Spelling suggestions: "subject:"eie algebras"" "subject:"eie álgebras""
171 |
A Lie symmetry analysis of the heat equation through modified one-parameter local point transformationAdams, Conny Molatlhegi 08 1900 (has links)
Using a Lie symmetry group generator and a generalized form of Manale's formula
for solving second order ordinary di erential equations, we determine new symmetries
for the one and two dimensional heat equations, leading to new solutions. As
an application, we test a formula resulting from this approach on thin plate heat
conduction. / Applied Mathematics / M. Sc. (Applied Mathematics)
|
172 |
Fonctions tau polynomiales et topologique des hiérarchies de Drinfeld–Sokolov / Polynomial and topological tau functions of the Drinfeld–Sokolov hierarchiesDu Crest de Villeneuve, Ann 13 December 2018 (has links)
Cette thèse traite du calcul et des applications des fonctions tau des hiérarchies de Drinfeld–Sokolov introduites en 1984. Les hiérarchies de Drinfeld–Sokolov sont des suites d’équations aux dérivées partielles intégrables que l’on associe à n’importe quelle algèbre de Lie semi simple. La fonction tau est une fonction associée à toute solution d’une hiérarchie donnée et qui contient toute l’information de la solution. Les fonctions tau sont au cœur des liens qui unissent les hiérarchies de Drinfeld–Sokolov et la géométrie algébrique. Au chapitre 3, nous établissons une transformation explicite entre les fonctions tau polynomiales de la hiérarchie de Korteweg–de Vries (associée à l’algèbre sl(2,C)) et les polynômes d’Adler–Moser (1978). Ces derniers forment une suite de polynômes satisfaisant une certaine relation de récurrence différentielle. Le chapitre 4 traite du calcul des fonctions tau polynomiales par les déterminants de Toeplitz ; une méthode introduite par Cafasso et Wu (2015). En collaboration avec Cafasso et Yang, nous avons obtenu une expansion de la fonction tau en une somme sur les partitions d’entiers. Nous en déduisons un critère de polynomialité de la fonction tau et donnons quelques exemples non triviaux. Au chapitre 5, en collaboration avec Paolo Rossi, nous confirmons la conjecture dite « DR/DZ forte » dans le cas de l’algèbre de Lie simple o(8,C) (D4). Elle prévoit l’équivalence, en particulier, entre les hiérarchies de Drinfeld–Sokolov et d’autres hiérarchies dites de « double ramification, » introduite par Buryak (2015) et construites à partir de la cohomologie de l’espace de modules des courbes complexes stables Mg,n. / This thesis deals with the computation and applications of tau functions of the Drinfeld– Sokolov hierarchies introduced in 1984. The Drinfeld– Sokolov hierarchies are sequences of integrable partial differential equations which one associates to any semisimple Lie algebra. The tau function is a function associated to any solution of a given hierarchy and which contains all the information of the solution. Tau functions are at the heart of the bonds between Drinfeld–Sokolov hierarchies and algebraic geometry. In Chapter 3, we establish an explicit transformation between the polynomial tau functions of the Korteweg–de Vries hierarchy (associated to the algebra sl(2,C)) and the Adler–Moser polynomials (1978). The latter form a sequence of polynomials satisfying a certain differential recursion relation. Chapter 4 is dedicated to the computation of tau functions via Toeplitz determinants; a method introduced by Cafasso and Wu (2015). In collaboration with Cafasso and Yang, we obtained an expansion of the tau function as a sum over all integer partitions. It follows a simple criterion for the polynomiality of the tau function; we give some nontrivial examples. In Chapter 5, in collaboration with Paolo Rossi, we confirm the so-called ‘strong DR/DZ conjecture’ for the algebra o(8,C) (D4). The latter states an equivalence between, in particular, Drinfeld–Sokolov hierarchies and another kind of hierarchies called ‘the double ramification hierarchies’ introduced by Buryak (2015) and constructed from the cohomology of the moduli spaces of stables complex curves Mg,n.
