• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 14
  • 14
  • 10
  • 9
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Disjoint NP-pairs and propositional proof systems

Beyersdorff, Olaf 31 August 2006 (has links)
Die Theorie disjunkter NP-Paare, die auf natürliche Weise statt einzelner Sprachen Paare von NP-Mengen zum Objekt ihres Studiums macht, ist vor allem wegen ihrer Anwendungen in der Kryptografie und Beweistheorie interessant. Im Zentrum dieser Dissertation steht die Analyse der Beziehung zwischen disjunkten NP-Paaren und aussagenlogischen Beweissystemen. Haben die Anwendungen der NP-Paare in der Beweistheorie maßgeblich das Verständnis aussagenlogischer Beweissysteme gefördert, so beschreiten wir in dieser Arbeit gewissermaßen den umgekehrten Weg, indem wir Methoden der Beweistheorie zur genaueren Untersuchung des Verbands disjunkter NP-Paare heranziehen. Insbesondere ordnen wir jedem Beweissystem P eine Klasse DNPP(P) von NP-Paaren zu, deren Disjunktheit in dem Beweissystem P mit polynomiell langen Beweisen gezeigt werden kann. Zu diesen Klassen DNPP(P) zeigen wir eine Reihe von Resultaten, die illustrieren, dass robust definierten Beweissystemen sinnvolle Komplexitätsklassen DNPP(P) entsprechen. Als wichtiges Hilfsmittel zur Untersuchung aussagenlogischer Beweissysteme und der daraus abgeleiteten Klassen von NP-Paaren benutzen wir die Korrespondenz starker Beweissysteme zu erststufigen arithmetischen Theorien, die gemeinhin unter dem Schlagwort beschränkte Arithmetik zusammengefasst werden. In der Praxis trifft man statt auf zwei häufig auf eine größere Zahl konkurrierender Bedingungen. Daher widmen wir uns der Erweiterung der Theorie disjunkter NP-Paare auf disjunkte Tupel von NP-Mengen. Unser Hauptergebnis in diesem Bereich besteht in der Charakterisierung der Fragen nach der Existenz optimaler Beweissysteme und vollständiger NP-Paare mit Hilfe disjunkter Tupel. / Disjoint NP-pairs are an interesting complexity theoretic concept with important applications in cryptography and propositional proof complexity. In this dissertation we explore the connection between disjoint NP-pairs and propositional proof complexity. This connection is fruitful for both fields. Various disjoint NP-pairs have been associated with propositional proof systems which characterize important properties of these systems, yielding applications to areas such as automated theorem proving. Further, conditional and unconditional lower bounds for the separation of disjoint NP-pairs can be translated to results on lower bounds to the length of propositional proofs. In this way disjoint NP-pairs have substantially contributed to the understanding of propositional proof systems. Conversely, this dissertation aims to transfer proof-theoretic knowledge to the theory of NP-pairs to gain a more detailed understanding of the structure of the class of disjoint NP-pairs and in particular of the NP-pairs defined from propositional proof systems. For a proof system P we introduce the complexity class DNPP(P) of all disjoint NP-pairs for which the disjointness of the pair is efficiently provable in the proof system P. We exhibit structural properties of proof systems which make the previously defined canonical NP-pairs of these proof systems hard or complete for DNPP(P). Moreover, we demonstrate that non-equivalent proof systems can have equivalent canonical pairs and that depending on the properties of the proof systems different scenarios for DNPP(P) and the reductions between the canonical pairs exist. As an important tool for our investigation we use the connection of propositional proof systems and disjoint NP-pairs to theories of bounded arithmetic.
12

