• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 188
  • 112
  • 46
  • 18
  • 13
  • 11
  • 7
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 442
  • 149
  • 85
  • 66
  • 55
  • 50
  • 49
  • 46
  • 41
  • 40
  • 40
  • 38
  • 38
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Estudo e implementação de um microcontrolador tolerante à radiação

Leite, Franco Ripoll January 2009 (has links)
Neste trabalho foi elaborado um microcontrolador 8051 tolerante à radiação, usando para isso técnicas de recomputação de instruções. A base para este trabalho foi a descrição VHDL desse microcontrolador, sendo proposto o uso de sensores de radiação, Bulk-BICS, e códigos de proteção de erros para os elementos de memória, como forma de suporte à técnica apresentada. Inicialmente serão abordados sucintamente a origem e os efeitos prejudiciais da radiação nos dispositivos eletrônicos, motivando a realização deste trabalho. Serão mostrados em detalhes os passos para implementar a técnica de recomputação, que consiste em monitorar os sensores e, ao ser detectado um pulso transiente, fazer o processador reler a última instrução e executá-la novamente, a fim de mitigar o efeito do SET (Single Event Transient). Para isso a manipulação do contador de programa (PC) e o apontador de pilha (SP) são fundamentais. Durante esse processo também deve ser garantido que nenhum dado, potencialmente corrompido, seja armazenado na memória. Contra SEUs (Single Event Upsets) é pressuposto que todos os elementos de memória do microcontrolador estão protegidos através de algum código de correção de erros, assunto já pesquisado por outros autores. Na seqüência serão apresentadas várias simulações realizadas, onde é possível ver o processo de recomputação sendo iniciado a partir da incidência de partículas geradas através de um testbench. Por fim será feita uma comparação entre o 8051 original e o protegido, mostrando dados de área, freqüência de operação e potência de cada um. / This work presents a radiation hard 8051 microcontroller, designed using instruction recomputation techniques. The basis for this work was the VHDL description of the microcontroller. To make the microcontroller radiation hard, built in radiation sensors, called Bulk-BICS, were use to protect the combinational logic blocks. Codes for error detection and correction were used to protect the memory elements. Initially, this work discusses the sources of ionizing radiation and its harmful effects on digital integrated circuits, showing the motivation for this work. Next, the details of the implemented instruction re-computation technique are shown. It consists in monitoring the radiation sensors and, if the incidence of ionizing radiation is detected, the processor reads the last instruction and executes it again, in order to mitigate the effect of a single event transient (SET). In order to implement this re-computation, the manipulation of the program counter (PC) and stack pointer (SP) is essential. During this process it must be guaranteed that any data, potentially corrupted, will not be stored in memory. Regarding radiation effects on memory elements (Single Event Upsets-SEUs), it is assumed that all memory elements of the microcontroller are protected by some error detection and correction code, a topic previously studied by other authors. Finally, several simulations will be shown, where it is possible to see the evolution of the re-computation process, from the detection of the incidence of ionizing radiation (incidence generated by a testbench) to the full re-computation of the instruction. Finally, a comparison is made between the performance of the original 8051 and the radiation hardened version, showing overheads of area, frequency of operation and power.
132

PWM discreto para controle de velocidade com tabelas pré-programadas reduzidas / PWM control for discrete speed with preprogarmmed tables reduced