|
173 |
Théorie quantique des champs topologiques pour la superalgèbre de Lie sl(2/1) / Topological quantum field theory for Lie superalgebra sl(2|1)Ha, Ngoc-Phu 07 December 2018 (has links)
Ce texte étudie le groupe quantique Uξ sl(2|1) associé à la superalgèbre de Lie sl(2|1) et une catégorie de ses représentations de dimension finie. L'objectif est de construire des invariants topologiques de 3-variétés en utilisant la notion de trace modifiée. D'abord nous prouvons que la H catégorie CH des modules de poids nilpotents sur Uξ sl(2|1) est enrubannée et qu'il existe une trace modifiée sur son idéal des modules projectifs. De plus CH possède une structure relativement G-prémodulaire ce qui est une condition suffisante pour construire un invariant de 3-variétés à la Costantino-Geer-Patureau. Cet invariant est le cœur d'une 1+1+1-TQFT (Topological Quantum Field Theory). D'autre part Hennings a proposé à partir d'une algèbre de Hopf de dimension finie une construction d’invariants qui dispense de considérer la catégorie de H l l ses représentations. Nous montrons que le groupe quantique déroulé Uξ sl(2|1)/(e1 , f1 ) possède une complétion qui est une algèbre de Hopf enrubannée topologique. Nous construisons un invariant de 3-variétés à la Hennings en utilisant cette structure algébrique, une transformation de Fourier discrète et la notion de G-intégrales. L'intégrale dans une algèbre de Hopf est centrale dans la construction de Hennings. La notion de trace modifiée dans une catégorie s'est récemment révélée être une généralisation des intégrales dans les algèbres de Hopf de dimension finie. Dans un contexte plus général d'algèbre de Hopf de dimension infinie nous prouvons la relation formulée entre la trace modifiée et la G -intégrale. / This text studies the quantum group Uξ sl(2|1) associated with the Lie superalgebra sl(2|1) and a category of finite dimensional representations. The aim is to construct the topological invariants of 3-manifolds using the notion of modified trace. We first prove that the category CH of the nilpotent weight modules over Uξ sl(2|1) is ribbon and that there exists a modified trace on its ideal of projective modules. Furthermore, CH possesses a relative G-premodular structure which is a sufficient condition to construct an invariant of 3-manifolds of Costantino-Geer-Patureau type. This invariant is the heart of a 1+1+1-TQFT (Topological Quantum Field Theory). Next Hennings proposed from a finite dimensional Hopf algebra, a construction of invariants which does not require to consider the category of its representations. We show that the unrolled H l l quantum group Uξ sl(2|1)/(e1 , f1 ) has a completion which is a topological ribbon Hopf algebra. We construct an invariant of 3-manifolds of Hennings type using this algebraic structure, a discrete Fourier transform, and the notion of G-integrals. The integral in a Hopf algebra is central in the construction of Hennings. The notion of modified trace in a category has recently been revealed to be a generalization of the integrals in a finite dimensional Hopf algebra. In a more general context of infinite dimensional Hopf algebras we prove the relation formulated between the modified trace and the G-integral.
|
174 |
Représentations associées à des graduations d'algèbres de Lie et d'algèbres de Lie colorées / Representations associated to gradations of Lie algebras and colour Lie algebrasMeyer, Philippe 09 January 2019 (has links)
Soit k un corps de caractéristique différente de 2 et de 3. Les algèbres de Lie colorées généralisent à la fois les algèbres de Lie et les superalgèbres de Lie. Dans cette thèse on étudie des représentations V d'algèbres de Lie colorées g provenant de structures d'algèbres de Lie colorées sur l'espace vectoriel g⨁V. En premier lieu, on s'intéresse à la structure générale des algèbres de Lie simples de dimension 3 sur k. Puis, on classifie à isomorphisme près les superalgèbres de Lie de dimension finie dont la partie paire est une algèbre de Lie simple de dimension 3. Ensuite, pour un groupe abélien ᴦ et un facteur de commutation ɛ de ᴦ, on développe l'algèbre multilinéaire associée aux espaces vectoriels ᴦ-gradués. Dans ce contexte, les algèbres de Lie colorées jouent le rôle des algèbres de Lie. Ce langage nous permet d'énoncer et prouver un théorème de reconstruction d'une algèbre de Lie colorée ɛ-quadratique g⨁V à partir d'une représentation ɛ-orthogonale V d'une algèbre