Spelling suggestions: "subject:"mapk"" "subject:"sapk""
181 |
Expression de l’early growth response protein-1 (Egr-1) par le peroxyde d’hydrogène (H2O2) nécessite l’activation de l’IGF-1R, de c-Src et de PKC dans les CMLVRondeau, Vincent 12 1900 (has links)
Une augmentation de la génération des dérivés réactifs de l’oxygène (DRO), tels que le peroxyde d’hydrogène (H2O2), joue un rôle clé dans la pathophysiologie des maladies cardiovasculaires (MCV). La croissance et la prolifération excessives des cellules musculaires lisses vasculaires (CMLV) ont été suggérées comme étant les mécanismes à la base de la dysfonction vasculaire. Une implication potentielle du facteur de transcription Early growth response protein-1 (Egr-1) dans le développement des dommages vasculaires a été proposée. Des études ont démontré que le H2O2 augmente l’expression de l’Egr-1 dans les CMLV. Cependant, les voies de signalisation intracellulaire menant à l’expression de l’Egr-1 en réponse au H2O2 restent à établir. L’objectif de cette étude vise à examiner les différentes voies de signalisation impliquées dans l’expression de l’Egr-1 induite par le H2O2 dans les CMLV. Le H2O2 augmente l’expression de l’Egr-1 en fonction du temps et de la dose dans les CMLV A10. Le blocage pharmacologique des tyrosines kinases insulin-like growth factor-1 receptor (IGF-1R) et c-Src, par AG1024 et PP2 respectivement, atténue l’expression de l’Egr-1 induite par le H2O2, alors que l’AG1478, un inhibiteur de l’epidermal growth factor receptor (EGFR), et le PP3, l’analogue inactif du PP2, n’ont aucun effet sur l’expression de l’Egr-1. Le blocage pharmacologique de l’extracellular signal-regulated kinase 1/2 (ERK1/2), par UO126, et de la protéine kinase C (PKC), par rottlerin et rö-31-8220, diminue l’expression de l’Egr-1 induite par le H2O2. En résumé, nos résultats suggèrent que le H2O2 déclenche l’expression de l’Egr-1 via l’IGF-1R, la kinase c-Src, l’ERK1/2 et la PKC dans les CMLV. / Increased generation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), plays a key role in the pathophysiology of cardiovascular diseases (CVD). Excessive growth and proliferation of vascular smooth muscle cells (VSMCs) has been suggested as an important contributor of vascular dysfunction. A potential involvement of early growth response protein-1 (Egr-1), a zinc-finger transcription factor, in the development of vascular injury has been proposed. Recent studies have shown that H2O2 increases Egr-1 expression in VSMCs. However, signaling events leading to H2O2-induced Egr-1 expression are not fully understood. Therefore, this study aims to examine the signaling pathways implicated in H2O2-induced Egr-1 expression in VSMC. H2O2 increased Egr-1 expression in a time and dose-dependent fashion in A10 VSMC. Pharmacological blockade of tyrosine kinases insulin-like growth factor-1 receptor (IGF-1R) and c-Src, by AG1024 and PP2 respectively, attenuated H2O2-induced Egr-1 expression, while AG1478, an epidermal growth factor receptor (EGFR) inhibitor, and PP3, the inactive analogue of PP2, have no effect on Egr-1 expression. Pharmacological blockade of extracellular signal-regulated kinase 1/2 (ERK1/2), by UO126, and proteine kinase C (PKC), by rottlerin and rö-31-8220, decreased H2O2-induced Egr-1 expression. In summary, our results suggest that H2O2 triggers Egr-1 expression through IGF-1R, c-Src, ERK1/2 and PKC in VSMC.
