• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 17
  • 10
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 111
  • 111
  • 111
  • 25
  • 24
  • 23
  • 16
  • 16
  • 15
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Etude d'électrolytes à base de dinitriles aliphatiques pour des batteries Li-ion / Study of electrolytes based on aliphatic dinitriles for Li-ion batteries

Farhat, Douaa 20 July 2017 (has links)
En raison de leur faible pression de vapeur et de leur stabilité électrochimique (5~6 V) et thermique, les dinitriles N≡C-(CH2)n-C≡N sont proposés comme solvants d’électrolytes alternatifs aux carbonates d’alkyles habituellement utilisés dans les batteries Li-ion. L’objectif de cette thèse est d’étudier le comportement physico-chimique de ces électrolytes alternatifs (viscosité, conductivité ionique, comportement thermique, propriétés volumétriques, etc.) et leur compatibilité avec une application dans les batteries Li-ion. Deux systèmes de batteries sont étudiés en utilisant une électrode positive d’oxyde lamellaire (LiNi1/3Mn1/3Co1/3O2) associée à une électrode négative à bas potentiel (graphite) ou à plus haut potentiel (Li4Ti5O12). La cyclabilité des électrodes en demi-pile et en pile complète est étudiée en fonction de la composition de l’électrolyte et de la nature du dinitrile utilisé. Les techniques de caractérisations suivantes : spectroscopie d’impédance électrochimique, microscopie électronique et spectroscopie de photoélectrons aux rayons X, sont utilisées pour suivre le processus de passivation des électrodes par formation d’une interface solide (SEI). L’effet de la présence d’additifs favorisant la formation de la couche de passivation a été étudié et leur efficacité est ainsi clairement mise en évidence. / Due to their low vapor pressure as well as their electrochemical (5~6 V) and thermal stability, dinitriles N≡C-(CH2)n-C≡N are proposed as alternative electrolyte solvents to alkyl carbonates commonly used in Li- ion batteries. The objective of this thesis is to study the physico-chemical behavior of these alternative electrolytes (viscosity, ionic conductivity, thermal behavior, volumetric properties, etc.) and their use in Li-ion batteries. Two battery systems are studied using a lamellar oxide (LiNi1/3Mn1/3Co1/3O2) as positive electrode associated with graphite or Li4Ti5O12 as negative electrodes. The cyclability of electrodes in half-cell and full-cell is studied according to the electrolyte composition and the nature of the dinitrile used. Characterization techniques like: electrochemical impedance spectroscopy, electron microscopy and X-Ray photoelectrons spectroscopy, are used to study the passivation of the negative electrode and the stability of the positive electrode. The effect of adding specific solid electrolyte interphase (SEI) builders is investigated and their efficiency is hence clearly demonstrated.
72

The Rôle of Side-Chains in Polymer Electrolytes for Batteries and Fuel Cells

Karo, Jaanus January 2009 (has links)
The subject of this thesis relates to the design of new polymer electrolytes for battery and fuel cell applications. Classical Molecular Dynamics (MD) modelling studies are reported of the nano-structure and the local structure and dynamics for two types of polymer electrolyte host: poly(ethylene oxide) (PEO) for lithium batteries and perfluorosulfonic acid (PFSA) for polymer-based fuel cells. Both polymers have been modified by side-chain substitution, and the effect of this on charge-carrier transport has been investigated. The PEO system contains a 89-343 EO-unit backbone with 3-15 EO-unit side-chains, separated by 5-50 EO backbone units, for LiPF6 salt concentrations corresponding to Li:EO ratios of 1:10 and 1:30; the PFSA systems correspond to commercial Nafion®, Hyflon® (Dow®) and Aciplex® fuel-cell membranes, where the major differences again lie in the side-chain lengths. The PEO mobility is clearly enhanced by the introduction of side-chains, but is decreased on insertion of Li salts; mobilities differ by a factor of 2-3. At the higher Li concentration, many short side-chains (3-5 EO-units) give the highest ion mobility, while the mobility was greatest for side-chain lengths of 7-9 EO units at the lower concentration. A picture emerges of optimal Li+-ion mobility correlating with an optimal number of Li+ ions in the vicinity of mobile polymer segments, yet not involved in significant cross-linkages within the polymer host. Mobility in the PFSA-systems is promoted by higher water content. The influence of different side-chain lengths on local structure was minor, with Hyflon® displaying a somewhat lower degree of phase separation than Nafion®. Furthermore, the velocities of the water molecules and hydronium ions increase steadily from the polymer backbone/water interface towards the centre of the proton-conducting water channels. Because of its shorter side-chain length, the number of hydronium ions in the water channels is ~50% higher in Hyflon® than in Nafion® beyond the sulphonate end-groups; their hydronium-ion velocities are also ~10% higher. MD simulation has thus been shown to be a valuable tool to achieve better understanding of how to promote charge-carrier transport in polymer electrolyte hosts. Side-chains are shown to play a fundamental rôle in promoting local dynamics and influencing the nano-structure of these materials.
73

