanten und Geschwindigkeitskonstanten für verschiedene Temperaturen ermittelt werden und somit die Aktivierungsenergie der Oxidation sowie die Adsorptionsenthalpie und Entropie der Edukte. / In this work, gold and platinum nanoparticles were synthesized into spherical polyelectrolyte brushes (SPB) in order to apply them as catalysts for kinetic studies of the reduction of p-nitrophenol by sodium borohydride. It was found that the reaction follows the Langmuir-Hinshelwood (LH) mechanism where both educts must adsorb onto the surface of the catalyst in order to react. Thereby, the rate determining step is the surface reaction of both educts. After the reaction, the product desorbs from the surface and a free active site is formed. With this model the intrinsic reaction rate and the adsorption constants for both educts could be determined. The measurements at different temperatures allowed the calculation of the activation energy and the adsorption enthalpy and entropy of the educts. Besides the reaction mechanism, the induction time of the reaction was analyzed. Here, it was shown that the reason of this delay time is a restructuring of the nanoparticle surface. The induction time is solely dependent on the concentration of p-nitrophenol on the surface of the nanoparticles and independent of the applied concentrations of borohydride. Moreover, hints for a spontaneous reconstruction of the nanoparticles without p-nitrophenol were found. In the second part, the catalytic oxidation of morin by manganese oxide has been studied. These nanoparticles were embedded inside the polyelectrolyte layer of the SPB. These nanoparticles were used for systematic studies of the oxidation of morin with hydrogen peroxide. It was shown that in this case the reaction followed a LH kinetics as well. Here, the intrinsic rate constants and the adsorption constants could be obtained for different temperatures. The activation energy and the adsorption enthalpy and entropy could be determined accordingly. The adsorption enthalpy is exothermic in both cases.
|
84 |
Kinetik radikalischer Polymerisationen ionischer Monomere in wässriger Lösung: Spektroskopische Analyse und Modellierung / Kinetic of the Radical Polymerization of Ionic Monomers in Aqueous Solution: Spectroscopic Analysis and ModellingDrawe, Patrick 15 June 2016 (has links)
Die Arbeit befasst sich grundlegend mit der radiaklischen Polymerisation von ionischen Monomeren in wässriger Lösung. Kinetische Koeffizienten dieser Polymerisationsreaktionen wurden durch Pulslaser-induzierte Polymerisationen in Verbindung mit Größenausschlusschromatographie (PLP–SEC), mit hoch zeitaufgelöster Nahinfrarot-Detektion nach Einzelpuls-(SP)-Anregung (SP–PLP–NIR) und mit hoch zeitaufgelöster Elektronenspinresonanzspektroskopie (SP–PLP–ESR) untersucht. Die Messungen wurden durch Simulationen mit dem Programmpaket Predici® unterstützt.
Die Terminierungskinetik der radikalischen Polymerisation des wasserlöslichen nicht-ionischen Monomers N-Vinylformamid wurde in Substanz und in wässriger Lösung bei 40 bis 70 °C und bei 500 bis 2500 bar als Funktion des Umsatzes mit der SP–PLP–NIR-Technik bestimmt.
Die Einflüsse von Terminierung, Transferreaktionen und Verbreiterungs-mechanismen auf die Bildung von PLP-Strukturen beliebiger Monomere im PLP–SEC-Experiment wurden grundlegend durch Predici®-Modellierung untersucht. Die Resultate geben Auskunft, unter welchen PLP-Bedingungen verlässliche auswertbare PLP-Strukturen erhalten wurden. So ist es erforderlich, dass 19 bis 92% der erzeugten Radikale zwischen zwei aufeinanderfolgenden Pulsen terminieren.
Da aufgrund der langsamen Terminierung (<19%) und intermolekularer oder intramolekularer Transferreaktionen die PLP–SEC-Methode für ionische Monomere oft nicht anwendbar ist, wurde der Geschwindigkeitskoeffizient der Propagation, kp, etwa von Trimethylaminoethylmethacrylat (TMAEMA) in D2O im Temperatur-intervall 30 bis 60 °C durch Anpassung von Umsatz-Zeit-Verläufen mit einem Predici®-Modell bestimmt. Eine Modell-unabhängige Bestimmung der Propagations- und Terminierungskinetik von TMAEMA unter identischen Bedingungen erfolgte durch Kombination der gekoppelten Parameter <kt>/kp und kp/<kt>0,5 aus SPPLPNIR-Messungen bzw. chemisch initiierten Experimenten.
Trimethylaminoethylacrylat-(TMAEA)-Polymerisationen wurden bei 20 bis 84 °C mit Predici® modelliert. Dabei wurde die enorme Bedeutung der mid-chain Radikal (MCR)-Kinetik für die Polymerisationsrate ionischer Acrylate deutlich.
