• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interactions of proteins with soft polymeric surfaces

Welsch, Nicole 15 November 2012 (has links)
Im Rahmen der vorliegenden Arbeit wurde die Thermodynamik und Kinetik der Proteinadsorption auf neutralen sowie geladenen, kolloidalen Kern-Schale-Mikrogelen untersucht. Die weiche polymere Schicht der Schale reagiert mit großen Volumenänderungen auf Änderungen der Umgebungstemperatur, des pH-Wertes oder der Salzkonzentration. Untersuchungen mit Fourier-Transform-Infrarotspektroskopie (FT-IR) zeigten, dass generell die native Sekundärstruktur der verwendeten Proteine, die auf den Mikrogelen adsorbiert wurden, erhalten blieb. Im Gegensatz zur Proteinadsorption auf festen Oberflächen wurde zudem eine hohe katalytische Aktivität der Enzyme nach der Immobilisierung verzeichnet, die gegenüber derjenigen der freien Enzyme in manchen Fällen sogar erhöht war. Mithilfe der isothermalen Titrationskalorimetrie (ITC) und FT-IR Spektroskopie wurden als treibende Kräfte des Adsorptionsprozesses elektrostatische und hydrophobe Wechselwirkungen identifiziert. Weitere Untersuchungen zeigten, dass im Falle von geladenen Mikrogelen das elektrostatische Potential wie auch der abgesenkte lokale pH-Wert innerhalb des Netzwerks eine Änderung des Ladungszustands der adsorbierenden Proteine zur Folge hat. Zusätzlich konnte mithilfe der Fluoreszenzspektroskopie und der Verwendung Fluoreszenz-markierter Proteine die kinetische Aufnahme in die Mikrogele als auch die Reversibilität der Reaktion analysiert werden. Es wurde dabei ein dynamischer Austausch zwischen gebundenen und freien Proteinmolekülen nachgewiesen, welcher die Verwendung von Gleichgewichtsmodellen für die Beschreibung der Proteinadsorption rechtfertigt. Außerdem erfolgt der Vorgang in zwei Schritten: i) ein schneller diffusionslimitierter Schritt, in dem der Hauptteil der gesamten Proteinmenge bindet und ii) ein anschließender wesentlich langsamerer Bindungsvorgang. Die Adsorptionsexperimente wurden anschließend auf Untersuchungen in binären Proteinmischungen ausgedehnt, um die kompetitive Proteinadsorption zu studieren. / In the present work the thermodynamics and the kinetic mechanism of protein adsorption to charged and uncharged core-shell microgels of colloidal dimension were explored. The soft polymeric layer of the shell is sensitive towards changes of the temperature, pH value, and salt concentration of the solution which results in a drastic volume change upon change of one of these triggers. Studies with Fourier-transform infrared (FT-IR) spectroscopy showed, that the secondary structure of the proteins used was significantly retained after immobilisation regardless of the charge state of the microgels employed. Moreover, unlike protein adsorption onto solid surfaces immobilisation into the networks did not compromise the catalytic activity of the proteins. Actually, an enhanced activity was found for some cases. The thermodynamic analysis performed by isothermal titration calorimetry (ITC) and structural investigations by FT-IR spectroscopy experiments led to the identification of the electrostatic and hydrophobic interactions as the main driving forces of protein adsorption. Further studies showed that proteins bound to negatively charged gel networks regulate their charge according to the electrostatic potential and to the lowered local pH value around the hydrogels. Fluorescence spectroscopy experiments with fluorescent-tagged proteins were suitable to analyse the kinetic uptake of the proteins into the gel networks as well as the reversibility of binding. It was demonstrated that bound proteins are dynamically exchanged by proteins in solution which justifies the application of equilibrium binding models to quantify the adsorption data. Moreover, the adsorption of proteins proceeds in two steps: i) a fast, diffusion-limited binding regime in which the majority of proteins is bound and ii) a second slow binding regime. The adsorption experiments were extended to binary protein mixtures in order to study competitive protein adsorption.
2

Coatings with Inversely Switching Behavior. New Applications of Core-Shell Hydrogel Particles.