Alice Reis de Souza 17 December 2011 (has links)
Devido à preocupação com a preservação do meio ambiente, estudos em várias áreas surgiram, inclusive no que diz respeito à qualidade do ar. Dentre as pesquisas encontram-se estudos para o desenvolvimento do veículo elétrico, uma fonte de energia limpa. Para controlar a velocidade, o freio e a reversão do movimento de um motor de indução trifásico utilizado neste tipo de veículo, foram desenvolvidos vários tipos de circuitos geradores de PWM com microcontroladores da família 8051 e PIC. Observando o avanço da tecnologia na fabricação de microcontroladores, o objetivo desta pesquisa foi o desenvolvimento de um circuito com um microcontrolador compatível com a família 8051 para implementação de um controlador de velocidade discreto para obter, além de um desempenho melhor que o alcançado com o circuito já desenvolvido com o microcontrolador 80C31, também minimizar tabelas pré-programadas utilizadas em estudos anteriores a fim de obter um circuito reduzido mantendo baixo custo. O microcontrolador escolhido foi o AT89S4051, que possui apenas 20 pinos, opera com frequências até 24MHz, por programação permite redução do tempo necessário para executar instruções enquanto que o 80C31 possui 40 pinos, opera com frequências até 16MHz e trabalha com tempo fixo para executar instruções. Foram desenvolvidos programas que permitiram a utilização de tabelas pré-programadas reduzidas e o acelerador foi implementado sem o uso de conversor A/D. A simulação permite verificar a reduzida geração de harmônicas da técnica, permitindo a utilização em eletrodomésticos, em que a alimentação é originada da rede pública. / Because of concern about preserving the environment, studies have emerged in several areas, including with regard to air quality. Among the studies are studies for the development of electric vehicle, a clean energy source. To control speed, brake and reverse the motion of a three phase induction motor used in this type of vehicle have been developed various types of circuits that generate PWM with 8051 family microcontrollers and PIC. Noting the advancement of technology in the manufacture of microcontrollers, the objective of this research was to develop a circuit with a microcontroller compatible with the 8051 to implement a speed controller for discrete, and a better performance than that achieved with the circuit already developed with the 80C31 microcontroller, also minimize pre-programmed tables used in previous studies to obtain a small circuit while maintaining low cost. The microcontroller chosen was the AT89S4051, which has only 20 pins, operates at frequencies up to 24MHz, programming allows reducing the time required to execute instructions while the 80C31 has 40 pins, operates at frequencies up to 16MHz and works with a fixed time to execute instructions. Programs were developed that allowed the use of tables and pre-programmed low throttle was implemented without the use of A/D converter the simulation allows to verify the reduced harmonic generation technique, allowing for use in electronics, where power is derived from the public network.
133

Projeto e desenvolvimento de uma arquitetura de baixo consumo de potência para microprocessadores. / Design and implementation of low power architecture for microcontroller.

Augusto Ken Morita 29 June 2015 (has links)
O trabalho trata do projeto e do desenvolvimento de um processador de baixo consumo de potência, de forma simplificada, explorando técnicas de microarquitetura, para atingir menor consumo de potência. É apresentada uma sequência lógica de desenvolvimento, a partir de conceitos e estruturas básicas, até chegar a estruturas mais complexas e, por fim, mostrar a microarquitetura completa do processador. Esse novo modelo de processador é comparado com estudos prévios de três processadores, sendo o primeiro modelo síncrono, o segundo assíncrono e o terceiro uma versão melhorada do primeiro modelo, que inclui minimizações de registradores e circuitos. Uma nova metodologia de criação de padring de microcontroladores, baseada em reuso de informações de projetos anteriores, é apresentada. Essa nova metodologia foi criada para a rápida prototipagem e para diminuir possíveis erros na geração do código do padring. Comparações de resultados de consumo de potência e área são apresentadas para o processador desenvolvido e resultados obtidos com a nova metodologia de geração de padring também são apresentados. Para o processador, um modelo, no qual se utilizam múltiplos barramentos para minimizar o número de ciclos de máquina por instrução, é apresentado. Também foram ressaltadas estruturas que podem ser otimizadas e circuitos que podem ser reaproveitados para diminuir a quantidade de circuito necessário na implementação. Por fim, a nova implementação é comparada com os três modelos anteriores; os ganhos obtidos de desempenho com a implementação dessas estruturas foram de 18% que, convertidos em consumo de potência, representam economia de 13% em relação ao melhor caso dos processadores comparados. A tecnologia utilizada no desenvolvimento dos processadores foi CMOS 250nm da TSMC. / This work is a development and implementation of a low power processor in a simplified way, exploring microarchitecture techniques to achieve low power consumption. A logic sequence of design flow is presented, starting from basic concepts and circuit structures incrementing these concepts and structures to achieve a complex microarchitecture of a processor. A new methodology for microcontroller padring creations based in reuse of previous project information is presented. This new methodology was developed for fast prototyping and decreases the possible error in generation of microcontroler padring code creation. This new microarchitecture is compared with three previous processors, one is an original synchronous version, the second is an asynchronous version, and the third is based on the first model with register and circuit minimizations. Results of area and power consumption are compared with this new proposed architecture. The new model uses multiple buses with access timing tuned for different internal blocks. This timing tuning decrease the number of machine cycle necessary per instruction. In addition, it presents some macro block circuit partition and circuit reuse to minimize the circuit necessary for implementation. The gain obtained in performance with these new structures was 18%, converting to power consumption, it represent a decrease in 13% in relation with the best of three processor compared. The technology used in the development of these processors was CMOS 250nm from TSMC.
134

