431 |
Assessment of Thermal Behavior and Development of Thermal Design Guidelines for Integrated Power Electronics ModulesPang, Ying-Feng 28 January 2005 (has links)
With the increase dependency on electricity to provide correct form of electricity for lightning, machines, and home and office appliances, the need for the introduction of high reliability power electronics in converting the raw form of electricity into efficient electricity for these applications is uprising. One of the most common failures in power electronics is temperature related failure such as overheating. To address the issue of overheating, thermal management becomes an important mission in the design of the power electronics to ensure the functional power electronics.
Different approaches are taken by academia and industry researchers to provide efficient power electronics. In particular, the Center for Power Electronics System (CPES) at Virginia Tech and four other universities presented the IPEM approach by introducing integrated power electronics modules (IPEM) as standardized units that will enable greater integration within power electronics systems and their end-use application. The IPEM approach increases the integration in the components that make up a power electronics system through novel a packaging technique known as Embedded Power technology.
While the thermal behavior of commonly used packages such as pin grid arrays (PGA), ball grid array (BGA), or quad flat pack (QFP) are well-studied, the influence of the Embedded Power packaging architecture on the overall thermal performance of the IPEMs is not well known. This motivates the presentation of this dissertation in developing an in-depth understanding on the thermal behavior of the Embedded Power modules. In addition, this dissertation outlines some general guidelines for the thermal modeling and thermal testing for the Embedded Power modules. Finally, this dissertation summarizes a few thermal design guidelines for the Embedded Power modules. Hence, this dissertation aims to present significant and generalized scientific findings for the Embedded Power packaging from the thermal perspective.
Both numerical and experimental approaches were used in the studies. Three-dimensional mathematical modeling and computational fluid dynamics (CFD) thermal analyses were performed using commercial numerical software, I-DEAS. Experiments were conducted to validate the numerical models, characterize the thermal performance of the Embedded Power modules, and investigate various cooling strategies for the Embedded Power modules. Validated thermal models were used for various thermal analyses including identifying potential thermal problems, recognizing critical thermal design parameters, and exploring different integrated cooling strategies.
This research quantifies various thermal design parameters such as the geometrical effect and the material properties on the thermal performance of the Embedded Power modules. These parameters include the chip-to-chip distance, the copper trace area, the polyimide thickness, and the ceramic materials. Since the Embedded Power technology utilizes metallization bonding as interconnection, specific design parameters such as the interconnect via holes pattern and size, the metallization thickness, as well as the metallization materials were also explored to achieve best results based on thermal and stress analyses.
With identified potential thermal problems and critical thermal design parameters, different integrated cooling strategies were studied. The concept of integrated cooling is to incorporate the cooling mechanisms into the structure of Embedded Power modules. The results showed that simple structural modifications to the current Embedded Power modules can reduce the maximum temperature of the module by as much as 24%. Further improvement can be achieved by employing double-sided cooling to the Embedded Power modules.
Based on the findings from the thermal analyses, general design guidelines were developed for future design of such Embedded Power modules. In addition, thermal modeling and testing guidelines for the Embedded Power modules were also outlined in this dissertation. / Ph. D.