Horecha, Marta 17 February 2011 (has links) (PDF)
The main goal of this work is design and synthesis of novel composite hydrogel-based core-shell microparticles and their application for fabrication of coatings, which provide the “inverse-switching” behaviour to the surface, namely, to become more hydrophobic in water environment. Since contact angle of heterogeneous surfaces is dependent on the nature and ratio of surface components, an increase of amount of more hydrophobic component on the surface will cause the reducing of surface wettability. It was suggested that core-shell particles having water-swellable hydrogel core and hydrophobic, but permeable for water shell when deposited on the hydrophilic substrate should increase the total amount of hydrophobic component on the surface when the cores of particles will swell in water. During the work different approaches to obtain freely dispersed and surface-immobilized core-shell particles with required structure were developed. Obtained particles were applied for preparation of coatings with ability to display “inverse-switching” behaviour. It was demonstrated that properly designed and properly prepared core-shell particles could be successfully used for creation of smart adaptive coatings having the ability to alter the surface properties upon changing of the environment.
3

Smart hydrogels based platforms for investigation of biochemical reactions

Dubey, Nidhi Chandrama 16 November 2015 (has links) (PDF)
Polyketides are natural products with complex chemical structures and immense pharmaceutical potential that are synthesized via secondary metabolic pathways. The in-vitro synthesis of these molecules requires high supply of building blocks such as acetyl Co-enzyme A, and cofactors (adenosine triphosphate (ATP). These precursor and cofactor are synthesized from respective soluble enzymes. Owing to the expensive nature of the enzymes, it is important to immobilize enzymes to improve the process economics by enabling multiple uses of catalyst and improving overall productivity and robustness. The polymer-based particles of nano and submicron size have become attractive material for their role in the life sciences. With the advances in synthetic protocols of the microgels and commercial availability of many of the monomers, it is feasible to tune the properties of the particles as per the process requirement. The core shell microgel with functional shell allows high loading of ligands onto the microgel particles due to increased availability of functional group on the outer surface. The aim of the thesis thus was to study biochemical reactions on the smart microgels support using single (acetyl CoA synthetase (Acs)) and dual (pyruvate kinase (Pk) and L-lactic dehydrogenase (Ldh)) enzyme/s systems. The study indicated that the enzyme immobilization significantly depends on the enzyme, conjugation strategy and the support. The covalent immobilization provides rigidity to the enzyme structure as in case of Acs immobilized on PNIPAm-AEMA microgels but at the same time leads to loss in enzyme activity. Whereas, in the case of covalent immobilization of Ldh on microgel showed improved in enzyme activity. On the other hand adsorption of the enzyme via ionic interaction provide better kinetic profile of enzymes hence the membrane reactor was prepared using PNIPAm-PEI conjugates for acetyl CoA synthesis. The better outcome of work with PNIPAm-PEI resulted in its further evaluation for dual enzyme system. This work is unique in the view that the immobilization strategies were well adapted to immobilize single and dual enzymes to achieve stable bioconjugates for their respective applications in precursor biosynthesis (Acetyl Co enzyme A) and co-factor dependent processes (ACoA and ATP). The positive end results of microgels as the support (particles in solution and as the thin film (membrane)) opens further prospective to explore these systems for other precursor biomolecule production.
4

Coatings with Inversely Switching Behavior. New Applications of Core-Shell Hydrogel Particles.

Horecha, Marta 03 February 2011 (has links)
The main goal of this work is design and synthesis of novel composite hydrogel-based core-shell microparticles and their application for fabrication of coatings, which provide the “inverse-switching” behaviour to the surface, namely, to become more hydrophobic in water environment. Since contact angle of heterogeneous surfaces is dependent on the nature and ratio of surface components, an increase of amount of more hydrophobic component on the surface will cause the reducing of surface wettability. It was suggested that core-shell particles having water-swellable hydrogel core and hydrophobic, but permeable for water shell when deposited on the hydrophilic substrate should increase the total amount of hydrophobic component on the surface when the cores of particles will swell in water. During the work different approaches to obtain freely dispersed and surface-immobilized core-shell particles with required structure were developed. Obtained particles were applied for preparation of coatings with ability to display “inverse-switching” behaviour. It was demonstrated that properly designed and properly prepared core-shell particles could be successfully used for creation of smart adaptive coatings having the ability to alter the surface properties upon changing of the environment.
5

Synthesis and applications of multifunctional hybrid materials based on microgel particles