Connecting Arduino Sensors to SensibleThings

Guan, Xiao January 2016 (has links)
The Internet of Things is going to bring the Internet into every objectsaround us. To enable this ambitious idea, tiny devices have to be connected within the global Internet. Such devices are extreme small so it’sbecoming a challenge to connect it to the Internet via TCP/IP. The thesispresents a way of connecting microcontrollers with other devices to jointlyform a distributed network.The thesis investigates and takes advantage of Internet of Things platform to implement the connection. SensibleThings is used as the platform. Limited by the hardware, microcontroller can’t run such a bloatedplatform. The thesis investigates different microcontrollers characteristics and chooses Arduino as a representative in the work. Then it realizes a bridge connection between Arduino and SensibleThings. Arduinois connected with a single-board computer, Raspberry Pi by a USB cable.SensibleThings is running on Raspberry Pi to process the network messages. The channel throughput, latency and general usability are measured and interoperated. As a result, the data indicates this is a promising, flexible, cost effective network topology. Microcontroller can join adistributed network by the bridge. Comparing to dedicate hardware solution, the bridge connection cuts down the implementation difficultiesand cost. The thesis also covers possible problems in such connection andproposes future work.
135

PHM Approaches for Reliability of ECUs : Analyses of Canaries and Real-Time Data Acquisition

Dag, Gabriel January 2017 (has links)
Today, Scania CV AB is facing challenging demands on functionality and performance within their vehicles. The electronics are increasing rapidly and to stay competitive on the market, concerns regarding reliability of electronic systems needs to be evaluated. Prognostics and health management (PHM) is a concept where reliability of, for example, electronic control units (ECUs) are assessed. It requires customized systems for each specific environment, due to different strains and stresses. One approach is to have canaries (components with reduced soldering mass) implemented into ECUs as an indication that something is about to happen. Another essential aspect is the continuous real-time data acquisition from sensors, that can be used for different algorithms and models, which could provide forecasts on remaining useful life (RUL) of the ECUs. An appliance is the big data acquisition, where a database will collect data from vehicles, which means that ECU data need be communicated differently than today. This is why this master thesis project investigated canaries on printed circuit boards (PCBs) when they were subjected to vibrations as well as thermal cycling (TC), which are common parameters within vehicles. The PCBs consisted of both lead (Sn-Pb) and lead-free (SAC305) soldering for material comparison, since a transition to lead-free electronics is happening. Several fatigue tests were performed to collect as much information as possible. For further advances towards a PHM implementation, thermal shock (TS) tests on ECUs were performed as well. The ECUs were shocked in a temperature cabinet while being in active state. The internal temperature sensor was communicated with via controller area network (CAN). Scania’s CAN program was used and the data was logged in a computer, which in turn was compared to the data from the surrounding thermocouples, placed in specific spots. The results that were achieved clearly showed that lead-free PCBs are much more sensitive to stresses (both vibrations and TC). It was also shown that canaries failed in a much higher extent than regular resistors. The real-time data acquisition from the ECU could successfully be managed, where continuous data was logged. Also, the TS tests showed how the correlation between sensors indifferent positions was. Finally, the results from these tasks were discussed for future work. One have to keep in mind that this is just the beginning of a many-years project within Scania. The results and progress within this master thesis project will hopefully be a step in the rightdirection.
136

Comparison of Wireless Communication Technologies used in a Smart Home : Analysis of wireless sensor node based on Arduino in home automation scenario