Design of resilient silicon-carbon nanocomposite anodes

Hertzberg, Benjamin Joseph 16 November 2011 (has links)
Si-based anodes have recently received considerable attention for use in Li-ion batteries, due to their extremely high specific capacity - an order of magnitude beyond that offered by conventional graphite anode materials. However, during the lithiation process, Si-based anodes undergo extreme increases in volume, potentially by more than 300 %. The stresses produced within the electrode by these volume changes can damage the electrode binder, the active Si particles and the solid electrolyte interphase (SEI), causing the electrode to rapidly fail and lose capacity. These problems can be overcome by producing new anode materials incorporating both Si and C, which may offer a favorable combination of the best properties of both materials, and which can be designed with internal porosity, thereby buffering the high strains produced during battery charge and discharge with minimal overall volume changes. However, in order to develop useful anode materials, we must gain a thorough understanding of the structural, microstructural and chemical changes occurring within the electrode during the lithiation and delithiation process, and we must develop new processes for synthesizing composite anode particles which can survive the extreme strains produced during lithium intercalation of Si and exhibit no volume changes in spite of the volume changes in Si. In this work we have developed several novel synthesis processes for producing internally porous Si-C nanocomposite anode materials for Li-ion batteries. These nanocomposites possess excellent specific capacity, Coulombic efficiency, cycle lifetime, and rate capability. We have also investigated the influence of a range of different parameters on the electrochemical performance of these materials, including pore size and shape, carbon and silicon film thickness and microstructure, and binder chemistry.
74

Développement de surface artificielles pour cathode sous forme de couche mince pour accumulateurs Li-ion / Development of artificial surface layers for thin film cathode materials

