• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 23
  • 19
  • 11
  • 9
  • 6
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 197
  • 197
  • 116
  • 50
  • 38
  • 38
  • 38
  • 36
  • 35
  • 35
  • 33
  • 31
  • 31
  • 29
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Nonlinear devices characterization and micromachining techniques for RF integrated circuits

Parvais, Bertrand J. H. 10 December 2004 (has links)
The present work is dedicated to the development of high performance integrated circuits for wireless communications, by acting of three different levels: technologies, devices, and circuits. Silicon-on-Insulator (SOI) CMOS technology is used in the frame of this work. Micromachining technologies are also investigated for the fabrication of three-dimensional tunable capacitors. The reliability of micromachined thin-film devices is improved by the coating of silanes in both liquid- and vapor-phases. Since in telecommunication applications, distortion is responsible for the generation of spurious frequency bands, the linearity behavior of different SOI transistors is analyzed. The validity range of the existing low-frequency nonlinear characterization methods is discussed. New simple techniques valid at both low- and high-frequencies, are provided, based on the integral function method and on the Volterra series. Finally, the design of a crucial nonlinear circuit, the voltage-controlled oscillator, is introduced. The describing function formalism is used to evaluate the oscillation amplitude and is embedded in a design methodology. The frequency tuning by SOI varactors is analyzed in both small- and large-signal regimes.
182

Amplificadores de banda ancha y bajo ruido basados en tecnología de GaAs para aplicaciones de radiometría

Aja Abelán, Beatriz 19 January 2007 (has links)
En esta Tesis se ha realizado análisis, diseño y caracterización de los amplificadores de bajoruido y banda ancha en tecnología de GaAs PHEMT con aplicación a los módulos posteriores delradiómetro del instrumento de baja frecuencia del satélite Planck. La Tesis se compone de las siguientes partes:- Introducción y estudio del funcionamiento del radiómetro del instrumento de baja frecuencia de Planck.- Diseño y caracterización de amplificadores de bajo ruido utilizando tecnología de GaAs. Se presentan diseños MMIC en la banda Ka y en la banda Q, y un diseño MIC en la banda Q.- Diseño y construcción de los módulos posteriores en las bandas de 30 y 44 GHz. Se presentan varios prototipos fabricados en ambas bandas, así como medidas de cada uno de los subsistemas que los forman.- Desarrollo de técnicas de medida para receptores de banda ancha con detección directa y su aplicación a la caracterización de los módulos posteriores, mostrando el funcionamiento de los prototipos representativos para las dos bandas de frecuencia.- Integración de los módulos posteriores con los módulos frontales y presentación de algunos de los resultados de medida de los radiómetros completos. / This Thesis deals with the analysis, design and characterization of broadband low noise amplifiersin GaAs PHEMT technology with application to the radiometer Back-End Modules for the Planck Low Frequency Instrument (LFI). The Thesis is composed of the next parts:- Introduction and study about the radiometer of the Planck low frequency instrument.- Design and characterization of low noise amplifiers using GaAs technology. Ka-band MMIC designs and Q-band MMIC and a MIC design are presented.- Design and assembly of the 30 and 44 GHz back-end modules. Several prototypes have been manufactured in both frequency bands and the most representative test results of each subsystem are presented.- Development of measurement techniques for broadband direct detection receivers and their application to the characterization of the back-end modules. Performance of representative prototypes in both frequency bands is included.- Integration of the back end modules and front end modules and significant results of the tests for a radiometer in each frequency band.
183

Innovative transceiver approaches for low-power near-field and far-field applications

Inanlou, Farzad Michael-David 27 August 2014 (has links)
Wireless operation, near-field or far-field, is a core functionality of any mobile or autonomous system. These systems are battery operated or most often utilize energy scavenging as a means of power generation. Limited access to power, expected long and uninterrupted operation, and constrained physical parameters (e.g. weight and size), which limit overall power harvesting capabilities, are factors that outline the importance for innovative low-power approaches and designs in advanced low-power wireless applications. Low-power approaches become especially important for the wireless transceiver, the block in charge of wireless/remote functionality of the system, as this block is usually the most power hungry component in an integrated system-on-chip (SoC). Three such advanced applications with stringent power requirements are examined including space-based exploratory remote sensing probes and their associated radiation effects, millimeter-wave phased-array radar for high-altitude tactical and geological imaging, and implantable biomedical devices (IMDs), leading to the proposal and implementation of low-power wireless solutions for these applications in SiGe BiCMOS and CMOS and platforms.
184