On Invariant Formulae of First-Order Logic with Numerical Predicates

Harwath, Frederik 12 December 2018 (has links)
Diese Arbeit untersucht ordnungsinvariante Formeln der Logik erster Stufe (FO) und einiger ihrer Erweiterungen, sowie andere eng verwandte Konzepte der endlichen Modelltheorie. Viele Resultate der endlichen Modelltheorie nehmen an, dass Strukturen mit einer Einbettung ihres Universums in ein Anfangsstück der natürlichen Zahlen ausgestattet sind. Dies erlaubt es, beliebige Relationen (z.B. die lineare Ordnung) und Operationen (z.B. Addition, Multiplikation) von den natürlichen Zahlen auf solche Strukturen zu übertragen. Die resultierenden Relationen auf den endlichen Strukturen werden als numerische Prädikate bezeichnet. Werden numerische Prädikate in Formeln verwendet, beschränkt man sich dabei häufig auf solche Formeln, deren Wahrheitswert auf endlichen Strukturen invariant unter Änderungen der Einbettung der Strukturen ist. Wenn das einzige verwendete numerische Prädikat eine lineare Ordnung ist, spricht man beispielsweise von ordnungsinvarianten Formeln. Die Resultate dieser Arbeit können in drei Teile unterteilt werden. Der erste Teil betrachtet die Lokalitätseigenschaften von FO-Formeln mit Modulo-Zählquantoren, die beliebige numerische Prädikate invariant nutzen. Der zweite Teil betrachtet FO-Sätze, die eine lineare Ordnung samt der zugehörigen Addition auf invariante Weise nutzen, auf endlichen Bäumen. Es wird gezeigt, dass diese dieselben regulären Baumsprachen definieren, wie FO-Sätze ohne numerische Prädikate mit bestimmten Kardinalitätsprädikaten. Für den Beweis wird eine algebraische Charakterisierung der in dieser Logik definierbaren Baumsprachen durch Operationen auf Bäumen entwickelt. Der dritte Teil der Arbeit beschäftigt sich mit der Ausdrucksstärke und der Prägnanz von FO und Erweiterungen von FO auf Klassen von Strukturen beschränkter Baumtiefe. / This thesis studies the concept of order-invariance of formulae of first-order logic (FO) and some of its extensions as well as other closely related concepts from finite model theory. Many results in finite model theory assume that structures are equipped with an embedding of their universe into an initial segment of the natural numbers. This allows to transfer arbitrary relations (e.g. linear order) and operations (e.g. addition, multiplication) on the natural numbers to structures. The arising relations on the structures are called numerical predicates. If formulae use these numerical predicates, it is often desirable to consider only such formulae whose truth value in finite structures is invariant under changes to the embeddings of the structures. If the numerical predicates include only a linear order, such formulae are called order-invariant. We study the effect of the invariant use of different kinds of numerical predicates on the expressive power of FO and extensions thereof. The results of this thesis can be divided into three parts. The first part considers the locality and non-locality properties of formulae of FO with modulo-counting quantifiers which may use arbitrary numerical predicates in an invariant way. The second part considers sentences of FO which may use a linear order and the corresponding addition in an invariant way and obtains a characterisation of the regular finite tree languages which can be defined by such sentences: these are the same tree languages which are definable by FO-sentences without numerical predicates with certain cardinality predicates. For the proof, we obtain a characterisation of the tree languages definable in this logic in terms of algebraic operations on trees. The third part compares the expressive power and the succinctness of different ex- tensions of FO on structures of bounded tree-depth.
13

Constructing “Climate Change Knowledge”