|
432 |
Exploring the Interaction of Forest Management and Climate in the Community Land ModelRady, Joshua Michael 11 January 2023 (has links)
Forests perform many important ecological functions and provide numerous environmental services to humanity. Currently forests are under ever increasing pressures from humans through deforestation, changes in land use, and anthropogenic climate change. Managed forests play an important role in supplying forest products to the global population, necessitating the need to predict how forests will respond to climate change and how this will influence future wood product supplies. In this dissertation I used loblolly pine (Pinus taeda), the most extensively cultivated tree species in the United States, as a study system to simulate how climate change and forest management could alter the dynamics of managed forests in the future. Using the land component (the Community Land Model) of the widely used Community Earth System Model (CESM), I developed and validated a set of tools necessary to simulate the loblolly pine plantation system using the vegetation demography model embedded in CESM (FATES). This included developing a representation of loblolly pine using data from the literature, which was better able to capture forest growth and development observed in field studies than FATES's existing conifer tree representation. I added the ability to simulate several aspects of forest management not previously supported in FATES by creating the Vegetation Management Module, which I showed was able to realistically reproduce the common management practice of stand thinning. I used these new tools to perform simulations of how loblolly pine will grow across the Southeastern United States until the end of the 21st century, under the high and low climate change scenarios developed by the scientific community in the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our experiments show that loblolly pine productivity may as much as double by the end of the century, with total wood harvest over that period increasing by almost half. I also showed that different management activities had significant effects on loblolly plantation yields, with mid-rotation stand thinning having an effect under both climate scenarios on par with increases due to the extreme climate change scenario SSP5 RCP8.5. I showed that these changes in wood yields could decrease the forest area in the Southeast required to meet the wood product demands over the rest of the century. These changes in plantation productivity could interact with socioeconomic factors to drive changes in land use and carbon storage in the Southeastern U.S. This work increases our understanding of how managed forests in the U.S.\ will be affected by climate change and how our management choices modulate that response. The techniques and tools developed here open up new areas of research into the role of forest management in the climate system. / Doctor of Philosophy / Forests benefit humans by regulating Earth's climate and by providing natural resources such as wood. In the Southeastern United States forestry is an important industry. Tree farms of southern pine trees produce a large percentage of the region's wood. Predicting how forests will grow in the future is important for planning and making investments. However, the burning of fossil fuels has increased carbon dioxide in the atmosphere and is changing Earth's climate. This is affecting how fast trees grow and how much wood can be harvested from forests. The methods that foresters have traditionally used to predict how trees will grow in the future do not account for climate change, and thus may not be as accurate in the future. An alternative is to use the computer models that scientists have developed to predict both how global climate will change in the future and how forests are influenced by climate. These computer programs can be used to predict how natural forests will grow in the future, but aren't set up to predict managed forests well. I made changes to one of these programs to make it possible to simulate the managed loblolly pine forests of the Southeastern United States. First, I tested these changes to make sure that simulated forests grew like real forests do today. Then I simulated how pine forests in Southeastern United States could grow over the next century with climate change. I found that pine forests will grow faster and allow more wood to be harvested as carbon dioxide in the atmosphere increases. If climate changes are extreme, loblolly forests could produce 70\% more wood than today by the end of the 21st century. I also showed that the manner in which forests were managed in simulations changes the amount of wood they produced, with some management practices increasing wood harvested by 50\% over the rest of the century. Because climate change could increase the amount of wood that can be produced from a fixed area of forest, I investigated how this might change the area of forest plantation in the Southeastern United States. Based on projections of demand for wood for the rest of the century I calculated how much loblolly pine forest would be needed to produce this wood over the next century. I found that increases in forest productivity due to climate change and forest management could decrease the forest area required to grow the wood we need. This could change how we use forests in the Southeastern United States, which in turn could have impacts on the climate.
|
433 |
Power Architectures and Design for Next Generation MicroprocessorsAhmed, Mohamed Hassan Abouelella 07 November 2019 (has links)
With the rapid increase of cloud computing and the high demand for digital content, it is estimated that the power consumption of the IT industry will reach 10 % of the total electric power in the USA by 2020. Multi-core processors (CPUs) and graphics processing units (GPUs) are the key elements in fulfilling all of the digital content requirements, but come with a price of more power-hungry processors, driving the power per server rack to 20 KW levels. The need for more efficient power management solutions on the architecture level, down to the converter level, is inevitable. Recently, data centers have replaced the 12V DC server rack distribution with a 48V DC distribution, producing a significant overall system efficiency improvement. However, 48V rack architecture raises significant challenges for the voltage regulator modules (VRMs) required for powering the processor. The 48V VRM in the vicinity of the CPU needs to be designed with very high efficiency, high power density, high light-load efficiency, as well as meet all transient requirements by the CPU and GPU.
Transferring the well-developed multi-phase buck converter used in the 12V VRM to the 48V distribution platform is not that simple. The buck converter operating with 48V, stepping down to sub 2V, will be subjected to significant switching related loss, resulting in lower overall system efficiency. These challenges drive the need to look for more efficient architectures for 48V VRM solutions.