Carrillo solano, Mercedes alicia 30 October 2015 (has links)
Ce travail porte sur la recherche de différentes compositions de couches minces pouraccumulateurs Li-ion.Une première partie a été dédiée au dépôts de cathode sous forme de couche mince d’unmatériau connu, LiCoO2, et d’un matériau alternatif, Li(NiMnCo)O2 en utilisant le dépôtphysique en phase vapeur (PVD) et le dépôt chimique en phase vapeur (CVD),respectivement. Les résultats (LiCoO2) ont montrés comment, après cyclage, il y a diminutionde la capacité à cycler à régime rapide et augmentation de la résistance à l’interface. Ladiffraction des rayons X a montré la présence de différentes orientations, peu cristallisées,appartenant à la phase LiCoO2 HT selon confirmation par la littérature. Les couches mincesde Li(NixMnyCo1-x-y)O2 ont été préparées par dépôt chimique en phase vapeur assisté paraérosol. La diffraction des rayons X et l’analyse Rietveld utilisant le modèle March-Dollase aété mise en oeuvre pour la détermination de la texture et des caractéristiques microstructurales.La morphologie des films a été caractérisée par microscopie électronique à balayage. L’étudea montré que la concentration de la solution de précurseur et la pression totale ont un effetmajeur sur la morphologie des films et leur texture.Une seconde partie s’est focalisée sur l’interface cathode-électrolyte pour trois cas d’étude : 1)couche mince de matériau de cathode LiCoO2, 2) couche mince de LiCoO2 recouvert de ZrO2et 3) couche mince de LiCoO2 recouvert de LIPON. L’interface cathode-électrolyte de cestrois cas d’étude a été étudiée avant et après cyclage galvanostatique afin de déterminer lescaractéristiques de la couche de surface et les changements provenant à l’interface lors dufonctionnement de l’accumulateur. L’interface des couches minces de LiCoO2 a été étudiéeplus en détail après trempage dans un électrolyte liquide afin de comprendre l’effet desprocédures de stockages courts dans les accumulateurs.De plus, les couches minces de LiPON ont été étudiées sur la base de changementsstructuraux se produisant avec la nitruration et sa corrélation à un possible mécanisme ayantlieu durant la conduction ionique. / The present work was based on the investigation of different thin film components of Li ionbatteries. A first part was dedicated to the deposition of cathodes in thin film form of aknown material, LiCoO2, and an alternative one, Li(NiMnCo)O2 employing physical vapordeposition (PVD) and chemical vapor deposition (CVD), respectively. Results on thedeposition of LiCoO2 showed how after cycling there is a reduction of rate capability andincrease in interface resistance. The X-ray diffraction pattern showed the presence of severalorientations related to the known HT phases found in literature for LiCoO2 with lowcrystallinity. On the other hand Li(NixMnyCoz)O2 thin films prepared via aerosol assistedCVD were analyzed with X-ray diffraction and Rietveld refinement using the March-Dollasemodel for the determination of the texturing and microstructural characteristics. Additionallythe morphology of the films was characterized using scanning electron microscopy. Theinvestigation showed that concentration of precursor solution and process pressures have asignificant effect on the film morphology and texturing. A second part was focused on the cathode-electrolyte interface for three case studies: 1) asdeposited LiCoO2 cathode thin film, 2) ZrO2 coated LiCoO2 thin film and 3) LiPON coatedLiCoO2 thin film. The interface cathode-electrolyte of these three cases were studied beforeand after galvanostatic cycling to determine surface layer characteristics and changes arisingon the interface after battery operation. The interface of a bare LiCoO2 layer was furtherstudied after soaking in liquid electrolyte to elucidate the effect of short storage procedures inbatteries.Surface analysis done on LiCoO2 thin films showed changes occurring at the interface layersafter the electrode was in short contact with the electrolyte solution and after galvanostaticcycling. Washing and soaking the electrode material in electrolyte and solvent showed thatsurface reactions start from the first contact. A main component of the electrolyte solution,LiPF6, has critical effect since it can decompose and form HF which reacts with carbonatesand forms LiF on the surface. Given the large amount of LiF, a high reactivity of LiCoO2 withthe decomposed species was observed, as the main components of the film were related to thedecomposed LiPF6 salt.The surface chemistry of the layer formed on LiCoO2 after cycling was mainly based ondecomposed species from the electrolyte salt arising from carbonated and fluorinated species.Artificial surface layers were deposited on LiCoO2 by means of rf sputtering. The thin layersof ZrO2 and LiPON used as coatings had minor effects on the original film morphology andcrystalline structure. An XPS analysis of the interface showed how the nature of each layerafter galvanostatic cycling was different for each case. The resulting artificial surface layerformed from ZrO2 coating showed mainly inorganic species, while the LiPON coatedcathode showed an organic nature. The final surface layers after electrochemical cycling ofthe ZrO2 coated film resembled that of the uncoated LiCoO2. Additionally, LiPON thin films were studied on the basis of structural changes occurringwith nitrogenation and its correlation to a possible mechanism during ion conduction.Composition of phosphate glasses with rf sputtering was proven to be greatly influenced bythe gas ratio employed. The largest variations were observed for lower amounts of N2 in thegas mixture. The IR spectra results showed important differences in the short range order forfilms with a similar amount of lithium. The lithium phosphorus oxynitride films depositedhere presented glassy structures with mainly ortho and pyro-phosphate units with smallamounts of short metaphosphate chains. Nitrogen insertion favors stability of lithium bygiving an environment with lower potential energy, as was evidenced by the far-IR results.
75

Etudes combinées par RMN et calculs DFT de (fluoro, oxy)-phosphates de vanadium paramagnétiques pour les batteries Li-ion ou Na-ion / Combined NMR/DFT study of paramagnetic vanadium (fluoro, oxy)-phosphates for Li or Na ion batteries