de Lie colorée ɛ-quadratique g. Ce théorème fait intervenir un invariant qui prend ses valeurs dans la ɛ-algèbre extérieure de V et généralise des résultats de Kostant et Chen-Kang. Puis, on introduit la notion de représentation ɛ-orthogonale spéciale V d'une algèbre de Lie colorée ɛ-quadratique g et on montre qu'elle permet de définir une structure d'algèbre de Lie colorée ɛ-quadratique sur l'espace vectoriel g⨁sl(2,k)⨁V⨂k². Enfin on donne des exemples de représentations ɛ-orthogonales spéciales, notamment des représentations orthogonales spéciales d'algèbres de Lie dont : une famille à un paramètre de représentations de sl(2,k)xsl(2,k) ; la représentation fondamentale de dimension 7 d'une algèbre de Lie de type G₂ ; la représentation spinorielle de dimension 8 d'une algèbre de Lie de type so(7). / Let k be a field of characteristic not 2 or 3. Colour Lie algebras generalise both Lie algebras and Lie superalgebras. In this thesis we study representations V of colour Lie algebras g arising from colour Lie algebras structures on the vector space g⨁V. Firstly, we study the general structure of simple three-dimensional Lie algebras over k. Then, we classify up to isomorphism finite-dimensional Lie superalgebras whose even part is a simple three-dimensional Lie algebra. Next, to an abelian group ᴦ and a commutation factor ɛ of ᴦ, we develop the multilinear algebra associated to ᴦ-graded vector spaces. In this context, colour Lie algebras play the rôle of Lie algebras. This language allows us to state and prove a theorem reconstructing an ɛ-quadratic colour Lie algebra g⨁V from an ɛ-orthogonal representation V of an ɛ-quadratic colour Lie algebra g. This theorem involves an invariant taking its values in the ɛ-exterior algebra of V and generalises results of Kostant and Chen-Kang. We then introduce the notion of a special ɛ-orthogonal representation V of an ɛ-quadratic colour Lie algebra g and show that it allows us to define an ɛ-quadratic colour Lie algebra structure on the vector space g⨁sl(2,k)⨁V⨂k². Finally we give examples of special ɛ-orthogonal representations and in particular examples of special orthogonal representations of Lie algebras amongst which are: a one-parameter family of representations of sl(2,k)xsl(2,k) ; the 7-dimensional fundamental representation of a Lie algebra of type G₂ ; the 8-dimensional spinor representation of a Lie algebra of type so(7).
|
175 |
Etude géométrique et structures différentielles généralisées sur les algèbres de Lie quasi-filiformes complexes et réelles / Geometrical research and generalized differential structures on the complex and real quasi-filiform Lie algebrasGarcia Vergnolle, Lucie 09 September 2009 (has links)
Le premier problème qui se pose naturellement lors de l'étude des algèbres de Lie nilpotentes est la classification de celles-ci en petite dimension. La classification des algèbres de Lie nilpotentes complexes a été complétée jusqu'en dimension 7. Pour les dimensions inférieures ou égales à 6, il n'existe, sauf isomorphismes, qu'un nombre fini d'algèbres de Lie nilpotentes complexes. Ancochea a classé les algèbres de Lie nilpotentes complexes en dimension 7 selon leur suite caractéristique. On obtient ainsi, une liste plus étendue qui contient des familles d'algèbres de Lie non isomorphes entre elles.On envisage alors d'étudier les algèbres de Lie nilpotentes selon leur nilindice, en commençant par celles qui ont un nilindice maximal, c'est-à-dire , les algèbres de Lie filiformes. Dès 1970. Vergne a initié l'étude des algèbres de Lie filiformes. Elle a montré que sur un corps ayant une infinité d'éléments, il n'existe, sauf isomorphismes, que deux algèbres de Lie filiformes naturellement graduées de dimension paire 2n, nommées L2n et Q2n, et une seule en dimension impaire 2n + 1, appelée L2n+ avec n E N.Plus récemment, Snobl et Winternitz ont déterminé les algèbres de Lie ayant comme nilradical l'algèbre Ln, sur le corps des complexes et des réels. Afin de compléter cette classification à toutes les algèbres de Lie filiformes naturellement graduées, nous avons procéder de même avec les algèbres Q2n,. Nous démontrons ensuite que si une algèbre de Lie indécomposable de dimension finie possède un nilradical filiforme alors elle est forcément résoluble. Les algèbres de Lie filiformes ne présentent donc aucun intérêt dans l'étude des algèbres de Lie non résolubles.Ce résultat n'est plus vrai pour les algèbres de Lie