de Ruijter, Susann Unknown Date (has links) (PDF)
During the last decades “Climate Change” has become a vital topic on national and international political agendas. There it is presented as an irrevocable fact of global impact and thus of universal relevance. What has often been neglected are local discourses of marginalized groups and their specific contextualization of “Climate Change” phenomena. The aim of this project, to develop another perspective along these dominant narratives, has resulted in the research question How is social reality reconstructed on the phenomenon of “Climate Change” among the “Emerging Black Farmers” in the Swartland region in Western Cape, South Africa? Taken as an example, “Climate Change Knowledge” is reconstructed through a case study on the information exchange between the NGO Goedgedacht Trust and local small-scale farmers in the post-Apartheid context of on-going political, social, economic and educational transition in South Africa. Applying a constructivist approach, “Climate Change Knowledge” is not understood as an objectively given, but a socially constructed “reality” that is based on the interdependency of socio-economic conditions and individual assets, including language skills and language practice, sets of social norms and values, as well as strategies of knowledge transfer. The data set consists of qualitative data sources, such as application forms and interview material, which are triangulated. The rationale of a multi-layered data analysis includes a discursive perspective as well as linguistic and ethical “side perspectives”. Epistemologically, the thesis is guided by assumptions of complexity theory, framing knowledge around “Climate Change” as a fluid, constantly changing system that is shaped by constant intra- and inter-systemic exchange processes, and characterized by non-linearity, self-organization and representation of its constituents. From this point of departure, a theoretical terminology has been developed, which differentiates between symbols, interrelations, contents and content clusters. These elements are located in a system of spatio-temporal orientation and embedded into a broader (socio-economic) context of “historicity”. Content clusters are remodelled with the help of concept maps. Starting from that, a local perspective on “Climate Change” is developed, adding an experiential notion to the global narratives. The thesis concludes that there is no single reality about “Climate Change” and that the farmers’ “Climate Change Knowledge” highly depends on experiential relativity and spatio-temporal immediacy. Furthermore, analysis has shown that the system’s historicity and social manifestations can be traced in the scope and emphasis of the content clusters discussed. Finally the thesis demonstrates that characteristics of symbols, interconnections and contents range between dichotomies of direct and indirect, predictable versus unpredictable, awareness and negligence or threat and danger, all coexisting and creating a continuum of knowledge production.
14

Implementierung eines Algorithmus zur Partitionierung von Graphen

Riediger, Steffen 05 July 2007 (has links)
Partitionierung von Graphen ist im Allgemeinen sehr schwierig. Es stehen derzeit keine Algorithmen zur Verfügung, die ein allgemeines Partitionierungsproblem effizient lösen. Aus diesem Grund werden heuristische Ansätze verfolgt. Zur Analyse dieser Heuristiken ist man derzeit gezwungen zufällige Graphen zu Verwenden. Daten realer Graphen sind derzeit entweder nur sehr schwer zu erheben (z.B. Internetgraph), oder aus rechtlichen bzw. wirtschaftlichen Gründen nicht zugänglich (z.B. soziale Netzwerke). Die untersuchten Heuristiken liefern teilweise nur unter bestimmten Voraussetzungen Ergebnisse. Einige arbeiten lediglich auf einer eingeschränkten Menge von Graphen, andere benötigen zum Erkennen einer Partition einen mit der Knotenzahl steigenden Durchschnittsgrad der Knoten, z.B. [DHM04]. Der im Zuge dieser Arbeit erstmals implementierte Algorithmus aus [CGL07a] benötigt lediglich einen konstanten Durchschnittsgrad der Knoten um eine Partition des Graphen, wenn diese existiert, zu erkennen. Insbesondere muss dieser Durchschnittsgrad nicht mit der Knotenzahl steigen. Nach der Implementierung erfolgten Tests des Algorithmus an zufälligen Graphen. Diese Graphen entsprachen dem Gnp-Modell mit eingepflanzter Partition. Die untersuchten Clusterprobleme waren dabei große Schnitte, kleine Schnitte und unabhängige Mengen. Der von der Art des Clusterproblems abhängige Durchschnittsgrad wurde während der Tests bestimmt.
15