Bamine-Abdesselam, Tahya 07 June 2017 (has links)
Ce travail consiste en l’étude par RMN multinoyaux de matériauxparamagnétiques d’électrodes positives pour batteries Li ou Na-ion. La RMN du solidepermet une caractérisation de l’environnement local du noyau sondé grâce à l’exploitationdes interactions hyperfines dues à la présence d’une certaine densité d’électrons célibataires(déplacement de contact de Fermi) sur ce noyau (densité transférée selon des mécanismesplus ou moins complexes). Les matériaux étudiés sont des fluoro ou oxy phosphates devanadium de formules générales AVPO4X (A= Li ou Na; X = F, OH, ou OF) (structure typeTavorite), et Na3V2(PO4)2F1-xOx. Tous ces matériaux ont été caractérisés par RMN du 7Li ou23Na, 31P et 19F combiné à des calculs DFT, afin de mieux comprendre les structure etstructure électroniques locales. Notamment, ces études nous ont permis de mettre enévidence la présence de défauts dans certains matériaux et donc de discuter leur impact surles propriétés électrochimiques. L’utilisation de la méthode PAW nous a permis de modéliserdes défauts dilués dans des supermaille. Ensuite, l’impact de ces défauts sur la structurelocale a été étudié afin d’envisager les mécanismes de transfert de spin possibles etreproduire leur déplacements de RMN. / Paramagnetic materials for positive electrodes for Li or Na-ion batteries havebeen studied by multinuclear NMR. The local environment of the probed nucleus can becharacterized by solid state NMR making use of hyperfine interactions due to transfer ofsome electron spin density (Fermi contact shift) on this nucleus, via more or less complexmechanisms. The materials studied are vanadium fluoro or oxy phosphates of generalformulas AVPO4X (A= Li or Na; X = F, OH, or OF) belonging to the Tavorite family and theNa3V2(PO4)2F1-xOx . All these materials have been characterized by 7Li or 23Na, 31P and 19F,combined with DFT calculations to better understand local electronic structures andstructures. In particular, these studies have enabled us to highlight the presence of defects incertain materials and to discuss their impact on the electrochemical properties. The use ofthe PAW method allowed us to model diluted defects in large supercells, to calculate theFermi contact shifts of the surrounding nuclei and to study the mechanisms of electron spintransfer. This allowed us to better understand the nature of defects in materials.For some systems, the mechanisms related to the intercalation or deintercalation of Li+ orNa+ ions have also been studied by NMR.
76

Matériaux à hautes performance à base d'oxydes métalliques pour applications de stockage de l'énergie / High performance metal oxides for energy storage applications

Wang, Luyuan Paul 21 July 2017 (has links)
Le cœur de technologie d'une batterie réside principalement dans les matériaux actifs des électrodes, qui est fondamental pour pouvoir stocker une grande quantité de charge et garantir une bonne durée de vie. Le dioxyde d'étain (SnO₂) a été étudié en tant que matériau d'anode dans les batteries Li-ion (LIB) et Na-ion (NIB), en raison de sa capacité spécifique élevée et sa bonne tenue en régimes de puissance élevés. Cependant, lors du processus de charge/décharge, ce matériau souffre d'une grande expansion volumique qui entraîne une mauvaise cyclabilité, ce qui empêche la mise en oeuvre de SnO₂ dans des accumulateurs commerciaux. Aussi, pour contourner ces problèmes, des solutions pour surmonter les limites de SnO₂ en tant qu'anode dans LIB / NIB seront présentées dans cette thèse. La partie initiale de la thèse est dédié à la production de SnO₂ et de RGO (oxyde de graphène réduit)/SnO₂ par pyrolyse laser puis à sa mise en oeuvre en tant qu'anode. La deuxième partie s'attarde à étudier l'effet du dopage de l'azote sur les performances et permet de démontrer l'effet positif sur le SnO₂ dans les LIB, mais un effet néfaste sur les NIB. La partie finale de la thèse étudie l'effet de l'ingénierie matricielle à travers la production d'un composé ZnSnO₃. Enfin, les résultats obtenus sont comparés avec l'état de l'art et permettent de mettre en perspectives ces travaux. / The heart of battery technology lies primarily in the electrode material, which is fundamental to how much charge can be stored and how long the battery can be cycled. Tin dioxide (SnO₂) has received tremendous attention as an anode material in both Li-ion (LIB) and Na-ion (NIB) batteries, owing to benefits such as high specific capacity and rate capability. However, large volume expansion accompanying charging/discharging process results in poor cycleability that hinders the utilization of SnO₂ in commercial batteries. To this end, engineering solutions to surmount the limitations facing SnO₂ as an anode in LIB/NIB will be presented in this thesis. The initial part of the thesis focuses on producing SnO₂ and rGO (reduced graphene oxide)/SnO₂ through laser pyrolysis and its application as an anode. The following segment studies the effect of nitrogen doping, where it was found to have a positive effect on SnO₂ in LIB, but a detrimental effect in NIB. The final part of the thesis investigates the effect of matrix engineering through the production of a ZnSnO₃ compound. Finally, the obtained results will be compared and to understand the implications that they may possess.
77