Horyachyy, Oleh January 2017 (has links)
Context. Internet of Things (IoT) is an extension of the Internet, which now includes physical objects of the real world. The main purpose of Internet of Things is to increase a quality of people’s daily life. A smart home is one of the promising areas in the Internet of Things which increases rapidly. It allows users to control their home devices anytime from any location in the world using Internet connectivity and automate their work based on the physical environment conditions and user preferences. The main issues in deploying the architecture of IoT are the security of the communication between constrained low-power devices in the home network and device performance. Battery lifetime is a key QoS parameter of a battery-powered IoT device which limits the level of security and affects the performance of the communication. These issues have been deepened with the spread of cheap and easy to use microcontrollers which are used by electronic enthusiasts to build their own home automation projects. Objectives. In this study, we investigated wireless communication technologies used in low-power and low-bandwidth home area networks to determine which of them are most suitable for smart home applications. We also investigated the correlation between security, power consumption of constrained IoT device, and performance of wireless communication based on a model of a home automation system with a sensor node. Sensor node was implemented using Arduino Nano microcontroller and RF 433 MHz wireless communication module. Methods. To achieve the stated objectives of this research following methods were chosen: literature review to define common applications and communication technologies used in a smart home scenario and their requirements, comparison of wireless communication technologies in smart home, study of Arduino microcontroller technology, design and simulation of a part of  home automation project based on Arduino, experimental measurements  of execution time and power consumption of Arduino microcontroller with RF 433 MHz wireless module when transmitting data with different levels of security, and analysis of experimental results. Results. In this research, we presented a detailed comparison of ZigBee, WiFi, Bluetooth, Z-Wave, and ANT communication technologies used in a smart home in terms of the main characteristics. Furthermore, we considered performance, power consumption, and security. A model of a home automation system with a sensor node based on Arduino Nano was described with sleep management and performance evaluation. The results show that the battery lifetime of Arduino in a battery-powered sensor node scenario is determined by the communication speed, sleep management, and affected by encryption. Conclusions. The advanced communication strategy can be used to minimize the power consumption of the device and increase the efficiency of the communication. In that case, our security measures will reduce the productivity and lifetime of the sensor node not significantly. It’s also possible to use symmetric encryption with smaller block size.
137

Queima microcontrolada de baixas e inconstantes vazões de biogás para estações de tratamento de esgoto

Osmar da Rocha Simões 13 December 2012 (has links)
Este trabalho apresenta um sistema Queimador Registrador de Baixas Vazões de Biogás que permite a queima de biogás em miniestações de tratamento de esgoto, em que o aproveitamento energético não é viável devido à baixa e inconstante vazão de biogás. Este sistema vai ao encontro das necessidades mundiais de redução na emissão dos gases do efeito estufa, em especial o gás metano, presente no biogás produzido por meio da digestão anaeróbica do esgoto sanitário, que é aproximadamente vinte e uma vezes mais impactante à atmosfera que o gás carbônico. O princípio se baseia no armazenamento do biogás em um gasômetro volumétrico, tipo telescópio, que depois de cheio libera o biogás que é queimado automaticamente, podendo o volume queimado ser quantificado para posterior obtenção de créditos de carbono. O sistema de controle é de baixo custo e pode ser absorvido por instalações de pequeno porte. Para que o módulo de controle tenha capacidade de monitorar e quantificar o volume de biogás queimado, foram utilizados: um sensor para detecção do nível do gasômetro cheio, um sensor para detecção do nível do gasômetro vazio, uma válvula para controle da entrada de gás e um centelhador semelhante ao utilizado em um fogão de cozinha para a queima do biogás. Também foi utilizado um contador que permite o sistema quantificar o número de vezes que o gasômetro foi esvaziado e contabilizar o volume de biogás queimado. / This work presents a system Burner Recorder Low Flows Biogas which allows the burning of biogas in sewage treatment small stations, in which the energy use is not feasible due to the low and unstable flow of biogas. This system meets the needs of global reduction in emissions of greenhouse gases, particularly methane, present in the biogas produced by the anaerobic digestion of sewage, which is approximately twenty-one times more damaging to the atmosphere than carbon dioxide. The principle is based on biogas storage in a volumetric gasometer, a kind of telescope, which after full releases biogas which is automatically burned, making it possible to be quantified to subsequently carbon credits attainment. It is a low cost system and can be absorbed by small installations. In order to enable the control module to monitor and quantify the volume of biogas burned, it was necessary to use a sensor for level detection of the full gasometer, a sensor for level detection the level of the empty gasometer, a valve to control the entry of gas and a spark-gap similar to that used in a kitchen stove for biogas burning. It was also utilized a counter which allows the system to quantify the number of times the gasometer was emptied and to measure the volume of biogas burning.
138