Two-stage conversions can help solve the design challenges for 48V VRMs. A first-stage unregulated converter is used to step-down the 48V to a specific intermediate bus voltage. This voltage will feed a multi-phase buck converter that powers the CPU. An unregulated LLC converter is used for the first-stage converter, with zero voltage switching (ZVS) operation for the primary side switches, and zero current switching (ZCS) along with ZVS operation, for the secondary side synchronous rectifiers (SRs). The LLC converter can operate at high frequency, in order to reduce the magnetic components size, while achieving high-efficiency. The high-efficiency first-stage, along with the scalability and high bandwidth control of the second-stage, allows this architecture to achieve high-efficiency and power density. This architecture is simpler to adopt by industry, by plugging the unregulated converter before the existing multi-phase buck converters on today's platforms.
The first challenge for this architecture is the transformer design of the first-stage LLC converter. It must avoid all of the loss associated with high frequency operations, and still achieve high power density without scarifying efficiency. In this thesis, the integrated matrix transformer structure is optimized by SR integration with windings, interleaved primary side termination, and a better PCB winding arrangement to achieve high-efficiency and power density, and minimize the losses associated with high-frequency operations.
The second challenge is the light load efficiency improvement. In this thesis a light load efficiency improvement is proposed by a dynamic change of the intermediate bus voltage, resulting in more than 8 % light load efficiency improvements. The third challenge is the selection of the optimal bus voltage for the two-stage architecture. The impact of different bus voltages was analyzed in order to maximize the overall conversion efficiency. Multiple 48V unregulated converters were designed with maximum efficiency >98 %, and power densities >1000 W/in3, with different output voltages, to select the optimal bus voltage for the two-stage VRM.
Although the two-stage VRM is more scalable and simpler to design and adopt by current industry, the efficiency will reduce as full power flows in two cascaded DC/DC converters. Single-stage conversion can achieve higher-efficiency and power-density. In this thesis, a quasi-parallel Sigma converter is proposed for the 48V VRM application. In this structure, the power is shared between two converters, resulting in higher conversion efficiency. With the aid of an optimized integrated magnetic design, a Sigma converter suitable for narrow voltage range applications was designed with 420 W/in3 and a maximum efficiency of 94 %. Later, another Sigma converter suitable for wide voltage range applications was designed with 700W/in3 and a maximum efficiency of 95 %. Both designs can achieve higher efficiency than the two-stage VRM and all other state-of-art solutions. The challenges associated with the Sigma converter, such as startup and closed loop control were addressed, in order to make it a viable solution for the VRM application.
The 48V rack architecture requires regulated 12V output converters for various loads. In this thesis, a regulated LLC is used to design a high-efficiency and power-density 48V bus converter. A novel integration method of the inductor and transformer helps the LLC achieve the required regulation capability with minimum losses, resulting in a converter that can provide 1KW of continuous power with efficiency of 97.8 % and 700 W/in3 power density.
This dissertation discusses new power architectures with an optimized design for the 48V rack architectures. With the academic contributions in this dissertation, different conversion architectures can be utilized for 48V VRM solutions that solve all of the challenges associated with it, such as scalability, high-efficiency, high density, and high BW control. / Doctor of Philosophy / With the rapid increase of cloud computing and the high demand for digital content, it is estimated that the power consumption of the IT industry will reach 10 % of the total electric power in the USA by 2020. Multi-core processors (CPUs) and graphics processing units (GPUs) are the key elements in fulfilling all of the digital content requirements but come with a price of more power-hungry processors, driving the power per server rack to 20 KW levels. The need for more efficient power management solutions on the architecture level, down to the converter level, is inevitable. The data center manufacturers have recently adopted a more efficient architecture that supplies a 48V DC server rack distribution instead of a 12V DC distribution to the server motherboard. This helped reduce costs and losses, but as a consequence, raised a challenge in the design of the DC/DC voltage regulator modules (VRM) supplied by the 48V, in order to power the CPU and GPU.
In this work, different architectures will be explored for the 48V VRM, and the trade-off between them will be evaluated. The main target is to design the VRM with very high-efficiency and high-power density to reduce the cost and size of the CPU/GPU motherboards.