Jia, He 02 December 2016 (has links)
Die Kombination aus anorganischen Nanopartikeln und Mikrogelen in einem hybriden System erlaubt die Herstellung von Materialien mit vielseitigen neuen Eigenschaften. Im Idealfall weisen solche hybriden Materialien neben den Eigenschaften von beiden indivduellen Systemen zusätzlich synergetische Effekte auf, welche aus den Interaktionen zwischen dem anorganischen Nanopartikel und dem Mikrogel resultieren. Im ersten Teil dieser Arbeit wird eine neuartige und eingängige Methode zur Herstellung von Cu2O@PNIPAM Kern-Schale Nanoreaktoren präsentiert. Die PNIPAM Schale schützt dabei die Cu2O Nanopartikel effektiv vor Oxidation. Die Cu2O@PNIPAM wurden als Photokatalysator zum Abbau von Methylorange unter sichtbarem Licht eingesetzt. Im Vergleich zu den reinen Cu2O Nanopartikeln konnte eine signifikante Steigerung der katalytischen Aktivität festgestellt werden. Desweiteren kann die photokatalytische Aktivität mittels Temperatur durch die thermosensitive PNIPAM Schale abgestimmt werden. Verhältnismäßig geringe Konzentrationen einer Cu2O@PNIPAM wässrigen Lösung (1,5 Gew%) können direkt als neuartige Tinte genutzt werden. Keine zusätzlichen Additive oder organische Lösungsmittel sind für die Strahldruckprozesse vonnöten. Gedruckte Bauelemente bestehend aus den Cu2O@PNIPAM wurden als Gas Sensoren eingesetzt und zeigten eine geringere Nachweisgrenze für NO2 als die reinen Cu2O Nanowürfel. Im zweiten Teil der Arbeit wurden katalytisch aktive Au Nanopartikel an copolymerisierten α –Cyclodextrin (α-CD) Einheiten in einem Poly(N-vinylcaprolactan) (PVCL) Mikrogel immobilisiert. Diese hybriden Partikel sind sehr aktive Katalysatoren für die Reduktion von aromatischen Nitroverbindungen. Die Reduktion von 4-Nitrophenol (Nip) und 2,6-Dimethyl-4-nitrophenol (DMNip) wurden als Modellreaktionen ausgewählt. Durch selektive Bindungseingenschaften der Nitroverbindungen an die α-CD Einheiten konnten verschiedene katalytische Aktivitäten für Nip and DMNip festgestellt werden. / The combination of inorganic nanoparticles and organic microgels in one hybrid system allows for the preparation of new materials with multifunctional properties. Ideally, such hybrid materials reflect both the properties of its individual components and synergetic effects due to the interaction between inorganic nanoparticles and microgels. In the first part of this thesis, the fabrication of Cu2O@Poly(N-isopropylacrylamide) (PNIPAM) core-shell nanoreactors has been presented. It was found that the PNIPAM shell effectively protects the Cu2O nanocubes from oxidation. The core-shell microgels have been used as photocatalyst for the decomposition of methyl orange and a significant enhancement in the catalytic activity has been observed compared with the bare Cu2O nanocubes. Most importantly, the photocatalytic activity of the core-shell nanoreactors can be further tuned by the thermosensitive PNIPAM shell. The aqueous solution of Cu2O@PNIPAM core-shell nanoparticles with quite low solid content (1.5wt. %) can be also directly used as a novel ink material for the inkjet printing without adding any other surfactants and organic solvents. The gas sensor device printed by core-shell nanoparticles is more sensitive to NO2 than that made from the bare Cu2O nanocubes. In the second part, a kind of hybrid microgel has been fabricated by immobilization of catalytically active Au nanoparticles in the α-cyclodextrin (α-CD) modified poly(N-vinylcaprolactam) (PVCL) microgels without addition of reducing agent and surfactant. The hybrid microgels can work efficiently as catalyst for the reduction of aromatic nitro-compounds by using the reduction of 4-nitrophenol (Nip) and 2,6-dimethyl-4-nitrophenol (DMNip) as model reactions. Due to the selective binding property of α-CDs to nitro compounds, the synthesized hybrid microgels show different catalytic activity for the target compounds, 4-nitrophenol (Nip) and 2,6-dimethyl-4-nitrophenol (DMNip), during the catalytic reactions.
6