Die Predici®-Modellierung von ionisierter Methacrylsäure (MAA) zeigte, dass die durch PLPSEC bestimmten literaturbekannten kp-Werte systematisch um einen Faktor zwei zu groß sind. Der Einfluss der Gegenionenkonzentration auf kp wurde für ionisierte MAA bei 30 bis 80 °C durch Anpassung von Umsatz-Zeit-Verläufen bestimmt. Der präexponentielle Faktor von kp nimmt mit steigender Gegenionen-konzentration zu, also bei Erhöhung der Monomerkonzentration und bei Salzzugabe. Die Terminierungskinetik von ionisierter MAA wurde mittels SP–PLP–NIR als Funktion des Umsatzes bei 1 bis 500 bar zwischen 20 und 80 °C untersucht.
Untersuchungen der Polymerisationskinetik von ionisierter Acrylsäure (AA) durch NIR, SP–PLP–NIR, SP–PLP–ESR und 13C-NMR ergaben, dass alle Geschwindigkeitskoeffizienten von der Art und Konzentration der Gegenionen beeinflusst werden, wobei sie mit steigender Gegenionen-konzentration zunehmen, was auf die Bildung von Kontaktionenpaaren zurückgeführt werden kann. Die beteiligten Geschwindigkeitskoeffizienten bewirken einen hohen MCR-Anteil von etwa 98% bei 50 °C. Da trotz der hohen MCR-Konzentration die SPR-Konzentration für das Wachstum entscheidend ist (kps ≈ 103·kpt), führen geringe Verschiebungen des SPR-MCR-Gleichgewichts bei Variation der Reaktionsbedingungen zu großen Effekten in der Polymerisationsrate.
Die in der vorgelegten Arbeit ermittelten kinetischen Koeffizienten erlauben die umfassende Simulation von Monomerumsatz-Zeit-Verläufen sowie von Molmassenverteilungen der polymeren Produkte für ionische Polymerisationen in wässriger Lösung bei weiter Variation der Monomerkonzentration, des Monomerumsatzes, der Art und Konzentration von Gegenionen sowie von Temperatur und Druck.
|
85 |
Auswirkung von Nichtidealitäten auf den Ablauf von Folgereaktionen in RohrreaktorenCho, Sang Hyun 30 July 2008 (has links) (PDF)
Das Ziel der vorliegenden Arbeit ist es, in Hinsicht auf Folgereaktion das Verhalten der auf
der Basis der mathematischen Bilanzgleichungen abgeleiteten Modelle der verschiedenen
Reaktortypen systematisch zu untersuchen. Dabei können die bei betrachteten Reaktoren zu
berücksichtigenden Einflussgrößen folgendermaßen charakterisiert werden: Bezüglich der
thermischen Betrachtungsweise im Rohrreaktor werden die isotherme, adiabate und polytrope
Reaktionsführung vorausgesetzt. Bei der Betrachtung des Geschwindigkeitsfelds im
Strömungsreaktor werden laminare Strömung und Pfropfenströmung ausgewählt. Zur Bestimmung
der Reaktionsgeschwindigkeitskonstante kommt neben dem Arrhenius-Ansatz auch ein von
Temperatur linear abhängiger Geschwindigkeitskonstantenansatz zur Anwendung. Variiert werden
Reaktionssystem, Geometrie und Betriebsbedingungen. Da hinsichtlich einer Folgereaktion in
der Literatur bereits Modelle für die nichtisothermen Rohrreaktoren, die meist numerischen
zu lösen sind, existieren, sollte vor allem die Frage geklärt werden, ob mit neuen
analytischen Modellen weitere sinnvolle Zugänge möglich sind. Um die Güte mathematischer
Modelle hinsichtlich der Wiedergabe experimenteller Werte beurteilen zu können, soll
zunächst eine diesbezügliche Validierung mitbetrachtet werden. Außerdem lassen sich so auch
die verwendeten numerischen Methoden basierend auf dem kommerziellen Berechnungsprogramm
MATLAB testen. Danach werden die besprochenen Modelle unter Berücksichtigung der oben
vorgegeben Prozessvariablen ausgewertet, wobei es sich im Wesentlichen um die optimale
Reaktorlänge und die maximal erzielbare Konzentration der Reaktionskomponente B beim Ablauf
einer Folgereaktion in einem Strömungsreaktor handelt. Anschließend werden die Relationen
zwischen den auf idealen Betriebszuständen basierenden einfachen Modellen und den für realen
Reaktortypen abgeleiteten komplizierten Modellen ermittelt. Da es oft schwierig ist, sich an
ideale Betriebsbedingungen in der Technik anzunähern, dienen die in dieser Arbeit basierend
auf sowohl analytischen als auch numerischen Lösungen untersuchten realeren Prozesse dazu,
die Auslegung eines chemischen Reaktors zu unterstützen. Dabei sind die wichtigen
Betriebsparameter zu identifizieren und das Betriebsregime zu optimieren.