Sparse instances of hard problems

Dell, Holger 01 September 2011 (has links)
Diese Arbeit nutzt und verfeinert Methoden der Komplexitätstheorie, um mit diesen die Komplexität dünner Instanzen zu untersuchen. Dazu gehören etwa Graphen mit wenigen Kanten oder Formeln mit wenigen Bedingungen beschränkter Weite. Dabei ergeben sich zwei natürliche Fragestellungen: (a) Gibt es einen effizienten Algorithmus, der beliebige Instanzen eines NP-schweren Problems auf äquivalente, dünne Instanzen reduziert? (b) Gibt es einen Algorithmus, der dünne Instanzen NP-schwerer Probleme bedeutend schneller löst als allgemeine Instanzen gelöst werden können? Wir formalisieren diese Fragen für verschiedene Probleme und zeigen, dass positive Antworten jeweils zu komplexitätstheoretischen Konsequenzen führen, die als unwahrscheinlich gelten. Frage (a) wird als Kommunikation modelliert, in der zwei Akteure kooperativ eine NP-schwere Sprache entscheiden möchten und dabei möglichst wenig kommunizieren. Unter der komplexitätstheoretischen Annahme, dass coNP keine Teilmenge von NP/poly ist, erhalten wir aus unseren Ergebnissen erstaunlich scharfe untere Schranken für interessante Parameter aus verschiedenen Teilgebieten der theoretischen Informatik. Im Speziellen betrifft das die Ausdünnung von Formeln, die Kernelisierung aus der parameterisierten Komplexitätstheorie, die verlustbehaftete Kompression von Entscheidungsproblemen, und die Theorie der probabilistisch verifizierbaren Beweise. Wir untersuchen Fragestellung (b) anhand der Exponentialzeitkomplexität von Zählproblemen. Unter (Varianten) der bekannten Exponentialzeithypothese (ETH) erhalten wir exponentielle untere Schranken für wichtige #P-schwere Probleme: das Berechnen der Zahl der erfüllenden Belegungen einer 2-KNF Formel, das Berechnen der Zahl aller unabhängigen Mengen in einem Graphen, das Berechnen der Permanente einer Matrix mit Einträgen 0 und 1, das Auswerten des Tuttepolynoms an festen Punkten. / In this thesis, we use and refine methods of computational complexity theory to analyze the complexity of sparse instances, such as graphs with few edges or formulas with few constraints of bounded width. Two natural questions arise in this context: (a) Is there an efficient algorithm that reduces arbitrary instances of an NP-hard problem to equivalent, sparse instances? (b) Is there an algorithm that solves sparse instances of an NP-hard problem significantly faster than general instances can be solved? We formalize these questions for different problems and show that positive answers for these formalizations would lead to consequences in complexity theory that are considered unlikely. Question (a) is modeled by a communication process, in which two players want to cooperatively decide an NP-hard language and at the same time communicate as few as possible. Under the complexity-theoretic hypothesis that coNP is not in NP/poly, our results imply surprisingly tight lower bounds for parameters of interest in several areas, namely sparsification, kernelization in parameterized complexity, lossy compression, and probabilistically checkable proofs. We study the question (b) for counting problems in the exponential time setting. Assuming (variants of) the exponential time hypothesis (ETH), we obtain asymptotically tight, exponential lower bounds for well-studied #P-hard problems: Computing the number of satisfying assignments of a 2-CNF formula, computing the number of all independent sets in a graph, computing the permanent of a matrix with entries 0 and 1, evaluating the Tutte polynomial at fixed evaluation points.
16

Comparison of LDPC Block and LDPC Convolutional Codes based on their Decoding Latency

Hassan, Najeeb ul, Lentmaier, Michael, Fettweis, Gerhard P. 11 February 2013 (has links) (PDF)
We compare LDPC block and LDPC convolutional codes with respect to their decoding performance under low decoding latencies. Protograph based regular LDPC codes are considered with rather small lifting factors. LDPC block and convolutional codes are decoded using belief propagation. For LDPC convolutional codes, a sliding window decoder with different window sizes is applied to continuously decode the input symbols. We show the required Eb/N0 to achieve a bit error rate of 10 -5 for the LDPC block and LDPC convolutional codes for the decoding latency of up to approximately 550 information bits. It has been observed that LDPC convolutional codes perform better than the block codes from which they are derived even at low latency. We demonstrate the trade off between complexity and performance in terms of lifting factor and window size for a fixed value of latency. Furthermore, the two codes are also compared in terms of their complexity as a function of Eb/N0. Convolutional codes with Viterbi decoding are also compared with the two above mentioned codes.
17