Design of a Low-Cost Capillary Electrophoresis Laser-Induced Fluorescence System: Lessons Learned When Trying to Build the Lowest Possible Cost System

Perry, Steven James 01 May 2018 (has links)
Capillary electrophoresis laser-induced fluorescence (CE-LIF) is widely used to detect both the presence and concentration of fluorescently labeled biomolecules. In CE-LIF, a plug of sample fluid is electrophoretically driven down a microchannel using a high voltage applied between the opposite ends of the microchannel. Molecules of different sizes and charge states travel at different velocities down the channel. Laser light with a wavelength in the excitation band of the fluorophores is focused near the end of the channel. As each species of molecule passes through the laser spot, the fluorophores emit a fluorescence signal which is measured with an optical detector. Commercial CE-LIF systems are available as a complete, expensive package. Custom CE-LIF systems are a collection of commercially available components that meet the specific needs of the end user. Using the custom system in Dr. Woolley's lab as the standard, we hypothesized that 3D printed parts in conjunction with low-cost components could be used to significantly reduce costs and simplify the system, which in turn would make such systems more widely available with a lower barrier to entry. Testing this hypothesis began with five semesters of small teams of senior undergraduate students trying to design and assemble a low-cost CE-LIF system as part of their mandatory one-semester senior project. I was one of the seniors who worked on the system. Although none of the senior project teams were successful, a partially functioning system was ultimately produced. I reference this system as the starting point system throughout this thesis, which is focused on identifying and solving the system's obstacles in order to reach a working state. I re-designed and re-built each sub-system of the starting point system as needed if within the available budget to create a system that was functional. Budgetary constraints were included in evaluating potential improvements. The end goal was to compare the improved system's performance with that of an expensive conventional system (hereinafter referred to as the standard system) available in Dr. Adam Woolley's laboratory on the Brigham Young University campus. The ultimate conclusion of my masters' thesis work is that a low-cost CE-LIF system based on 3D printed and low-cost components results in a system that does not offer repeatable performance. In the course of my work, many lessons were learned as to what would reduce overall system costs while maintaining a user-friendly experience. My analysis is given on a subsystem basis to explain what limited the ability of the system to run consistently or what caused it to fail altogether. Details and methodology of my contributions including circuits designed, code written, components used, and 3D models printed in order to test the hypothesis are documented. Attribution of the work prior to mine is laid out when each subsystem is broken down in detail for the failure modes that prevented consistent operation. Future work is suggested to correct the problems encountered and provide a path forward to implement a next-generation system that can be achieved at a lower cost compared to a conventional system, and yet which does not suffer from the performance problems associated with the version explored in this thesis in which maximum cost reduction was aggressively pursued.
139

Aplikace počítače v ultralehkém letounu / Applications of Computers in Ultramicro Aircraft

Žůrek, Daniel January 2017 (has links)
The master thesis deals with the possibilities for monitoring the operation of ultralight aircraft or helicopters . The aim is to create a system for the determination of aircraft operating parameters with a main focus on motion detection and evaluation . The thesis describes speed sensing methods , acceleration measurement , frequency measurement methods , wireless communication , serial line communication , hardware and software implementation of the embedded system, and finally description of the implementation of the mobile application .
140

Systém vzdáleného monitorování teploty / Remote temperature monitoring system

Gál, Radek January 2018 (has links)
This project describes the design of a system for remote temperature monitoring of stored a more commodities quantity for the horse-breeding. The main task of this system is the early alert before the fire developed to the spontaneous combustion and continuous monitoring of the quality and safety this commodities. The main module communicates with several autonomous temperature sensors, which are located in multiplie locations. The measured values can be stored on an internal memory, displayed on the display and transmitted with the Ethernet network to the client computer, where it is possible this temperatures to view with in the user program and graphs.

Page generated in 0.0672 seconds