quasi-filiformes dont leur nilradical est abaissé d'une unité par rapport aux filiformes. En effet, en cherchant toutes les algèbres de Lie dont le nilradical est quasi-filiforme naturellement gradué, on a trouvé des algèbres de Lie non résolubles ayant un nilradical quasi-filiforme.Ce même contre-exemple, révèle aussi des différences entre la notion de rigidité dans R et dans C. La classification des algèbres de Lie rigides complexes ayant été déjà faite jusqu'à dimension 8, on est alors amené à trouver cette classification dans le cas réel.Par ailleurs, on a déterminé les algèbres de Lie quasi-filiformes ayant un tore non nul, on obtient une liste beaucoup plus riche que pour le cas filiforme. Cette liste nous permet de prouver la complétude des algèbres de Lie quasi-filiformes. Rappelons que toutes les algèbres de Lie filiformes sont aussi complètes.Finalement, on s'intéresse à l'existence de structures complexes associées aux algèbres de Lie filiformes et quasi-filiformes. Goze et Remm ont démontré que les algèbres filiformes n'admettaient pas ce type de structure. Depuis une approche différente, nous allons redémontrer ce résultat et nous allons voir qu'il existe par contre des algèbres de Lie quasi-filiformes munies d'une structure complexe, mais seulement en dimension 4 et 6. / The first problem which arises naturally in the study of the nilpotenttie algebras is their classification in small dimension. The classification of nilpotent complex Lie algebras was completed until dimension 7. For dimensions lower or equal to 6, there is, except isomotphisms, a finite number of nilpotent complex Lie algebras. In dimension 7, Ancochea classified the nilpotent complex Lie algebras according to their characteristic sequence and he obtains a more extensive list which contains families of non isomorphic Lie algebras.We intend then to study the nilpotent Lie algebras according to their nilindex by beginning with those which have a maximal nilindex. also called filiform Lie algebras. From 1970. Vergne started the study of the filiform Lie algebras. She showed that on a field having an infinity of elements. there are, except isomorphisme, only two naturally graded Lie algebras of even dimension 2n, named L2n, and Q2n,. and there is only one in odd dimension 2n+1, called L2n+1.More recently, Snobl and Winternitz determined the complex and real Lie algebras having the algebra L„ as nilradieal. To generalize this classification to all filiform naturally graded Lie algebra_ we have proceed in a similar wav with the algebra Q2n,. Moreover, we prove that indecomposable Lie algebras with filiform nilradieal are necessarily solvable. Thus, the filiform Lie algebra are irrelevant in the study of the non solvable Lie algebras.This result is not truc for the quasi-filiform Lie algebras. Let us recall that the nilindex of quasi-filiform Lie algebras is, by definition, lowered by a unit with regard to the filiform. Indeed, by looking for all the Lie algebras having a quasifiliform naturally graded nilradieal, we found non solvable Lie algebras having a quasi-filiform nilradical.The same counterexample also reveals differences between the notion of rigidity in R and in C. The classification of complex rigid Lie algebras having been already made until dimension 8, we are then brought to find this classification in the real case.Besides, we determined the quasi-filiform Lie algebras admitting a tonus of derivations, we obtain a list much richer than for the filiform case. This list allows us to prove that all quasi-fi liform Lie algebras are complete. Let us remind that all the filiform Lie algebras are also complete.Finally, we are interested in the existence of complex structures associated to the filiform and quasi-filiform Lie algebras Goze and Remm proved that the filiform algebras did not admit this type of structure. Since a different approach, we are going to re-demonstrate this result and we see that there are, on the other hand, quasi-filiform Lie algebras provided with a complex structure, but only in dimension 4 and 6.
|
176 |
Curvaturas de métricas invariantes em Grupos de LieSene, Renato Tolentino de 27 March 2015 (has links)
In this work we study the geometric aspects of Lie groups from the view point of the
Riemannian geometry, by means of invariant geometric structures associated. We present
some properties on curvatures of metrics left invariants and bi-invariant one on Lie groups.
