• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effektivisering av klimatskärm : åtgärdsförslag för bostadsföreningen Stocken

Fermhede, Jonas January 2014 (has links)
No description available.
2

Klimatskärmens funktion : En jämförande analys av projekterade nybyggnationer i Östra Salabacke, ur ett energi- samt fuktperspektiv

Melin, Daniel, Eriksson, Joel January 2012 (has links)
The design of the building envelope affects the energy consumption of a building. As the energy requirements for new buildings are becoming more demanding, the performance of the building envelope must be improved. Energy efficiency and durability are important attributes to consider. This report includes investigations of the building envelope, moisture and passive solar energy. It is based on the analysis of two different buildings with different designs. These buildings stand as reference for two of the companies who are working on a new, climate smart, residential area in Uppsala, Sweden. Studies and analyses on energy consumption and moisture transportation were made. Both calculations by hand and computer simulations were part of these analyses. The effects of different materials on the functionality of the building envelope were analyzed.    The main point of this project was to see if the present designs were satisfactory with regard to the mentioned requirements, and what changes were possible to make and should be done. These analyses show that the two buildings, with coherent constructions, did not correspond to the individual goals that had been set by the companies. One of the results shows that the calculated mean heat transfer coefficient did not match the goal set for the corresponding building. Some changes that should be made on its insulating performance are presented.  This report concludes that the evaluation of a building envelope, by all relevant factors, is a difficult task (there are too many variables to take into account). On the other hand it is possible to get an overview of its performance in a simple way. Which is done by following the methods presented in this report.
3

Analys av klimatskärmens lufttäthet i ett småhus

Hadodod, Melic, Ahlgren, Karl January 2007 (has links)
<p>Together with NCC and Sweco we measured the air-flow on a semi-detached house in Jönköping. When a pressure measurement is made, the house gets exposed to over- and under pressure. This is done in order to examine the houses climate shell. The climate shell of the semi-detached house we tested exceeded the required air thickness in BBR-2002, hence, measures have to be taken.</p><p>This report also displays the importance of building air thick houses and what consequences a non air-thick house can have for the ones residing the house. A discussion of different measures is on for the addressed problems with the flow-measurement and the alternative construction-solutions.</p><p>Furthermore we have described in this report of how to account for the performance of the air pressure, what kind of equipment we used and how we came up with the results. An ocular inspection was continually made in order for us to examine its gained results and thereby see why possible flaws arose.</p>
4

Analys av klimatskärmens lufttäthet i ett småhus

Hadodod, Melic, Ahlgren, Karl January 2007 (has links)
Together with NCC and Sweco we measured the air-flow on a semi-detached house in Jönköping. When a pressure measurement is made, the house gets exposed to over- and under pressure. This is done in order to examine the houses climate shell. The climate shell of the semi-detached house we tested exceeded the required air thickness in BBR-2002, hence, measures have to be taken. This report also displays the importance of building air thick houses and what consequences a non air-thick house can have for the ones residing the house. A discussion of different measures is on for the addressed problems with the flow-measurement and the alternative construction-solutions. Furthermore we have described in this report of how to account for the performance of the air pressure, what kind of equipment we used and how we came up with the results. An ocular inspection was continually made in order for us to examine its gained results and thereby see why possible flaws arose.
5

Energieffektivisering av äldre flerbostadshus : En analys av energisparande åtgärder i 50-talsflerbostadshus klimatskal, ställd mot deras kostnad