Parametric Interaction in Josephson Junction Circuits and Transmission Lines

Mohebbi, Hamid Reza 06 November 2014 (has links)
This research investigates the realization of parametric amplification in superconducting circuits and structures where nonlinearity is provided by Josephson junction (JJ) elements. We aim to develop a systematic analysis over JJ-based devices toward design of novel traveling-wave Josephson parametric amplifiers (TW-JPA). Chapters of this thesis fall into three categories: lumped JPA, superconducting periodic structures and discrete Josephson transmission lines (DJTL). The unbiased Josephson junction (JJ) is a nonlinear element suitable for parametric amplification through a four-photon process. Two circuit topologies are introduced to capture the unique property of the JJ in order to efficiently mix signal, pump and idler signals for the purpose of signal amplification. Closed-form expressions are derived for gain characteristics, bandwidth determination, noise properties and impedance for this kind of parametric power amplifier. The concept of negative resistance in the gain formulation is observed. A design process is also introduced to find the regimes of operation for gain achievement. Two regimes of operation, oscillation and amplification, are highlighted and distinguished in the result section. Optimization of the circuits to enhance the bandwidth is also carried out. Moving toward TW-JPA, the second part is devoted to modelling the linear wave propagation in a periodic superconducting structure. We derive closed-form equations for dispersion and s-parameters of infinite and finite periodic structures, respectively. Band gap formation is highlighted and its potential applications in the design of passive filters and resonators are discussed. The superconducting structures are fabricated using YBCO and measured, illustrating a good correlation with the numerical results. A novel superconducting Transmission Line (TL), which is periodically loaded by Josephson junctions (JJ) and assisted by open stubs, is proposed as a platform to realize a traveling-wave parametric device. Using the TL model, this structure is modeled by a system of nonlinear partial differential equations (PDE) with a driving source and mixed-boundary conditions at the input and output terminals, respectively. This model successfully emulates parametric and nonlinear microwave propagation when long-wave approximation is applicable. The influence of dispersion to sustain three non-degenerate phased-locked waves through the TL is highlighted. A rigorous and robust Finite Difference Time Domain (FDTD) solver based on the explicit Lax-Wendroff and implicit Crank-Nicolson schemes has been developed to investigate the device responses under various excitations. Linearization of the wave equation, under small-amplitude assumption, dispersion and impedance analysis is performed to explore more aspects of the device for the purpose of efficient design of a traveling-wave parametric amplifier. Knowing all microwave characteristics and identifying different regimes of operation, which include impedance properties, cut-off propagation, dispersive behaviour and shock-wave formation, we exploit perturbation theory accompanied by the method of multiple scale to derive the three nonlinear coupled amplitude equations to describe the parametric interaction. A graphical technique is suggested to find three waves on the dispersion diagram satisfying the phase-matching conditions. Both cases of perfect phase-matching and slight mismatching are addressed in this work. The incorporation of two numerical techniques, spectral method in space and multistep Adams-Bashforth in time domain, is employed to monitor the unilateral gain, superior stability and bandwidth of this structure. Two types of functionality, mixing and amplification, with their requirements are described. These properties make this structure desirable for applications ranging from superconducting optoelectronics to dispersive readout of superconducting qubits where high sensitivity and ultra-low noise operation is required.
185