We also present a treatment of the Lie algebras unimodular, including the tridimensional
case. Most of the results studied are from the article of John Milnor: Curvatures of Left
Invariant Metrics on Lie Groups. / Neste trabalho estudamos os aspectos geometricos de grupos de Lie, do ponto de vista da
geometria Riemanniana, por meio de estruturas geometricas invariantes associadas. Nos
apresentamos algumas propriedades de curvaturas com metricas invariante a esquerda e
aquelas bi-invariantes em grupos de Lie. Apresentamos tambem um tratamento das algebras
de Lie unimodulares, incluindo o caso tridimensional. A maioria dos resultados estudados
foram retirados do artigo de John Milnor: Curvatures of Left Invariant Metrics on Lie
Groups. / Mestre em Matemática
|
177 |
A classificação dos sistemas elementares relativísticos em 1 + 1 dimensões / The classification of elementary systems in relativistic 1 +1 dimensions.Ricardo Oliveira de Mello 21 February 2002 (has links)
nvestigando a estrutura dos sistemas elementares com simetria de Poincaré em 1 + 1 dimensões, devemos considerar o problema da eliminação das anomalias clássicas, que têm origem no segundo grupo de cohomologia não-trivial deste grupo dinâmico, gerando um termo de Wess-Zumino na ação da partícula relativística. Efetuamos a classificação geral de todos os sistemas elementares em 1 + 1 dimensões, em termos de co-órbitas, mostrando que existe um simplectomorfismo entre o espaço de fase reduzido da partícula e uma determinada co-órbita na álgebra de Lie dual à de Poincaré estendida. / While researching the structure of elementar systems with Poincaré symmetry in 1+1 dimensions, we must be concerned about the problem of elimination of the classical anomalies, which arise from the non-trivial second cohomology group of this dynamical group, generating a Wess-Zumino term in the relativistic particle action. We classify all elementary systems in 1+1 dimensions in terms of co-orbits, showing that there is a symplectomorphism between the reduced phase space of the particle and a certain co-orbit in the Lie algebra dual to the extended Poincaré one.
|
178 |
Ação de automorfismos livres de pontos fixos / Zn-graded lie rings with fixed point free automorphismsAraujo, Daniel dos Santos 13 May 2016 (has links)
Submitted by Jaqueline Silva (jtas29@gmail.com) on 2016-09-12T21:09:34Z
No. of bitstreams: 2
Dissertação - Daniel dos Santos Araújo - 2016.pdf: 1529885 bytes, checksum: 8ed172afb4beaab8a7bf1c612425044f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-09-12T21:09:45Z (GMT) No. of bitstreams: 2
Dissertação - Daniel dos Santos Araújo - 2016.pdf: 1529885 bytes, checksum: 8ed172afb4beaab8a7bf1c612425044f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-09-12T21:09:45Z (GMT). No. of bitstreams: 2
Dissertação - Daniel dos Santos Araújo - 2016.pdf: 1529885 bytes, checksum: 8ed172afb4beaab8a7bf1c612425044f (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-05-13 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / If a Zn-graded Lie ring L admits a fixed point free automorphism of order n, then
L is soluble and the derived length of L is bounded in function only on n. In this
work, we study some results about the derived length of the Zn-graded Lie rings
and in the particular case that n = 6, we also study properties to the nilpotency
class of the lower central series of L. For this, we introduce some basic results of Lie
algebras theory and Lie rings, as well preliminary concepts of modules and tensor
product. Finally, we study a Lie ring associated to a group once many problems in
group theory can be treated by linear methods about Lie algebras and Lie rings. / Um anel de Lie Zn-graduado L, que admite um automorfismo livre de pontos fixos
de ordem n é solúvel e tem comprimento derivado limitado apenas em função de n.
Estudamos neste trabalho resultados relacionados ao comprimento derivado do anel
de Lie Zn-graduado L, onde para o caso de n = 6, vemos também um limite para
a classe de nilpotência de um termo da série central inferior de L. Para esse fim,
fazemos um estudo introdutório sobre álgebras de Lie e anéis de Lie, como também
conceitos preliminares sobre módulos e produto tensorial. Apresentamos também
um anel de Lie associado a um grupo, pois muitos problemas em Teoria de Grupos
podem ser tratados via métodos lineares para anéis e álgebras de Lie.