Norell Arlid, Malin January 2018 (has links)
Äldre flerbostadshus står för en stor del av Sveriges totala energianvändning som behöver sänkas föratt minska klimatpåverkan och klara regeringsmålet om effektivare energianvändning. Examensarbetets syfte är därför att bidra till en ökad kunskap om energieffektivisering genom åtgärder i äldre byggnaders klimatskärm, och om hur åtgärder kan värderas genom energisimulering och livscykelkostnadsanalys. Målet är att identifiera vilka åtgärder som är ekonomiskt och arkitektoniskt lämpliga för äldre flerbostadshus med intresse av att bevara deras karaktär. Det är även att bedöma vilken energibesparing och livscykelkostnad de utvalda åtgärderna genererar. Ett flerbostadshus i centrala Luleå valdes ut som referensbyggnad. Byggnaden är genom sin konstruktion och design representativ för tidseran. Intressanta åtgärder samt åtgärdspaket i dess klimatskal valdes ut. Sedan utfördes en bred litteraturgenomgång om bostadsbyggandet i Sverige 1945–1964, byggnadens energianvändning, energieffektivisering av klimatskalet, de utvalda åtgärderna samt metoderna energisimulering och livscykelkostnadsanalys. Referensbyggnaden dokumenterades och en energisimuleringsmodell byggdes i programvaran IDA ICE. Den nuvarande utformningen av byggnaden simulerades och kalibrerades mot senast uppmätt normalårskorrigerad energianvändning. Sedan utfördes simuleringar för de utvalda åtgärderna och åtgärdspaketen vilka bestämts till tilläggsisolering av vindsbjälklag, byte av fönster till lågenergifönster och tätning av otätheter runt dessa, en kombination av båda tidigare åtgärder (åtgärdspaket 1), tilläggsisolering av fasad och fönsterbyte, samt en kombination av alla tre åtgärder (åtgärdspaket 2). Livscykelkostnaderna för nuläget och för implementering av de olika åtgärderna beräknades genom nuvärdeskostnadsmetoden. Även återbetalningstider beräknades genom simple-payback-metoden. Byggnadens nuvarande utformning gav efter kalibrering en simulerad energianvändning på 136,2 kWh/(m2Atemp,år); 2,9 % över det senast uppmätta normalårskorrigerade värdet. Nuvärdeskostnaden för att inte utföra någon åtgärd beräknades till ca 2 727 tkr. Åtgärderna genererade energibesparingar på 3,5–14,6 %, nuvärdeskostnader på 2 685-5 880 tkr och återbetalningstider på 7-105 år. För varje adderad åtgärd i klimatskalet ökade energibesparingen. Tilläggsisolering av vindsbjälklag visade sig vara den enda lönsamma åtgärden, då den har en nuvärdeskostnad som är lägre än att inte utföra någon åtgärd. En känslighetsanalys utfördes för kostnadsberäkningarna där diskonteringsräntan höjdes och sänktes med 2 % och energipriset höjdes med 10 %. Tilläggsisoleringav vindsbjälklag kvarstod dock som den enda lönsamma åtgärden. Åtgärderna hade kunnat generera högre procentuell energibesparing för en annan liknande byggnad. Referensbyggnaden innehåller ett stort renoverat kontor vilket ger en lägre nuvarande energianvändning och lägre procentuell energibesparing för åtgärder än om endast den äldre bostadsdelen studerats. Då Luleå har Sveriges lägsta energipris är åtgärder med hög investeringskostnad ekonomiskt svårmotiverade. Detta beror på att kostnadsbesparingarna genom minskad energianvändning blir små i förhållande till åtgärdernas investeringskostnader. Tilläggsisolering av fasad kan inte rekommenderas då åtgärden både är mycket olönsam och förändrar byggnadens uttryck väsentligt. Slutsatsen är att tilläggsisolering av vindsbjälklag är den lämpligaste åtgärden för äldre flerbostadshus, av de undersökta åtgärderna för energieffektivisering i klimatskalet. Den är arkitektoniskt lämplig med hänsyn till bevarandet av byggnaden då den inte förändrar byggnadens utseende. Den är även ekonomiskt lämplig då den har en livscykelkostnad som är lägre änalternativet att inte utföra någon åtgärd. För fortsatta studier föreslås bl.a. att undersöka hur åtgärder kan göras mer attraktiva för fastighetsägare, att kartlägga fastigheter från tidseran (skick, energianvändning, resultat av åtgärder, möjligheter) samt att utvärdera potentialen av ny teknik. / Old multifamily houses stand for a large part of Sweden’s total energy usage, which must decrease to minimize our environmental impact and to accomplish the government goal of more efficient energy usage. The aim of this master thesis is therefore to contribute to an increased knowledge on energy optimization through building envelope improvements in older buildings, and how energy efficiency measures can be evaluated through building energy simulation and life cycle cost analysis. The goal is to identify which measures that are economically and architecturally appropriate for old multifamily houses with interest in retaining their character. It is also to evaluate which energy saving and life cycle cost the selected measures generate. A multifamily house in central Luleå was selected as reference building. The building is by its construction and design representative for the era. Interesting energy efficiency measures in the building envelope were chosen. Then a wide literature study was carried out on house building in Sweden 1945-1964, building energy usage, energy efficiency through building envelope measures, the selected measures and the methods building energy simulation and life cycle cost analysis. The reference building was documented and an energy simulation model was built in the software IDA ICE. A present version of the building was simulated and calibrated to better match the latest normalised annual value. After that, simulations were performed for the selected measures; additional attic insulation, change to low energy windows and weather stripping these, a combination of both previous measures, additional facade insulation and change of windows, and a combination of all three measures. The life cycle costs of the present situation and for implementation of the different measures were calculated through the net present cost method. Also, payback times were calculated through the simple payback method. The building in its original state showed a post-calibration energy usage of 136,2 kWh/(m2Atemp,year); 2,9 % above the surveyed value. The net present cost for not performing any energy conservation measures was calculated to about 2 727 SEK. The measures generated energy savings of 3,5-14,6 %, net present costs of 2 685 -5 880 SEK and payback times of 7-105 years. For each added measure in the building envelope, the energy saving increased. Additional insulation of the attic turned out to be the only profitable measure, since its net present cost is lower than for not performing any energy conservation measure. A sensitivity analysis was performed for the cost analyses where the discount rate was raised and lowered by 2 % and the energy price raised by 10 %. However, the additional attic insulation remained as the only profitable measure. The energy conservation measures could have generated greater energy savings for a similar building. The reference building contains a large retrofitted office which lowers the present energy usage and the percental energy savings for measures compared to if only the dwelling part had been studied. Since Luleå has Sweden’s lowest energy prices, measures with high investment costs become difficult to give grounds for. This is because the cost savings achieved by their energy savings are low compared to their investment costs. Additional facade insulation cannot be recommended since it both is very unprofitable and highly changes the appearance of the building. The conclusion is that additional attic insulation is the most appropriate energy conservation measure for old multifamily houses, of selected measures in the building envelope. It can be regarded as architecturally appropriate since it does not change the building appearance. It is also economically appropriate since its life cycle cost is lower than for not performing any measure. Suggested future research includes analyzing how energy efficiency measures can be made more attractive for real estate owners, charting real estate from the era (condition, energy usage, results from measures, opportunities) and evaluating the potential of new technology within the field.

Page generated in 0.0424 seconds