Power Scaling Mechanism for Low Power Wireless Receivers

Ghosal, Kaushik January 2015 (has links) (PDF)
LOW power operation for wireless radio receivers has been gaining importance lately on account of the recent spurt of growth in the usage of ubiquitous embedded mobile devices. These devices are becoming relevant in all domains of human influence. In most cases battery life for these devices continue to be an us-age bottleneck as energy storage techniques have not kept pace with the growing demand of such mobile computing devices. Many applications of these radios have limitations on recharge cycle, i.e. the radio needs to last out of a battery for long duration. This will specially be true for sensor network applications and for im-plantable medical devices. The search for low power wireless receivers has become quite advanced with a plethora of techniques, ranging from circuit to architecture to system level approaches being formulated as part of standard design procedures. However the next level of optimization towards “Smart” receiver systems has been gaining credence and may prove to be the next challenge in receiver design and de-velopment. We aim to proceed further on this journey by proposing Power Scalable Wireless Receivers (PSRX) which have the capability to respond to instantaneous performance requirements to lower power even further. Traditionally low power receivers were designed for worst-case input conditions, namely low signal and high interference, leading to large dynamic range of operation which directly im-pacts the power consumption. We propose to take into account the variation in performance required out of the receiver, under varying Signal and Interference conditions, to trade-off power. We have analyzed, designed and implemented a Power Scalable Receiver tar-geted towards low data-rate receivers which can work for Zigbee or Bluetooth Low Energy (BLE) type standards. Each block of such a receiver system was evaluated for performance-power trade-offs leading to identification of tuning/control knobs at the circuit architecture level of the receiver blocks. Then we developed an usage algorithm for finding power optimal operational settings for the tuning knobs, while guaranteeing receiver reception performance in terms of Bit-Error-Rate (BER). We have proposed and demonstrated a novel signal measurement system to gen-erate digitized estimates of signal and interference strength in the received signal, called Received Signal Quality Indicator (RSQI). We achieve a RSQI average energy consumption of 8.1nJ with a peak energy consumption of 9.4nJ which is quite low compared to the packet reception energy consumption for low power receivers, and will be substantially lower than the energy savings which will be achieved from a power scalable receiver employing a RSQI. The full PSRX system was fabricated in UMC 130nm RF-CMOS process to test out our concepts and to formally quantify the power savings achieved by following the design methodology. The test chip occupied an area of 2.7mm2 with a peak power consumption of 5.5mW for the receiver chain and 18mW for the complete PSRX. We were able to meet the receiver performance requirements for Zigbee standard and achieved about 5X power savings for the range of input condition variations.
186

Frequency Synthesis for Cognitive Radio Receivers and Other Wideband Applications

Zahir, Zaira January 2017 (has links) (PDF)
The radio frequency (RF) spectrum as a natural resource is severely under-utilized over time and space due to an inefficient licensing framework. As a result, in-creasing cellular and wireless network usage is placing significant demands on the licensed spectrum. This has led to the development of cognitive radios, software defined radios and mm-wave radios. Cognitive radios (CRs) enable more efficient spectrum usage over a wide range of frequencies and hence have emerged as an effective solution to handle huge network demands. They promise versatility, flex-ability and cognition which can revolutionize communications systems. However, they present greater challenges to the design of radio frequency (RF) front-ends. Instead of a narrow-band front-end optimized and tuned to the carrier frequency of interest, cognitive radios demand front-ends which are versatile, configurable, tun-able and capable of transmitting and receiving signals with different bandwidths and modulation schemes. The primary purpose of this thesis is to design a re-configurable, wide-band and low phase-noise fast settling frequency synthesizer for cognitive radio applications. Along with frequency generation, an area efficient multi-band low noise amplifier (LNA) with integrated built-in-self-test (BIST) and a strong immunity to interferers has also been proposed and implemented for these radios. This designed LNA relaxes the specification of harmonic content in the synthesizer output. Finally some preliminary work has also been done for mm-wave (V-band) frequency synthesis. The Key Contributions of this thesis are: A frequency synthesizer, based on a type-2, third-order Phase Locked Loop (PLL), covering a frequency range of 0.1-5.4 GHz, is implemented using a 0.13 µm CMOS technology. The PLL uses three voltage controlled oscillators (VCOs) to cover the whole range. It is capable of switching between any two frequencies in less than 3 µs and has phase noise values, compatible with most communication standards. The settling of the PLL in the desired state is achieved in dynamic multiple steps rather than traditional single step settling. This along with other circuit techniques like a DAC-based discriminator aided charge pump, fast acquisition pulse-clocked based PFD and timing synchro-negation is used to obtain a significantly reduced settling time A single voltage controlled LC-oscillator (LC-VCO) has been designed to cover a wide range of frequencies (2.0-4.1 GHz) using an area efficient and switch-able multi-tap inductor and a capacitor bank. The switching of the multi-tap inductor is done in the most optimal manner so as to get good phase-noise at the output. The multi-tap inductor provides a significant area advantage, and in spite of a degraded Q, provides an acceptable phase noise of -123 dBc/Hz and -113 dBc/Hz at an offset of 1 MHz at carrier frequencies of 2 and 4 GHz, respectively. Implemented in a 0.13 µm CMOS technology, the oscillator with ≈ 69 % tuning range, occupies an active area of only 0.095 mm2. An active inductor based noise-filter has been proposed to improve the phase-noise performance of the oscillator without much increase in the area. A variable gain multi-band low noise amplifier (LNA) is designed to operate over a wide range of frequencies (0.8 GHz to 2.4 GHz) using an area efficient switchable-π network. The LNA can be tuned to different gain and linearity combinations for different band settings. Depending upon the location of the interferers, a specific band can be selected to provide optimum gain and the best signal-to-intermodulation ratio. This is accomplished by the use of an on-chip Built-in-Self-Test (BIST) circuit. The maximum power gain of the amplifier is 19 dB with a return loss better than 10 dB for 7 mW of power consumption. The noise figure is 3.2 dB at 1 GHz and its third-order intercept point (I I P3) ranges from -15 dBm to 0 dBm. Implemented in a 0.13 µm CMOS technology, the LNA occupies an active area of about 0.29 mm2. Three different types of VCOs (stand-alone LC VCO, push-push VCO and a ring oscillator based VCO) for generating mm-wave frequencies have been implemented using 65-nm CMOS technology and their measured results have been analyzed
187