|
179 |
Constructions and automorphisms of Kac-Moody groupsNguyen, Aude 17 September 2010 (has links)
Les travaux de Killing et Cartan ont montré la correspondance entre les algèbres de Lie semi-simples complexes et les matrices de Cartan. Ces dernières sont des matrices sur les entiers satisfaisants certaines propriétés, parmi lesquelles une condition de positivité. Si cette condition est omise, on obtient une matrice de Cartan généralisée. On peut y étendre la présentation de Serre pour les algèbre de Lie semi-simples et obtenir les algèbres de Kac-Moody. <p>L'intérêt de l'étude des algèbres de Lie semi-simples réside dans le fait qu'elles induisent la plupart des groupes simples finis, comme le montre la construction de Chevalley. Il se fait que cette construction se généralise aux algèbres de Kac-Moody.<p><p>L'ingrédient principal de cette construction est l'utilisation d'un système de sous-groupes dans un groupe de Kac-Moody, ceux-ci étant indicés par les racines du système de Coxeter associé à la matrice de Cartan généralisée. Tits a réalisé l'axiomatique de ce système de sous-groupes, une donnée radicielle jumelée, pour un système de Coxeter quelconque. Par définition, les groupes de Kac-Moody sur un corps commutatif admettent une donnée radicielle jumelée.<p><p>En réalité les notions de donnée radicielle jumelée et d'immeuble jumelé de Moufang sont essentiellement équivalentes.<p>Au vu de la classification des immeubles sphériques et des polygones de Moufang, on obtient une classification complète des données radicielles sphériques irréductibles de rang au moins 2. Il se trouve qu'elles sont toutes d'origine algébrique (i.e. obtenues par constructions algébriques à partir de groupes de Chevalley).<p><p>Dans le cas sphérique, la situation est différente. D'une part, des résultats de Mühlherr semblent indiquer que les données radicielles jumelées 2-sphériques seraient d'origine algébrique. D'autre part Rémy et Ronan ont construit des exemples exotiques à angles droits pour lesquels l'adjectif "d'origine algébrique" est inapproprié.<p><p>Néanmoins ces exemples sont toujours relativement proches d'une construction algébrique. On ne peut donc rien conclure sur les données radicielles jumelées. Afin de répondre à cette question, on peut essayer de prouver des théorèmes structurels sur les données radicielles jumelées ou en donner des constructions permettant plus de flexibilité.<p><p>Les principaux résultats de cette thèse sont motivés par ces lignes directrices:<p>- nous prouvons un critère d'existence général pour les données radicielles jumelées;<p>- nous donnons une réponse affirmative à une question sur les automorphismes des groupes de Kac-Moody laissée ouverte dans un article de Caprace;<p>- nous proposons une définition d'une donnée radicielle jumelée sur un corps commutatif de caractéristique p.<p><p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
180 |
Formalidade geométrica e números de Chern em variedades flag / Geometric formality and Chern numbers on flag manifoldsOliveira, Ailton Ribeiro de, 1987- 27 August 2018 (has links)
Orientadores: Caio José Colletti Negreiros, Lino Anderson da Silva Grama / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T16:12:58Z (GMT). No. of bitstreams: 1
Oliveira_AiltonRibeirode_D.pdf: 1000877 bytes, checksum: 4f91902c1ef47fbb7b02f75348402924 (MD5)
Previous issue date: 2015 / Resumo: A primeira parte do trabalho é dedicada ao estudo da formalidade geométrica em variedades flag. Uma Estrutura Riemanniana (M,g) é geometricamente formal se g possui a propriedade que todos os produtos wedge de formas harmônicas são harmônicos. Tal métrica g é chamada formal. Vamos analisar esse fato quando M é uma variedade flag usando métodos topológicos. Na verdade, mostraremos que muitas variedades flag não admitem nenhuma métrica formal g. Na segunda parte do trabalho, calcularemos os números de Chern de várias variedades flag e vamos usá-los para classificar algumas estruturas quase complexas invariantes. Além disso, mostraremos, com o auxílio do Teorema de Kodaira, que os números de Chern satisfazem algumas relações impostas pelo Teorema de Hirzebruch-Riemann-Roch / Abstract: The first part of work is dedicated to the study of geometric formality on flag manifolds. A Riemannian Structure (M,g) is geometrically formal if g has the property that all wedge products of harmonic forms are harmonic. Such metric g is called formal. We are going to analyse this fact when M is a flag manifold using topological methods. Indeed, we will show that many flag manifolds do not admit a formal metric g. In the second part of work, we will calculate Chern numbers of many flag manifolds and we are going to use them to classify some invariant almost complex structures. Furthermore, we will show with help of the Kodaira Theorem that the Chern numbers satisfy some relations imposed by the Hirzebruch-Riemann-Roch Theorem / Doutorado / Matematica / Doutor em Matemática
|
Page generated in 0.1002 seconds