Smart hydrogels based platforms for investigation of biochemical reactions

Dubey, Nidhi Chandrama 20 August 2015 (has links)
Polyketides are natural products with complex chemical structures and immense pharmaceutical potential that are synthesized via secondary metabolic pathways. The in-vitro synthesis of these molecules requires high supply of building blocks such as acetyl Co-enzyme A, and cofactors (adenosine triphosphate (ATP). These precursor and cofactor are synthesized from respective soluble enzymes. Owing to the expensive nature of the enzymes, it is important to immobilize enzymes to improve the process economics by enabling multiple uses of catalyst and improving overall productivity and robustness. The polymer-based particles of nano and submicron size have become attractive material for their role in the life sciences. With the advances in synthetic protocols of the microgels and commercial availability of many of the monomers, it is feasible to tune the properties of the particles as per the process requirement. The core shell microgel with functional shell allows high loading of ligands onto the microgel particles due to increased availability of functional group on the outer surface. The aim of the thesis thus was to study biochemical reactions on the smart microgels support using single (acetyl CoA synthetase (Acs)) and dual (pyruvate kinase (Pk) and L-lactic dehydrogenase (Ldh)) enzyme/s systems. The study indicated that the enzyme immobilization significantly depends on the enzyme, conjugation strategy and the support. The covalent immobilization provides rigidity to the enzyme structure as in case of Acs immobilized on PNIPAm-AEMA microgels but at the same time leads to loss in enzyme activity. Whereas, in the case of covalent immobilization of Ldh on microgel showed improved in enzyme activity. On the other hand adsorption of the enzyme via ionic interaction provide better kinetic profile of enzymes hence the membrane reactor was prepared using PNIPAm-PEI conjugates for acetyl CoA synthesis. The better outcome of work with PNIPAm-PEI resulted in its further evaluation for dual enzyme system. This work is unique in the view that the immobilization strategies were well adapted to immobilize single and dual enzymes to achieve stable bioconjugates for their respective applications in precursor biosynthesis (Acetyl Co enzyme A) and co-factor dependent processes (ACoA and ATP). The positive end results of microgels as the support (particles in solution and as the thin film (membrane)) opens further prospective to explore these systems for other precursor biomolecule production.
7

Dumbbell-shaped colloids

Chu, Fangfang 10 November 2014 (has links)
In der vorliegenden Arbeit wurde das Phasenverhalten von harten Hantelteilchen (Dumbbells) als Funktion des Aspektverhältnisses (L*, der Quotient aus dem Abstand der Massenzentren zum Durchmesser der Kugel) und der Volumendichte untersucht. Bragg-Reflexe weisen darauf hin, das harte Dumbbells mit L* < 0.4 einen Phasenübergang von einer Fluid-artigen Phase zu einem plastischen Kristall zeigen. Die experimentellen Phasendiagramme bei L* ~ 0.24 und L*~ 0.30 sind vergleichbar mit Vorhersagen aus Monte Carlo-Simulationen. Rheologie Messungen zeigen, dass harte Dumbbells verschiedene Gleichgewichts- und Nichtgleichgewichtsphasen annehmen. Suspensionen von harten Dumbbells im Zweiphasenbereich zeigen ein einziges Fließgrenzen-Ereignis, wohingegen in der plastischen Kristallphase zwei Fließgrenzen-Ereignisse beobachtet werden. Diese, im Folgenden als „double yielding“ bezeichneten Ereignisse, hängen mit der Kristallisation der Suspensionen von harten Dumbbells zusammen. Die entsprechende Strukturentwicklung wurde mit rheo-SANS-Experimenten untersucht und mithilfe von BD Simulationen interpretiert. Es konnte gezeigt werden, dass die plastische Kristallphase polykristallin im Ruhezustand ist. Unter schwacher Scherung wird eine fcc-Schwerzwilling Struktur ausgebildet. Bei hoher Scherung formt sich eine teilweise orientierte Struktur aus gleitenden Schichten. Zwischen diesen beiden Strukturen existiert eine ungeordnete Übergangsphase. Die Scher-induzierte Strukturausbildung eintspricht dem „double yielding“ Ereignis der kristallinen harten Dumbells. Es wurde gezeigt, dass ein größeres L* (L* < 0.4) die Strukturentwicklung unter Scherung qualitativ nicht beeinflusst. Aufgrund verlangsamter Dynamik in der Nähe des Glasübergangs sind lediglich stärkere oder längere Oszillationen von Nöten, um Scher-induzierte Kristallisation zu erzeugen. Im zweiten Teil dieser Arbeit werden Systeme aus hohlen Kugeln und „Janus“-Dumbbells vorgestellt, die als kolloidale Modellsysteme dienen können. / In the present work the phase behaviour of hard dumbbells has been explored as a function of aspect ratio (L*, the center to center distance to the diameter of one composed sphere) and volume fractions using thermosensitive dumbbell-shaped microgels as the hard dumbbell model system. A fluid-to-plastic crystal phase transition indicated by Bragg reflections has been observed for L* < 0.4. The experimental phase diagrams at L* ~ 0.24 and L* ~ 0.30 are comparable to the theoretical prediction of the Monte Carlo simulations. Rheological measurements reveal that the hard dumbbells in the biphasic gap show the yielding behaviour with a single yielding event, while two yielding events have been observed for the plastic crystalline phase. The two yielding events, referred to as the double yielding behaviour, are proved to be related to the crystallization of hard dumbbells. The underlying structural evolution has been investigated by rheo-SANS experiments and the scattering data has been interpreted by BD simulations. It is demonstrated that the plastic crystal structure of the hard dumbbells is polycrystalline at rest, which has been induced into the twinned fcc structure at low strain, the partially oriented sliding layers at high strain and the intermediate state at the strain in-between. The shear-induced structural evolution corresponds to the double yielding events of the fully crystallized hard dumbbells. Additionally, we prove that the increase of L* (L* < 0.4) does not change the structural evolution of the sheared hard dumbbells. Only more extensive or longer oscillations are required to form the shear-induced crystal structures due to the slowdown of the dynamics in the vicinity of the glass transition. In a second part, the work of this thesis is extended to hollow systems composed of hollow spheres and hollow Janus dumbbells that can be used as model systems to probe phase behaviour of hollow capsules.
8