Comparison of LDPC Block and LDPC Convolutional Codes based on their Decoding Latency

Hassan, Najeeb ul, Lentmaier, Michael, Fettweis, Gerhard P. January 2012 (has links)
We compare LDPC block and LDPC convolutional codes with respect to their decoding performance under low decoding latencies. Protograph based regular LDPC codes are considered with rather small lifting factors. LDPC block and convolutional codes are decoded using belief propagation. For LDPC convolutional codes, a sliding window decoder with different window sizes is applied to continuously decode the input symbols. We show the required Eb/N0 to achieve a bit error rate of 10 -5 for the LDPC block and LDPC convolutional codes for the decoding latency of up to approximately 550 information bits. It has been observed that LDPC convolutional codes perform better than the block codes from which they are derived even at low latency. We demonstrate the trade off between complexity and performance in terms of lifting factor and window size for a fixed value of latency. Furthermore, the two codes are also compared in terms of their complexity as a function of Eb/N0. Convolutional codes with Viterbi decoding are also compared with the two above mentioned codes.
18

Constructing “Climate Change Knowledge”: The example of small-scale farmers in the Swartland region, South Africa

de Ruijter, Susann 27 June 2016 (has links)
During the last decades “Climate Change” has become a vital topic on national and international political agendas. There it is presented as an irrevocable fact of global impact and thus of universal relevance. What has often been neglected are local discourses of marginalized groups and their specific contextualization of “Climate Change” phenomena. The aim of this project, to develop another perspective along these dominant narratives, has resulted in the research question How is social reality reconstructed on the phenomenon of “Climate Change” among the “Emerging Black Farmers” in the Swartland region in Western Cape, South Africa? Taken as an example, “Climate Change Knowledge” is reconstructed through a case study on the information exchange between the NGO Goedgedacht Trust and local small-scale farmers in the post-Apartheid context of on-going political, social, economic and educational transition in South Africa. Applying a constructivist approach, “Climate Change Knowledge” is not understood as an objectively given, but a socially constructed “reality” that is based on the interdependency of socio-economic conditions and individual assets, including language skills and language practice, sets of social norms and values, as well as strategies of knowledge transfer. The data set consists of qualitative data sources, such as application forms and interview material, which are triangulated. The rationale of a multi-layered data analysis includes a discursive perspective as well as linguistic and ethical “side perspectives”. Epistemologically, the thesis is guided by assumptions of complexity theory, framing knowledge around “Climate Change” as a fluid, constantly changing system that is shaped by constant intra- and inter-systemic exchange processes, and characterized by non-linearity, self-organization and representation of its constituents. From this point of departure, a theoretical terminology has been developed, which differentiates between symbols, interrelations, contents and content clusters. These elements are located in a system of spatio-temporal orientation and embedded into a broader (socio-economic) context of “historicity”. Content clusters are remodelled with the help of concept maps. Starting from that, a local perspective on “Climate Change” is developed, adding an experiential notion to the global narratives. The thesis concludes that there is no single reality about “Climate Change” and that the farmers’ “Climate Change Knowledge” highly depends on experiential relativity and spatio-temporal immediacy. Furthermore, analysis has shown that the system’s historicity and social manifestations can be traced in the scope and emphasis of the content clusters discussed. Finally the thesis demonstrates that characteristics of symbols, interconnections and contents range between dichotomies of direct and indirect, predictable versus unpredictable, awareness and negligence or threat and danger, all coexisting and creating a continuum of knowledge production.
19

The structure of graphs and new logics for the characterization of Polynomial Time