Development of a low energy cooling technology for a mobile satellite ground station

Kamanzi, Janvier January 2013 (has links)
Thesis submitted in fulfillment of the requirements for the degree Master of Technology:Electrical Engineering in the Faculty ofEngineering at the Cape Peninsula University of Technology Supervisor:Prof MTE KAHN Bellville December 2013 / The work presented in this thesis consists of the simulation of a cooling plant for a future mobile satellite ground station in order to minimize the effects of the thermal noise and to maintain comfort temperatures onboard the same station. Thermal problems encountered in mobile satellite ground stations are a source of poor quality signals and also of the premature destruction of the front end microwave amplifiers. In addition, they cause extreme discomfort to the mission operators aboard the mobile station especially in hot seasons. The main concerns of effective satellite system are the quality of the received signal and the lifespan of the front end low noise amplifier (LNA). Although the quality of the signal is affected by different sources of noise observed at various stages of a telecommunication system, thermal noise resulting from thermal agitation of electrons generated within the LNA is the predominant type. This thermal noise is the one that affects the sensitivity of the LNA and can lead to its destruction. Research indicated that this thermal noise can be minimized by using a suitable cooling system. A moveable truck was proposed as the equipment vehicle for a mobile ground station. In the process of the cooling system development, a detailed quantitative study on the effects of thermal noise on the LNA was conducted. To cool the LNA and the truck, a 2 kW solar electric vapor compression system was found the best for its compliance to the IEA standards: clean, human and environment friendly. The principal difficulty in the development of the cooling system was to design a photovoltaic topology that would ensure the solar panels were always exposed to the sun, regardless the situation of the truck. Simulation result suggested that a 3.3 kW three sided pyramid photovoltaic topology would be the most effective to supply the power to the cooling system. A battery system rated 48 V, 41.6 Ah was suggested to be charged by the PV system and then supply the power to the vapor compression system. The project was a success as the objective of this project has been met and the research questions were answered.
188