Intérêt d’une Source d’Energie Electrique Hybride pour véhicule électrique urbain – dimensionnement et tests de cyclage / Interest of a hybrid electric energy storage for an urban electric vehicle - sizing and lifetime tests

Sadoun, Redha 03 June 2013 (has links)
Actuellement, la principale source d’énergie embarquée dans les véhicules électriques est composée de batteries Li-ion. Cette thèse fait partie des thématiques communes de travail que mène L’ESTACA en collaboration avec le L2EP. L’objectif ce projet est d’étudier l’apport d’une source hybride composée de batteries Li-ion et des supercondensateurs, sur les performances d’un véhicule électrique urbain.Dans un premier temps, une stratégie de gestion d’energie basée sur l’approche des règles déterministes a été appliquée pour montrer l’intérêt de l’association des différentes technologies de batterie Li-ion (haute puissance, haute énergie) avec le supercondensateur en fonction de l’autonomie voulue. Cette étude nous a permis de proposer une solution optimale (poids, volume, coût..) composée d’une batterie énergétique et un supercondensateur.Dans la deuxième partie, on a suivie l’évolution du vieillissement des deux de deux batteries de type haute puissance et hautes énergie dans, respectivement, les configurations mono-source et hybride. Pour réaliser cette étude, un banc de tests, destiné au cyclage et la caractérisation des systèmes de stockage, a été utilisé. Les résultats obtenus, offriront la possibilité de se prononcer sur le type de batteries Li-ion qui pourrait être le plus intéressant pour l’alimentation des véhicules électriques / Currently, the main embedded storage system supplying the electric vehicles is composed of Li-ion batteries. This thesis is one of the common themes of work that ESTACA leads in collaboration with L2EP. The objective of this work is to study the interest of a hybrid source composed of Li-ion batteries and supercapacitors to supply an urban electric.Firstly, an energy management strategy based on deterministic rules is developed to control the power between the battery and supercapacitor. To demonstrate the combination utility, different Li-ion battery technologies (Li-ion high power, high-Li-ion energy) are used on the sizing step. Through this study, we could propose an optimal solution (masses, volumes, costs...) consisting of battery and supercapacitor. In the second part, we have followed the evolution of capacity and the internal resistance losses of high power and high energy batteries type in, respectively, single-source and hybrid configurations. For this study, a test bench, developed for cycling and characterization of storage systems, was used. The results obtained provide the opportunity to choose Li-ion battery technology that could be the most interesting for the supply of electric vehicles
78

Compréhension et modélisation de l'emballement thermique de batteries Li-ion neuves et vieillies / Understanding and modeling of thermal runaway events pertaining to new and aged Li-ion batteries