|
182 |
La pluridimensionalité de l'efficacité des ligands des récepteurs couplés aux protéines G : les récepteurs B[bêta]₁- et B[bêta]₂-adrénergiques en tant que modèles d'étudeGalandrin, Ségolène January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
183 |
Upstream mechanisms responsible for H₂O₂-induced activation of MAPK and PKB in vascular smooth muscle cellsAzar, Zeina January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
184 |
"Absence of a refractory period for mechanical activation of p54-JNK in rat plantaris in situ"Tzavaris, Petros January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
185 |
Transcriptional regulation of ski and scleraxis in primary cardiac myofibroblastsZeglinski, Matthew January 2016 (has links)
Transforming growth factor-β1 (TGFβ1) is a mediator of the fibrotic response through activation of quiescent cardiac fibroblasts to hypersynthetic myofibroblasts. Scleraxis (Scx) is a pro-fibrotic transcription factor that is induced by TGFβ1-3 and works synergistically with Smads to promote collagen expression. Ski is a negative regulator of TGFβ/Smad signaling through its interactions with Smad proteins at the promoter region of TGFβ regulated genes. To date, no studies have examined the direct DNA:protein transcriptional mechanisms that regulate Scx expression by TGFβ1-3 or Ski, nor the mechanisms that govern Ski expression by Scx. We hypothesize that Ski and Scx regulate one another, and form a negative feedback loop that represses gene expression and is a central regulator of the fibrotic response in cardiac myofibroblasts.
Primary adult rat cardiac myofibroblasts were isolated via retrograde Langendorff perfusion. First passage (P1) cells were infected with adenovirus encoding HA-Ski, HA-Scx, or LacZ at the time of plating. Twenty-four hours later, cells were harvested for Western blot, quantitative real-time PCR (qPCR), and electrophoretic gel shift assays (EMSA). NIH-3T3 or Cos7 cells were transfected with equal quantities of plasmid DNA for 24 hours prior to harvesting for luciferase, qPCR, and EMSA analysis.
Ski overexpression in P1 myofibroblasts resulted in a reduction in both Scx mRNA and protein levels. Overexpression of Scx had no effect on Ski expression. Luciferase reporter assays demonstrated that Scx was induced by TGFβ1 treatment in a concentration dependent manner. However, ectopic Smad2/3 expression was unable to transactivate the Scx promoter in a luciferase reporter assay. Inhibition of p44/42-MAPK signaling modestly counteracted the effect of TGFβ1 on Scx expression. Scx had no effect on Ski promoter expression, however, both tumor necrosis factor-α (TNFα) and p65 expression repressed the Ski promoter and correlated with reduced Ski mRNA levels.
We conclude that Ski is a repressor of Scx and that Scx expression is partially mediated through a Smad-independent, p44/42-MAPK pathway in cardiac myofibroblasts. Furthermore, this study proposes a role for TNFα/p65 NF-κΒ signaling in the regulation of Ski gene expression in the cardiac myofibroblast. / October 2016
|
186 |
Glycogen Synthase Kinase-3β: An Investigation Of The Novel Serine 389 Phosphorylation SiteHare, Brendan Deegan 01 January 2015 (has links)
Stress associated psychiatric disorders such as depression, anxiety, and post-traumatic stress disorder affect a large proportion of the population. Reductions in the complexity of neuronal morphology and reduced neurogenesis are commonly observed outcomes following stress exposure in rodent models and may represent a mechanism for the reduced brain volume in stress sensitive regions such as the hippocampus observed in individuals diagnosed with stress associated disorders. Multiple lines of evidence suggest that glycogen synthase kinase (GSK)-B may play a role in the neurodegenerative phenotype observed following stress exposure. GSK3B is atypical in that it is inhibited by phosphorylation. This inhibitory phosphorylation has typically been studied by examining the phosphorylation state of the serine 9 (S9) site. Inhibition of GSK3B is implicated in synaptic stabilization, increased expression of trophic factors that support dendritic complexity and neurogenesis, reduced apoptosis, and the antidepressive effects of currently implemented therapeutics. It is surprising then that little research has examined the regulation of GSK3B by stress. A novel GSK3B phosphorylation site, serine 389 (S389), has recently been described that