First, a two-stage power conversion structure will be used. The benefit of this structure is that it relies on existing technology using the 12V VRM for powering the CPU. The only modification required is the addition of another converter to step the 48V to the 12V level. This architecture can be easily adopted by industry, with only small modifications required on the system design level.
Secondly, a single-stage power conversion structure is proposed that achieves higher efficiency and power density compared to the two-stage approach; however, the structure is very challenging to design and to meet all requirements by the CPU/GPU applications. All of these challenges will be addressed and solved in this work.
The proposed architectures will be designed using an optimized magnetic structure. These structures achieve very high efficiency and power density in their designed architectures, compared to state-of-art solutions. In addition, they can be easily manufactured using automated manufacturing processes.
|
434 |
The cohomology rings of classical Brauer tree algebrasChasen, Lee A. 07 June 2006 (has links)
In this dissertation a simple algorithm is given for calculating minimal projective resolutions of nonprojective indecomposable modules over Brauer tree algebras. Those calculated resolutions lead to an algorithm for calculating a minimal set of generators for the cohomology ring of a Brauer tree algebra. / Ph. D.
|
435 |
RF Models for Active IPEMsQian, Jingen 06 February 2003 (has links)
Exploring RF models for an integrated power electronics module (IPEM) is crucial to analyzing and predicting its EMI performance. This thesis deals with the parasitics extraction approach for an active IPEM in a frequency range of 1MHz through 30MHz.
Based on the classic electromagnetic field theory, the calculating equations of DC and AC parameters for a 3D conducting structure are derived. The influence of skin effect and proximity effect on AC resistances and inductances is also investigated at high frequencies.
To investigate RF models and EMI performance of the IPEM, a 1kW 1MHz series resonant DC-DC converter (SRC) is designed and fabricated in this work. For extracting the stray parameters of the built IPEM, two main software simulation tools ¡ª Maxwell Quick 3D Parameter Extractor (Maxwell Q3D) and Maxwell 3D Field Simulator (Maxwell 3D), prevailing electromagnetic simulation products from Ansoft Corporation, are introduced in this study. By trading off between the numerical accuracy and computational economy (CPU time and consumption of memory size), Maxwell Q3D is chosen in this work to extract the parameters for the full bridge IPEM structure. The step-by-step procedure of using Maxwell Q3D is presented from pre-processing the 3D IPEM structure to post-processing the solutions, and exporting equivalent circuit for PSpice simulations as well. RF modeling of power MOSFETs is briefly introduced.
In order to verify extracted parameters, in-circuit impedance measurements for the IPEM using Agilent 4294A Impedance Analyzer together with Agilent 42941A probe are then followed. Measured results basically verify the extracted data, while the discrepancy between measured results and simulated results is also analyzed. / Master of Science
|
436 |
Dynamic Module Library Generation for FPGA-based Run-Time Reconfigurable SystemsBowen, John Kipp 25 February 2008 (has links)
Modern Field Programmable Gate Arrays (FPGAs) can implement entire run-time reconfigurable systems using partial reconfiguration. Module-based run-time reconfiguration permits the construction of custom applications at run-time using pre-compiled Intellectual Property (IP) from a module library. The need for both flexible module placement and custom inter-module communication is mostly ignored by existing modular run-time reconfiguration approaches and few existing tool flows for module generation address the need for automation. This thesis introduces an automated compile-time tool flow for generating dynamic modules that allow flexible run-time placement and communication synthesis. / Master of Science
|
437 |
Performance analysis of a medium-sized industrial reverse osmosis brackish water desalination plantAl-Obaidi, Mudhar A.A.R., Alsarayreh, Alanood A., Al-Hroub, A.M., Alsadaie, S., Mujtaba, Iqbal 30 July 2018 (has links)
Yes / The implementation of Reverse Osmosis (RO) technology is noticeably increased to produce freshwater from brackish and seawater resources. In this work, performance analysis of a multistage multi pass medium-sized spiral wound brackish water RO (BWRO) desalination plant (1200 m³/day) of Arab Potash Company (APC) located in Jordan is evaluated using modelling and simulation. For this purpose, a mathematical model for the spiral wound RO process based on the principles of solution diffusion model is developed. The model is then used to simulate the operating conditions of low-salinity brackish water RO (BWRO) desalination plant. The results obtained are then compared against the real industrial data of BWRO desalination plant of APC which shows a high-level of consistency. Finally, the model is used to analysis the impact of the operating parameters such as salinity, pressure, temperature, and flow rate on the plant performance. The sensitivity analysis confirms that both feed flow rate and operating pressure as the critical parameters that positively affect the product salinity.