Theoretical modeling and computer simulations of protein adsorption onto soft polymeric layers

Yigit, Cemil 30 May 2016 (has links)
Proteinadsorption ist in vielen biotechnologischen Anwendungen ubiquitär und ein zentrales Forschungsfeld in der Physik der weichen Materie. Das Verstehen der treibenden Kräfte hinter der Proteinadsorption würde zu einer besseren Kontrolle des Adsorptionsprozesses führen und die Entwicklung von Biosystemen mit beispielloser Funktionalität ermöglichen. In der vorliegenden Arbeit wird die Proteinadsorption an weichen polymerartigen Biomaterialien sowie deren physikalische Wechselwirkungen unter Verwendung von zwei unterschiedlichen neu entwickelten Ansätzen theoretisch untersucht. Im ersten Teil wird ein neues mehrkomponentiges kooperatives Bindungsmodell entwickelt, um die Gleichgewichts-Adsorption von Proteinen auf Mikrogelen zu beschreiben. Es war somit möglich, die wahre treibende Kraft der Proteinadsorption zu identifizieren, die hauptsächlich elektrostatischen Ursprungs ist. Eine Errungenschaft des kooperativen Bindungsmodells ist die Vorhersage der kompetitiven Proteinadsorption und -desorption auf das Mikrogel, die auf thermodynamischen Parametern der Adsorption von Proteinen einzelner Sorten basiert. Vergleiche zwischen Experimenten mit binären Proteinmischungen und theoretischen Berechnungen zeigten sehr gute Übereinstimmungen. Der zweite Teil fokussiert auf Protein-Wechselwirkungen mit Polyelektrolyten, um Adsorptionsprozesse auf mikroskopischer Ebene zu erklären. Dafür wurden geladene fleckige Partikel konstruiert und als Proteinmodelle verwendet, während ein einfaches Kugel-Feder-Modell für das Polyelektrolyt und Polyelektrolytbürste benutzt wurde. Ein zentraler Aspekt war die Bestimmung der freien Energie, das Potential der mittleren Kraft (PMF), für die Komplexbildung der beiden Bestandteile mit Vergleichen zur Modellentwicklungen. Die Simulationsergebnisse legen ein komplexes Wechselspiel von elektrostatischen Kräften und Ionenfreisetzungsmechanismen dar, die für die starken attraktiven Wechselwirkungen in den PMFs verantwortlich sind. / Protein adsorption is ubiquitous in many biotechnological applications and has become a central research field in soft matter. Understanding the driving forces behind protein adsorption would allow a better control of the adsorption process and the development of biosystems with unprecedented functionality. In this thesis, protein adsorption onto soft polymeric biomaterials and their physical interactions is studied theoretically by using two different and newly developed approaches. In the first part, a novel multi-component cooperative binding model is developed to describe the equilibrium adsorption of proteins onto microgels. It was thus possible to correctly identify the true driving force behind the protein adsorption which was found to be mainly of electrostatic origin. A key achievement by the cooperative binding model is the prediction of competitive protein adsorption and desorption onto the microgel that is based on thermodynamic parameters related to single-type protein adsorption without any variable parameters. Comparisons between experimental data of binary protein mixtures and theoretical calculations have shown excellent agreements. The second part is focused on protein interactions with polyelectrolyte materials to elucidate adsorption processes on a microscopic level. For this purpose, charged patchy particles are constructed and used as protein models while a simple bead-spring model is employed for the polyelectrolyte and polyelectrolyte brush. A central aspect was the determination of the associated free energy, the potential of mean force (PMF), on the complex formation between the two constituents with comparisons to theoretical model developments. The simulation results evidenced a complex interplay of electrostatic forces and ion release mechanisms to be responsible for the strong attractive interactions observed in the PMFs.

Page generated in 0.0408 seconds