is regulated by p38 mitogen activated protein kinase (MAPK) and is independent of S9 phosphorylation by AKT. p38 MAPK is implicated in the behavioral effects of stress exposure making an understanding of its interaction with GSK3B S389 phosphorylation during stress a compelling research target. The current studies examine GSK3B regulation following variate stress exposure in stress reactive brain regions, describe the anatomical specificity of GSK3B S389 phosphorylation in the brain, and detail the behavioral phenotype of a novel mutant mouse that cannot inhibit GSK3B by S389 phosphorylation (GSK3B KI). Region specific changes in GSK3B phosphorylation were observed following stress exposure, as well as voluntary exercise, a behavior that confers stress resistance. Elevated GSK3B S389 phosphorylation was associated with increased levels of phosphorylated p38 MAPK. This pathway is implicated in the response to DNA damage, and, surprisingly, we observed that histone H2A-variant-X (H2A.X), a marker of DNA damage, was elevated following stress and exercise. Accumulated DNA damage is a proposed driver of neurodegeneration suggesting that the pathway activated by stress may be engaged to protect against such decline. Consistent with a role in the response to DNA damage, we observed a primarily nuclear localization of GSK3B S389 phosphorylation in the brain while S9 phosphorylation was found in nuclear and cytosolic compartments. Further, we observed neurodegeneration in hippocampal and cortical regions of GSK3B KI mice supporting the idea that the inhibition of GSK3B by S389 phosphorylation observed following stress and exercise may be protective. Though largely similar to wild type mice in behavioral tests, increased auditory fear conditioning was evident in GSK3B KI mice. Contextual and cued freezing was prolonged in GSK3B KI mice, a phenotype that is commonly observed in stress models. Together these findings suggest that GSK3B S389 phosphorylation is playing a critical role in neuronal integrity that is independent of GSK3B S9 phosphorylation, and that the subset of neurons protected by GSK3B S389 phosphorylation may play an important role in preventing a portion of the maladaptive behavioral changes observed following stress exposure.
|
187 |
FUNCTION AND REGULATION OF MATRIX METALLOPROTEINASE-1 IN GLIOBLASTOMA MULTIFORMEAnand, Monika 29 July 2010 (has links)
Glioblastoma Multiforme (GBM) is an aggressive and fatal cancer of the brain. It is characterized with augmented morbidity and elusion to therapies due in part to the incessant infiltration and spread of tumor cells in normal brain. We investigated the function of Matrix metalloproteinase-1, an important enzyme noted to be responsible for invasion in other cancers, in GBM and its regulation by epidermal growth factor receptor (EGFR) signaling. Previous studies from our laboratory demonstrated elevated levels of MMP-1 in GBM. Further studies indicated the involvement of MMP-1 in GBM invasion. The GBM cell lines T98G, U251MG and U87MG were used for this study. In T98G cell lines, inhibition of MMP-1 by siRNA significantly suppressed basal in vitro invasion without impacting cell viability. The over-expression of MMP-1 was accomplished in U251MG and U87MG using the mammalian expression vector, pIRES, encoding full length MMP-1 cDNA. The MMP-1 over-expressing U251MG and U87MG cells exhibited significantly enhanced invasion in vitro with no modification in the cell proliferation rates. A majority of GBM patients present defective EGFR signaling due to over-expression, amplification or mutation in the receptor. MMP-1 is known to be up-regulated by various stimulatory agents including growth factors. We examined the regulation of MMP-1 by EGFR activation and observed the induction of MMP-1 after EGF treatment. Inhibition of the receptor by pharmaceutic inhibitor treatment and genetic approaches led to reduction in MMP-1 levels. We also observed that this regulation is primarily mediated by the downstream MAPK pathway. Inhibition of MAPK and not PI3K pathway resulted in diminished MMP-1 protein levels even in the presence of EGF. These studies demonstrate the importance of the EGFR-MAPK signaling pathway in the induction of MMP-1 in glioma cell lines. In addition, MMP-1 plays a role in glioma cell invasion in vitro. These results along with the reports of MMP-1 over-expression in GBM warrant future studies examining the function of MMP-1 in vivo.