|
438 |
Double-Side Cooled 3.3 kV, 100 A SiC MOSFET Phase-Leg Modules for Traction ApplicationsYuchi, Qingrui 20 August 2024 (has links)
This thesis presents the development of a double-side cooled 3.3 kV, 100 A SiC MOSFET phase-leg power module for heavy-duty traction applications. Parasitic extraction and thermal simulations of the module showed a parasitic inductance of 2.89 nH and junction temperature of 108.3 °C at a heat flux of 156 W/cm² under a typical water-cooling condition.
Electric field simulations identified high electric field stress at the module's outer surface edges exposed to air, posing a risk for partial discharge. To mitigate this risk, a solution that involves covering the critical point in an epoxy was proposed, analyzed, and validated through partial discharge inception voltage tests.
Steps for fabricating the module are presented. Static electrical characterization of the fabricated module showed an average on-resistance of 31 mΩ and an average leakage current of 356 nA at VDS of 3 kV, which are similar to those of the unpackaged devices.
The module with a double-side cooling design achieved an exceptional power density of 116.6 kW/cm³, more than twice that of any single-side cooled 3.3 kV SiC module. This makes it highly suitable for next-generation electric transportation systems that require high power density and efficient thermal management, such as electric trucks, railways, and eVTOL aircraft. / Master of Science / This thesis presents the development of a highly efficient and compact power module designed for electric vehicles and other high power applications. By utilizing advanced silicon carbide technology and double-side cooling structure, the module achieves outstanding performance, making it ideal for heavy-duty uses such as electric trucks, railways, and eVTOL aircraft. The module operates at 3.3 kV and 100 A, with low electrical losses and excellent thermal management. Extensive simulations and testing demonstrated that the module significantly reduced unwanted electrical effects and maintained a stable temperature under high power conditions. An epoxy coating was applied to critical areas to prevent electrical discharge, enhancing the module's reliability. The fabrication process incorporated packaging techniques like silver-sintering for attaching the semiconductor chips and other components, resulting in strong and reliable connections. Static tests confirmed that the electrical performance of the packaged power module maintained consistently high efficiency compared with the bare chips. Overall, this double-side cooled power module offers more than twice the power density of traditional designs, paving the way for the development of future electric vehicle traction systems that require high power density and efficient cooling.
|
439 |
Optimization of Bonding Geometry for a Planar Power Module to Minimize Thermal Impedance and Thermo-Mechanical StressCao, Xiao 06 December 2011 (has links)
This study focuses on development a planar power module with low thermal impedance and thermo-mechanical stress for high density integration of power electronics systems. With the development semiconductor technology, the heat flux generated in power device keeps increasing. As a result, more and more stringent requirements were imposed on the thermal and reliability design of power electronics packaging.
In this dissertation, a boundary-dependent RC transient thermal model was developed to predict the peak transient temperature of semiconductor device in the power module. Compared to conventional RC thermal models, the RC values in the proposed model are functions of boundary conditions, geometries, and the material properties of the power module. Thus, the proposed model can provide more accurate prediction for the junction temperature of power devices under variable conditions. In addition, the transient thermal model can be extracted based on only steady-state thermal simulation, which significantly reduced the computing time.