|
86 |
Erzeugung, Nachweis und Reaktionen reiner, teiloxidierter und substituierter Kohlenwasserstoffradikale in der Gasphase / Formation, Detection and Reactions of Pure, Partially Oxidated and Substituted Hydrocarbon Radicals in the Gas PhaseWehmeyer, Jens 23 April 2002 (has links)
No description available.
|
87 |
Spektroskopische Untersuchungen zur Kinetik und Produktbildung bei Reaktionen von zyklischen und offenkettigen Kohlenwasserstoff-Radikalen / Spectroscopic studies of kinetic and product formation for reactions of cyclic and open-chain hydrocarbon radicalsNothdurft, Jörg 04 May 2006 (has links)
No description available.
|
88 |
Kinetik von Atom-Transfer Radikalischen Polymerisationen bis zu hohen Drücken / Kinetics of Atom-Transfer Radical Polymerization up to High PressureMorick, Joachim 26 September 2012 (has links)
No description available.
|
89 |
Fluidic microchemomechanical integrated circuits processing chemical informationGreiner, Rinaldo, Allerdissen, Merle, Voigt, Andreas, Richter, Andreas 08 April 2014 (has links) (PDF)
Lab-on-a-chip (LOC) technology has blossomed into a major new technology fundamentally influencing the sciences of life and nature. From a systemic point of view however, microfluidics is still in its infancy. Here, we present the concept of a microfluidic central processing unit (CPU) which shows remarkable similarities to early electronic Von Neumann microprocessors. It combines both control and execution units and, moreover, the complete power supply on a single chip and introduces the decision-making ability regarding chemical information into fluidic integrated circuits (ICs). As a consequence of this system concept, the ICs process chemical information completely in a self-controlled manner and energetically self-sustaining. The ICs are fabricated by layer-by-layer deposition of several overlapping layers based on different intrinsically active polymers. As examples we present two microchips carrying out long-term monitoring of critical parameters by around-the-clock sampling. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
90 |
Phasenbeziehungen und kinetische Modellierung von flüssigphasengesintertem SiC mit oxidischen und nitridischen AdditivenNeher, Roland 07 July 2014 (has links)
In the present dissertation the formation of microstructure, the kinetics of densification and the formation of surface layers developing during liquid phase sintering of silicon carbide are studied. The focus is on the additive systems Al2O3 plus Y2O3 and AlN plus Y2O3.
Phase and especially liquid phase formation in both of the systems SiC, Al2O3 , Y2O3 and AlN, Al2O3 , Y2O3 are investigated in detail examining 12 espectively 17 different compositions per system. Melting temperatures have been determined by TG/DTA, in both systems for the first time. Phase composition of samples was analysed by the combination of XRD, SEM and EDX. In the system SiC, Al2O3 , Y2O3 the formation of the phases expected from the quasibinary Al2O3 , Y2O3 could be observed thus silicon carbide has to be in equilibrium with the oxide additives. The low solubility of SiC in the oxide melt, which was suggested by Hoffmann and Nader, could be confirmed. In the system AlN, Al2O3 , Y2O3 the formation of phases as stated by Medraj was confirmed, except for the dimension of the stability region of the γ- spinel and YAG which is wider in the present work.
For the first time diffusion coefficients of the species Y3+ and Al3+ in the oxide melt formed by Al2O3 and Y2O3 at temperatures above 1825 ◦ C were determined. The values are in the order of 2 · 10−6 cm2 /s which results in a diffusion length of 14.1 μm for a diffusion time of one second. This allows the fast equilibration of Y and Al deficiencies.
Kinetics of densification was modeled by kinetic field, master curve and thermokinetic method, based on detailed experimental investigation of the shrinkage during liquid phase sintering of SiC. It could be proved that the first 30 − 40 % of densification are controlled by solid phase reactions which accelerate particle rearrangement without presence of a liquid phase. During the remaining 60 − 70 % of densification a liquid is present, resulting in the predominance of mechanisms of liquid phase sintering. The models deliver activation energies in the range from 608 KJ/mol to 1668 kJ/mol and allow, within the scope of validity of each method the prediction of densification during liquid phase sintering of silicon carbide.
When sintering silicon carbide with Al2O3 plus Y2O3 the formation of several surface layers, depending on atmosphere, maximum temperature, dwelling time and amount and composition of additives was observed. In nitrogen atmosphere with low partial pressures a surface layer consisting of AlN is forming whilst at high partial pressures SiAlON- polytypes occur. After sintering in Argon or Ar-CO- atmosphere three main types of surface layers are present. One consists of alumina, one contains only YAG and one shows highly porous, additive depleted regions. An explanation for the formation of the several surface layers could be given by the combination of the determined diffusion coefficients with the results achieved in the thermodynamics part.
The results achieved in this work can be a contribution to the knowledge based design of the production process of liquid phase sintering of silicon carbide.
|
Page generated in 0.0443 seconds