|
188 |
The Role of Mitogen-activated Protein Kinases in the Regulation of Plant DevelopmentSatterfield, Erica 10 April 2009 (has links)
Mitogen-activated protein kinases are part of an evolutionarily conserved protein phosphorylation cascade which serves essential regulatory functions in eukaryotic organisms. Although the role of MAPKs in the regulation of a plant’s response to environmental stress and plant defense has been well established, very little is known about their role in the regulation of plant developmental processes. In order to examine the role of MAPKs in plant growth and development, a strong mammalian MAPK phosphatase (MKP-1), which is known to inactivate MAPKs in plants, was introduced into tobacco plants. In tobacco plants, MKP-1 overexpression altered plant responses to the phytohormones, ethylene and cytokinin. Tobacco plants expressing MKP-1 flowered earlier and senesced later than wild-type. Additionally, these plants exhibited similar floral morphology as flowers from ethylene-insensitive tobacco plants. These observed phenotypes seem to depend on the protein phosphatase activity, as transgenic lines expressing an inactive form of MKP-1 (MKPCS) did not show the same phenotypes. Furthermore, both tobacco and Arabidopsis MKP-1 transgenic plants exhibited increased shoot regeneration when compared to wild-type plants, suggesting increased cytokinin sensitivity. In an attempt to elucidate the mechanism by which MKP-1 affects plant growth and development, expression of selected genes were analyzed using RT-PCR. MKP-1 transformed tobacco plants exhibited downregulated expression of an ethylene biosynthesis gene (NtACO) and upregulated expression of a pathogenesis-related gene (PR-1b), similar to gene expression studies previously conducted in plants with increased production of cytokinin. The same MKP-1 transgenic plants also exhibited upregulated expression of the flowering time gene, FT. Results from this study indicate that constitutive expression of MKP-1 may interfere with ethylene-related MAPK pathways, which normally serves to restrict plant growth during times of environmental stress. The reduced responses to ethylene resulted in elevated sensitivity to cytokinin, promoting an enhanced shoot regeneration phenotype.
|
189 |
Insulin-like growth factor binding protein-3 (IGFBP-3) plays an essential role in cellular senescence: molecular and clinical implications.Garza, Amanda 29 April 2010 (has links)
Normal somatic cells have a limited proliferative capacity in vivo and in vitro, termed senescence and later, thought to contribute to molecular and cellular organismal aging. There are several studies that demonstrate the importance of the GH/IGF axis in longevity, aging and cellular senescence. One primary component of the IGF signaling involves IGFBP-3. It is well documented that IGFBP-3 levels are significantly increased in senescent human diploid fibroblasts however IGFBP-3 function is not known in this system. Interestingly, Werner syndrome fibroblasts, commonly used as a model of cellular aging, have upregulated IGFBP-3 levels in young and late passage cells compared to age matched normal fibroblasts. It is known that suppression of p38 MAPK activity in WS fibroblasts can reverse the senescence and promotes cell proliferation. As increased IGFBP-3 expression is associated with cellular senescence, and suppression of p38 MAPK can reverse senescence in WS fibroblasts, it is hypothesized that “IGFBP-3 can induce senescence, by activating the p38 MAPK signaling pathway.” Our studies demonstrate IGFBP-3 and novel IGFBP-3R can induce senescence in young fibroblasts, while suppression of IGFBP-3 in pre-senescent fibroblasts, can delay the onset of replicative senescence. We identified ROS accumulation in IGFBP-3/IGFBP-R-induced senescent cells which we speculated may be signaling p38 MAPK activation. Inhibition of ROS accumulation suppressed p38 signaling and prevented IGFBP-3/IGFBP-3R-induced senescence. To evaluate the sequence of activation we inhibited p38 activity prior to senescence induction. Interestingly, p38 inhibition prevented IGFBP-3/IGFBP-3R-induced senescence, suggesting IGFBP-3 signals ROS induction which activates p38 signaling. We next examined the significance of IGFBP-3R in IGFBP-3-induced senescence. Suppression of endogenous IGFBP-3R inhibits IGFBP-3-induced senescence. We aimed to identify a possible regulatory mechanism for IGFBP-3 upregulation. Using sequence analysis software we identified 3 possible highly conserved miRNA sequences aligned to IGFBP-3. miR-19a appeared to have the most significant downregulated expression in late passage fibroblasts compared to early passage. Furthermore, overexpression miR-19a in late passage cells, significantly decreased IGFBP-3 expression, suggesting miR-19a may silence IGFBP-3 expression in senescence. Making a direct mechanistic connection between senescence and aging is significant and unraveling how IGFBP-3/IGFBP-3R can induce senescence could prove beneficial in understanding the aging process.
|
190 |
Effet des différents composés de la matrice extracellulaire du foie sur la sensibilité des hépatocytes à l'apoptoseBourbonnais, Éric January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
Page generated in 0.0218 seconds