Abada, Sara 14 December 2016 (has links)
Les batteries lithium-ion s'affichent comme de bons candidats pour assurer le stockage réversible de l'énergie électrique sous forme électrochimique. Toutefois, elles sont à l'origine d'un certain nombre d'incidents aux conséquences plus ou moins dramatiques. Ces incidents sont souvent liés au phénomène d'emballement thermique. La sécurité des batteries Li-ion représente par conséquent un enjeu technique et sociétal très important. C'est dans ce contexte que vient s'inscrire ce travail de thèse dans le cadre d'une collaboration entre IFPEN, l'INERIS et le LISE. Une double approche de modélisation et expérimentation a été retenue. Un modèle 3D du comportement thermique a été développé à l'échelle de la cellule, couplant les phénomènes thermiques et chimiques, et prenant en compte le vieillissement par croissance de la SEI sur l'électrode négative. Le modèle a été calibré pour la chimie LFP/C sur deux technologies A123s (2,3 Ah) et LifeBatt (15 Ah), puis validé expérimentalement. Le modèle permet d'identifier les paramètres critiques d'emballement de cellules, il permet également de discuter l'effet du vieillissement sur l'emballement thermique. Grâce à l'expérimentation, les connaissances en termes d'amorçage et de déroulement d'un emballement thermique d'une batterie Li-ion, ont pu être enrichies, en particulier pour les cellules commerciales LFP/C cylindriques A123s, LifeBatt, et pour les cellules NMC/C prismatiques en sachet souple PurePower (30 Ah). Cette étude ouvre de nouvelles possibilités pour améliorer la prédiction des différents événements qui ont lieu lors de l'emballement thermique des batteries Li-ion, à différentes échelles. / Li-ion secondary batteries are currently the preferred solution to store energy since a decade for stationary applications or electrical traction. However, because of their safety issues, Li-ion batteries are still considered as a critical part. Thermal runaway has been identified as a major concern with Li-ion battery safety. In this context, IFPEN, INERIS and LISE launched a collaboration to promote a PhD thesis so called « understanding and modeling of thermal runaway events pertaining to new and aged Li-ion batteries ». To achieve this goal, a double approach with modeling and experimental investigation is used. A 3D thermal runaway model is developed at cell level, coupling thermal and chemical phenomena, and taking into account the growth of the SEI layer as main ageing mechanism on negative electrode. Advanced knowledge of cells thermal behavior in over-heated conditions is obtained particularly for commercial LFP / C cylindrical cells: A123s (2,3Ah), LifeBatt (15Ah), and NMC / C pouch cells: PurePower (30 Ah). The model was calibrated for LFP / C cells, and then it was validated with thermal abuse tests on A123s and LifeBatt cells. This model is helpful to study the influence of cell geometry, external conditions, and even ageing on the thermal runaway initiation and propagation. This study opens up new possibilities for improving the prediction of various events taking place during Li-ion batteries thermal runaway, at various scales for further practical applications for safety management of LIBs.
79

Development of aqueous ion-intercalation battery systems for high power and bulk energy storage

Key, Julian D.V. January 2013 (has links)
Philosophiae Doctor - PhD / Aqueous ion-intercalation batteries (AIB’s) have the potential to provide both high power for hybrid-electric transport, and low cost bulk energy storage for electric grid supply. However, a major setback to AIB development is the instability of suitable ionintercalation anode material in aqueous electrolyte. To counter this problem, the use of activated carbon (AC) (a supercapacitor anode) paired against the low cost ionintercalation cathode spinel LiMn2O4 (LMO) provides a stable alternative. This thesis comprises two novel areas of investigation concerning: (1) the development of the AC/LMO cell for high power applications, and (2) the introduction of PbSO4 as a high capacity alternative anode material paired against LMO for low cost bulk energy storage. The study on AC/LMO explores the electrode combination’s practical specific energy and power capability at high P/E (power to energy ratio) of 50:1 suitable for hybrid electric vehicle batteries. To study the relationship between electrode material loading density, active material performance, and current collector mass contribution, a specially designed cell was constructed for galvanic cycling of different thicknesses of electrode. Between a loading density range of 25 – 100 mg, ~50 mg of total active material between two 1 cm2 current collectors produced the highest 50:1 P/E ratio values of 4 Wh/kg and 200 W/kg, constituting a 4-fold reduction of the active material values of thin films at 50:1 P/E. The cycling potentials of the individual electrodes revealed that doublings of electrode film loading density increased the LMO electrode’s polarization and voltage drop to similar levels as doublings in applied current density. However, by increasing the charging voltage from 1.8 V to 2.2 V, 6 Wh/kg and 300 W/kg was obtainable with minimal loss of energy efficiency. Finally a large-format cell of a calculated 3 Ah capacity at 50:1 P/E was constructed and tested. The cell produced ~60% of the anticipated capacity due to a suspected high level of resistance in the electrode contact points. The overall conclusion to the study was that AC/LMO holds promise for high power applications, and that future use of higher rate capability forms of LMO offers a promising avenue for further research. v The second part of this thesis presents the development of a novel cell chemistry, PbSO4/LMO, that has yet to be reported elsewhere in existing literature. The cell uses aqueous pH 7, 1 M, Li2SO4 electrolyte, and forms an electrode coupling where the PbSO4 anode charge/discharge is analogous to that in Pb-acid batteries. The average discharge voltage of the cell was 1.4 V and formed a flat charge/discharge plateau. The use of a low cost carbon coating method to encapsulate PbSO4 microparticles had a marked improvement on cell performance, and compared to uncoated PbSO4 improved both rate capability and specific capacity of the material. The active materials of the carbon-coated PbSO4/LMO cell produced a specific energy 51.1 Wh/kg, which, if a 65% yield is possible for a practical cell format, equals 38.4 Wh/kg, which is 15 Wh/kg higher than AC/LMO bulk storage cells at 23 Wh/kg, but lower than Pb-acid batteries at ~25-50 Wh/kg. Interestingly, the specific capacity of PbSO4 was 76 mAh/g compared to 100 mAh/g in Pb-acid cells. The predicted cost of the cell, providing a 65% value of the active material specific energy for a practical cell can be realized, is on par with Pb-acid battery technology and, importantly, uses 2.3 × less Pb/kWh. The cycling stability achieved thus far is promising, but will require testing over comparable cycle life periods to commercial batteries, which could be anywhere between 5 – 15 years.
80