To detect the peak transient temperature in a fully packaged power module, a method for thermal impedance measurement was proposed. In the proposed method, the gate-emitter voltage of an IGBT which is much more sensitive to the temperature change than the widely used forward voltage drop of a pn junction was monitored and used as temperature sensitive parameter. A completed test circuit was designed to measure the thermal impedance of the power module using the gate-emitter voltage. With the designed test set-up, in spite of the temperature dependency of the IGBT electrical characteristics, the power dissipation in the IGBT can be regulated to be constant by adjusting the gate voltage via feedback control during the heating phase. The developed measurement system was used to evaluate thermal performance and reliability of three different die-attach materials.
From the prediction of the proposed thermal model, it was found that the conventional single-sided power module with wirebond connection cannot achieve both good steady-state and transient thermal performance under high heat transfer coefficient conditions. As a result, a plate-bonded planar power module was designed to resolve the issue. The comparison of thermal performance for conventional power module and the plate-bonded power module shows that the plate-bonded power module has both better steady-state and transient thermal performance than the wirebonded power module. However, due to CTE mismatch between the copper plate and the silicon device, large thermo-mechanical stress is induced in the bonding layer of the power module. To reduce the stress in the plate-bonded power module, an improved structure called trenched copper plate structure was proposed. In the proposed structure, the large copper plate on top of the semiconductor can be partitioned into several smaller pieces that are connected together using a thin layer copper foil. The FEM simulation shows that, with the improved structure, the maximum von Mises stress and plastic strain in the solder layer were reduced by 18.7% and 67.8%, respectively. However, the thermal impedance of the power module increases with reduction of the stress. Therefore, the trade-off between these two factors was discussed. To verify better reliability brought by the trenched copper plate structure, twenty-four samples with three different copper plate structures were fabricated and thermally cycled from -40°C to 105°C. To detect the failure at the bonding layer, the curvature of these samples were measured using laser scanning before and after cycling. By monitoring the change of curvature, the degradation of bonding layer can be detected. Experimental results showed that the samples with different copper plate structure had similar curvature before thermal cycle. The curvatures of the samples with single copper plate decreased more than 80% after only 100 cycles. For the samples with 2 × 2 copper plate and the samples with 3 × 3 copper plate, the curvatures became 75.8% and 77.5% of the original values, respectively, indicating better reliability than the samples with single copper plate. The x-ray pictures of cross-sectioned samples confirmed that after 300 cycles, the bonding layer for the sample with single copper plate has many cracks and delaminations starting from the edge. / Ph. D.
|
440 |
Computational Dissection of Composite Molecular Signatures and Transcriptional ModulesGong, Ting 22 January 2010 (has links)
This dissertation aims to develop a latent variable modeling framework with which to analyze gene expression profiling data for computational dissection of molecular signatures and transcriptional modules.
The first part of the dissertation is focused on extracting pure gene expression signals from tissue or cell mixtures. The main goal of gene expression profiling is to identify the pure signatures of different cell types (such as cancer cells, stromal cells and inflammatory cells) and estimate the concentration of each cell type. In order to accomplish this, a new blind source separation method is developed, namely, nonnegative partially independent component analysis (nPICA), for tissue heterogeneity correction (THC). The THC problem is formulated as a constrained optimization problem and solved with a learning algorithm based on geometrical and statistical principles.
The second part of the dissertation sought to identify gene modules from gene expression data to uncover important biological processes in different types of cells. A new gene clustering approach, nonnegative independent component analysis (nICA), is developed for gene module identification. The nICA approach is completed with an information-theoretic procedure for input sample selection and a novel stability analysis approach for proper dimension estimation. Experimental results showed that the gene modules identified by the nICA approach appear to be significantly enriched in functional annotations in terms of gene ontology (GO) categories.
The third part of the dissertation moves from gene module level down to DNA sequence level to identify gene regulatory programs by integrating gene expression data and protein-DNA binding data. A sparse hidden component model is first developed for this problem, taking into account a well-known biological principle, i.e., a gene is most likely regulated by a few regulators. This is followed by the development of a novel computational approach, motif-guided sparse decomposition (mSD), in order to integrate the binding information and gene expression data.
These computational approaches are primarily developed for analyzing high-throughput gene expression profiling data. Nevertheless, the proposed methods should be able to be extended to analyze other types of high-throughput data for biomedical research. / Ph. D.
|
Page generated in 0.0188 seconds