Low Power and Low Area Techniques for Neural Recording Application

Chaturvedi, Vikram January 2012 (has links) (PDF)
Chronic recording of neural signals is indispensable in designing efficient brain machine interfaces and to elucidate human neurophysiology. The advent of multi-channel micro-electrode arrays has driven the need for electronic store cord neural signals from many neurons. The continuous increase in demand of data from more number of neurons is challenging for the design of an efficient neural recording frontend(NRFE). Power consumption per channel and data rate minimization are two key problems which need to be addressed by next generation of neural recording systems. Area consumption per channel must be low for small implant size. Dynamic range in NRFE can vary with time due to change in electrode-neuron distance or background noise which demands adaptability. In this thesis, techniques to reduce power-per-channel and area-per-channel in a NRFE, via new circuits and architectures, are proposed. An area efficient low power neural LNA is presented in UMC 0.13 μm 1P8M CMOS technology. The amplifier can be biased adaptively from 200 nA to 2 μA , modulating input referred noise from 9.92 μV to 3.9μV . We also describe a low noise design technique which minimizes the noise contribution of the load circuitry. Optimum sizing of the input transistors minimizes the accentuation of the input referred noise of the amplifier. It obviates the need of large input coupling capacitance in the amplifier which saves considerable amount of chip area. In vitro experiments were performed to validate the applicability of the neural LNA in neural recording systems. ADC is another important block in a NRFE. An 8-bit SAR ADC along with the input and reference buffer is implemented in 0.13 μm CMOS technology. The use of ping-pong input sampling is emphasized for multichannel input to alleviate the bandwidth requirement of the input buffer. To reduce the output data rate, the A/D process is only enabled through a proposed activity dependent A/D scheme which ensures that the background noise is not processed. Based on the dynamic range requirement, the ADC resolution is adjusted from 8 to 1 bit at 1 bit step to reduce power consumption linearly. The ADC consumes 8.8 μW from1Vsupply at1MS/s and achieves ENOB of 7.7 bit. The ADC achieves FoM of 42.3 fJ/conversion in 0.13 μm CMOS technology. Power consumption in SARADCs is greatly benefited by CMOS scaling due to its highly digital nature. However the power consumption in the capacitive DAC does not scale as well as the digital logic. In this thesis, two energy-efficient DAC switching techniques, Flip DAC and Quaternary capacitor switching, are proposed to reduce their energy consumption. Using these techniques, the energy consumption in the DAC can be reduced by 37 % and 42.5 % compared to the present state-of-the-art. A novel concept of code-independent energy consumption is introduced and emphasized. It mitigates energy consumption degradation with small input signal dynamic range.
189

Front-end considerations for next generation communication receivers

Roy, Mousumi January 2011 (has links)
The ever increasing diversity in communication systems has created a demand for constant improvements in receiver components. This thesis describes the design and characterisation of front-end receiver components for various challenging applications, including characterisation of low noise foundry processes, LNA design and multi-band antenna design. It also includes a new theoretical analysis of noise coupling in low noise phased array receivers.In LNA design much depends on the choice of the optimum active devices. A comprehensive survey of the performance of low noise transistors is therefore extremely beneficial. To this end a comparison of the DC, small-signal and noise behaviours of 10 state-of-the-art GaAs and InP based pHEMT and mHEMT low noise processes has been carried out. Their suitability in LNA designs has been determined, with emphasis on the SKA project. This work is part of the first known detailed investigation of this kind. Results indicate the superiority of mature GaAs-based pHEMT processes, and highlight problems associated with the studied mHEMT processes. Two of the more promising processes have then been used to design C-band and UHF-band MMIC LNAs. A new theoretical analysis of coupled noise between antenna elements of a low noise phased array receiver has been carried out. Results of the noise wave analysis, based on fundamental principles of noisy networks, suggest that the coupled noise contribution to system noise temperatures should be smaller than had previously been suggested for systems like the SKA. The principles are applicable to any phased array receiver. Finally, a multi-band antenna has been designed and fabricated for a severe operating environment, covering the three extremely crowded frequency bands, the 2.1 GHz UMTS, the 2.4 GHz ISM and the 5.8 GHz ISM bands. Measurements have demonstrated excellent performance, exceeding that of equivalent commercial antennas aimed at similar applications.
190

Analogový vstupní díl pro softwarový přijímač / Front end for software receiver

Slezák, Jakub January 2012 (has links)
This thesis deals with a theoretical analysis of the basic parameters of receivers, input circuit architecture and signal digitization. According to the specified assignment it is outlined block scheme of front end for software receiver with specified components and the total bilance is calculated. Individual parts of the system are designed and realized. This is a set of four input filters for bandwidths: short waves up to 30 MHz, 87,5-108 MHz, 144-148 MHz and 174-230 MHz. The main point of design is a circuit containing a low-noise amplifiers, switches, and two amplifiers with adjustable amplification. Mainly are used integrated circuits from Analog Devices corporation. To control the various switches and adjustable amplifiers was designed a separate panel, which is connected to the main circuit via a cable. In the last phase was the whole system and its components subjected to measurements. Thanks to a number of mounted SMA connectors it is possible to measure different parts of the system and we are able to modify it partially.

Page generated in 0.0271 seconds