Electrochemical Investigations Of Sub-Micron Size And Porous Positive Electrode Materials Of Li-Ion Batteries

Sinha, Nupur Nikkan 05 1900 (has links) (PDF)
A Comprehensive review of literature on electrode materials for lithium-ion batteries is provided in Chapter 1 of the thesis. Chapter 2 deals with the studies on porous, sub-micrometer size LiNi1/3Co1/3O2 as a positive electrode material for Li-ion cells synthesized by inverse microemulsion route and polymer template route. The electromechanical characterization studies show that carbon-coated LiNi1/3Co1/3O2 samples exhibit improved rate capability and cycling performance. Furthermore, it is anticipated that porous LiNi1/3Co1/3O2 could be useful for high rates of charge-discharge cycling. Synthesis of sub-micrometer size, porous particles of LiNi1/3Co1/3O2 using a tri-block copolymer as a soft template is carried out. LiNi1/3Co1/3O2 sample prepared at 900ºC exhibits a high rate capability and stable capacity retention of cycling. The electrochemical performance of LiNi1/3Co1/3O2 prepared in the absence of the polymer template is inferior to that of the sample prepared in the presence of the polymer template. Chapter 4 involves the synthesis of sub-micrometer size particles of LiMn2O4 in quaternary microemulsion medium. The electrochemical characterization studies provide discharge capacity values of about 100 mAh g-1 at C/5 rate and there is moderate decrease in capacity by increasing the rate of charge-discharge cycling. Studies also include charge-discharge cycling as well as ac impedance studies in temperature range from -10 to 40º C. Chapter 5 reports the synthesis of nano-plate LiFePO4 by polyol route starting from two reactants, namely, FePO42H2O and LiOH.2H2O. The electrodes fabricated out of nano-plate of LiFePO4 exhibit a high electrochemical activity. A stable capacity of about 155 mAh g-1 is measured at 0.2 C over 50 charge-discharge cycles. Mesoporous LiFePO4/C composite with two sizes of pores is prepared for the first time via solution-based polymer template technique. The precursor of LiFePO4/C composite is heated at different temperatures in the range from 600 to 800ºC to study the effect of crystalllinity, porosity and morphology on the electrochemical performance. The compound obtained at 700ºC exhibits a high rate capability and stable capacity retention on cycling with pore size distribution around 4 and 46nm. In Chapter 6, the electrochemical characterization of LiMn2O4 in an aqueous solution of 5 M LiNO3 is reported. A typical cell employing LiMn2O4 as the positive electrode and V2O5 as the negative electrode was assembled and the characterized by charge-discharge cycling in 5 M LiNO3 aqueous electrolyte. Furthermore, it is shown that Li+-ion in LiMn2O4 can be replaced by other divalent ions resulting in the formation of MMn2O4 (M = Ca, Mg, Ba and Sr) in aqueous M(NO3)2 electrolytes by subjecting LiMn2O4 electrodes to cyclic voltametry. Cyclic voltammetry and chronopotentiometry studies suggest that MMn2O4 can undergo reversible redox reaction by intercalation/deintercalation of M2+-ions in aqueous M(NO3)2 electrolytes.

Page generated in 0.0497 seconds