Laubner, Bastian 14 June 2011 (has links)
Diese Arbeit leistet Beiträge zu drei Gebieten der deskriptiven Komplexitätstheorie. Zunächst adaptieren wir einen repräsentationsinvarianten Graphkanonisierungsalgorithmus mit einfach exponentieller Laufzeit von Corneil und Goldberg (1984) und folgern, dass die Logik "Choiceless Polynomial Time with Counting" auf Strukturen, deren Relationen höchstens Stelligkeit 2 haben, gerade die Polynomialzeit-Eigenschaften (PTIME) von Fragmenten logarithmischer Größe charakterisiert. Der zweite Beitrag untersucht die deskriptive Komplexität von PTIME-Berechnungen auf eingeschränkten Graphklassen. Wir stellen eine neuartige Normalform von Intervallgraphen vor, die sich in Fixpunktlogik mit Zählen (FP+C) definieren lässt, was bedeutet, dass FP+C auf dieser Graphklasse PTIME charakterisiert. Wir adaptieren außerdem unsere Methoden, um einen kanonischen Beschriftungsalgorithmus für Intervallgraphen zu erhalten, der sich mit logarithmischer Platzbeschränkung (LOGSPACE) berechnen lässt. Im dritten Teil der Arbeit beschäftigt uns die ungelöste Frage, ob es eine Logik gibt, die alle Polynomialzeit-Berechnungen charakterisiert. Wir führen eine Reihe von Ranglogiken ein, die die Fähigkeit besitzen, den Rang von Matrizen über Primkörpern zu berechnen. Wir zeigen, dass diese Ergänzung um lineare Algebra robuste Logiken hervor bringt, deren Ausdrucksstärke die von FP+C übertrifft. Außerdem beweisen wir, dass Ranglogiken strikt an Ausdrucksstärke gewinnen, wenn wir die Zahl an Variablen erhöhen, die die betrachteten Matrizen indizieren. Dann bauen wir eine Brücke zur klassischen Komplexitätstheorie, indem wir über geordneten Strukturen eine Reihe von Komplexitätsklassen zwischen LOGSPACE und PTIME durch Ranglogiken charakterisieren. Die Arbeit etabliert die stärkste der Ranglogiken als Kandidat für die Charakterisierung von PTIME und legt nahe, dass Ranglogiken genauer erforscht werden müssen, um weitere Fortschritte im Hinblick auf eine Logik für Polynomialzeit zu erzielen. / This thesis is making contributions to three strands of descriptive complexity theory. First, we adapt a representation-invariant, singly exponential-time graph canonization algorithm of Corneil and Goldberg (1984) and conclude that on structures whose relations are of arity at most 2, the logic "Choiceless Polynomial Time with Counting" precisely characterizes the polynomial-time (PTIME) properties of logarithmic-size fragments. The second contribution investigates the descriptive complexity of PTIME computations on restricted classes of graphs. We present a novel canonical form for the class of interval graphs which is definable in fixed-point logic with counting (FP+C), which shows that FP+C captures PTIME on this graph class. We also adapt our methods to obtain a canonical labeling algorithm for interval graphs which is computable in logarithmic space (LOGSPACE). The final part of this thesis takes aim at the open question whether there exists a logic which generally captures polynomial-time computations. We introduce a variety of rank logics with the ability to compute the ranks of matrices over (finite) prime fields. We argue that this introduction of linear algebra results in robust logics whose expressiveness surpasses that of FP+C. Additionally, we establish that rank logics strictly gain in expressiveness when increasing the number of variables that index the matrices we consider. Then we establish a direct connection to standard complexity theory by showing that in the presence of orders, a variety of complexity classes between LOGSPACE and PTIME can be characterized by suitable rank logics. Our exposition provides evidence that rank logics are a natural object to study and establishes the most expressive of our rank logics as a viable candidate for capturing PTIME, suggesting that rank logics need to be better understood if progress is to be made towards a logic for polynomial time.

Page generated in 0.0384 seconds