• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 192
  • 85
  • 10
  • 9
  • 8
  • 7
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 368
  • 58
  • 47
  • 42
  • 41
  • 41
  • 34
  • 34
  • 34
  • 32
  • 32
  • 32
  • 31
  • 28
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Experimental and Computational Studies in Bioorganic and Synthetic Organic Chemistry

Lam, Polo Chun Hung 13 December 2004 (has links)
Cationâ Ï interaction is an important determinant in protein structure and function. Among the three proteinogenic aromatic amino acids, tryptophan (Trp) is the strongest cationâ Ï donor. We reported the asymmetric syntheses of tryptophan regioisomers in which the amino acid side chain is attached at different position of the indole moiety. These new tryptophan regioisomers can effect a different mode of cationâ Ï interaction. In nature, dramatic increases in binding affinity can be achieved through multivalent binding. Following a fragmentation-dimerization approach, we synthesized Taxol-based dimer in which the baccatin III core of Taxol is coupled with flexible PEG linker. However, microtubule assembly assay suggested that these new dimers are not capable of effecting bivalent binding to the Taxol binding sites in microtubules. Memory of chirality (MOC) is an emerging theme in asymmetric synthesis in which the dynamic chirality of the reactive intermediate "memorizes" the static chirality of the reactant. Using dynamic 1D and 2D NMR and density functional theory (DFT) methods, we studied the MOC effect of 1,4-benzodiazepin-2-ones. Reconstruction of the reaction pathway using DFT calculations supported our proposed contra steric, retention of configuration mechanism. / Ph. D.
342

Temperature-dependence of microtubule dynamics across Xenopus species

de Gaulejac, Ella 17 May 2023 (has links)
Eukaryontische Zellen besitzen ein Zytoskelett, ein zelluläres Netzwerk aus Biopolymeren. Unter diesen Biopolymeren sind die Mikrotubuli weitgehend konserviert. Diese aus Tubulin aufgebauten Filamente sind dynamisch und wechseln zwischen Phasen des Wachstums und der Schrumpfung. Die genauen Mechanismen, die die dynamische Instabilität der Mikrotubuli bestimmen, werden noch erforscht. Die Allgegenwart von Mikrotubuli wirft die Frage auf, wie sie in verschiedenen thermischen Umgebungen konservierte Funktionen ausführen können. Um dieser Fragestellung nachzugehen, habe ich verwandte Froscharten mit unterschiedlich temperierten Lebensräumen untersucht: Xenopus laevis (16-22 °C), Xenopus borealis (19-23 °C) und Xenopus tropicalis (22-30 °C). Um zu untersuchen, ob sich die biochemischen Eigenschaften von Tubulin und die Dynamik der Mikrotubuli bei den drei Arten an die Temperatur angepasst hat, habe ich die Methoden der Tubulin-Affinitätsreinigung und die temperaturgesteuerte TIRF-Mikroskopie zur Rekonstitution der Mikrotubuli-Dynamik kombiniert. Dabei habe ich festgestellt, dass bei einer Temperatur von 25°C die Wachstumsgeschwindigkeit der Mikrotubuli im Bezug zur thermischen Nische der einzelnen Arten negativ korreliert. Die Verwendung der Arrhenius-Gleichung zum Vergleich der Aktivierungsenergie der Mikrotubuli-Polymerisation für jede Spezies ergab, dass die freie Energie des Tubulins umso höher ist, je kälter die thermische Nische der Spezies ist. Die Mikrotubuli von X. laevis und X. borealis zeigten eine längere Lebensdauer und wurden häufiger zerstört als die von X. tropicalis. Die Tubuline von X. laevis und X. borealis sind phosphoryliert, im Gegensatz zu X. tropicalis. Die Ergebnisse zeigen, dass sich Xenopus Tubulin und die Dynamik der Mikrotubuli an die Temperatur angepasst haben. Kalt lebende Arten kommen mit der niedrigeren Energie des Milieus zurecht, durch verbessertes Wachstum und Stabilität. / Eukaryotic cells hold a cytoskeleton, a cellular network of biopolymers. Among the filaments of the cytoskeleton, microtubules are widely conserved. Built from tubulin, those filaments are dynamic, alternating between phases of growth and shrinkage. The biochemical properties of tubulin shape the dynamic behavior of microtubules, which is crucial for many cellular processes. The precise mechanisms determining microtubule dynamic instability are still under investigation. The ubiquity of microtubules raises the question of how they can perform conserved functions within various thermal environments. To address this, I turned to closely related frog species living at different temperatures, Xenopus laevis (niche: 16-22°C), Xenopus borealis (19-23°C) and Xenopus tropicalis (22-30°C). To probe whether the biochemical properties of tubulin and microtubule dynamics adapted to temperature across those three species, I combined tubulin affinity purification and temperature-controlled TIRF microscopy of in vitro reconstitution of microtubule dynamics. I found that at 25°C, the microtubule growth velocity inversely correlates with the thermal niche of each species. Adjusting temperature to each species’ endogenous condition modulates the growth rate differences across species. Using the Arrhenius equation to compare the activation energy of microtubule polymerization for each species suggested that the colder the thermal niche of the species, the higher the free energy of its tubulin. Microtubules from the cold-adapted species X. laevis and X. borealis have longer lifetimes and rescue more often than those of X. tropicalis, both at 25°C and at each species’ endogenous condition. X. laevis and X. borealis tubulins are phosphorylated, contrary to X. tropicalis. My results show that Xenopus tubulin and microtubule dynamics have adapted to temperature. Cold-living species cope with the lower energy of the milieu by facilitating growth and stability.
343

MuRF3 binds to the retromer subunit SNX5 inhibiting its MuRF2-mediated degradation and leading to its stabilization

Hamati, Jida 17 October 2016 (has links)
Die muskelspezifischen RING-Finger Ubiquitin E3 Ligasen MuRF1, MuRF2 und MuRF3 werden mit verschiedenen zellulären Prozessen in Verbindung gebracht. MuRF1 und MuRF3 beteiligen sich am Abbau mehrerer Muskelstrukturproteine über das Ubiquitin Proteasom System (UPS) und spielen somit eine wichtige Rolle bei der Aufrechterhaltung der Skelett- und Herzmuskelstruktur und -funktion. MuRF1 wurde als Atrophie-Marker identifiziert, da seine Expression während der Muskelatrophie ansteigt, und MuRF2 und MuRF3 wirken bei der Stabilisierung von Mikrotubuli und Differenzierung von Myozyten mit. Dennoch sind bisher viele Aspekte der Funktion von MuRF-Proteinen ungeklärt. Die Domänenstruktur der MuRF-Proteine zeigt mehrere hochkonservierte Domänen, die sich an Protein-Protein Interaktionen beteiligen. Die Identifizierung und Charakterisierung ihres Interaktoms ermöglicht ein besseres Verständnis ihrer Funktionen. Aus diesem Grund wurden quantitative massenspektrometrische Analysen durchgeführt, um neue Interaktionspartner und Substrate für MuRF1, 2 und 3 zu identifizieren. Sorting nexin 5 (SNX5), eine Untereinheit des Retromers in Säugetieren, wurde als Interaktionspartner von MuRF3 identifiziert. SNX5, das eine wichtige Rolle in subzellulären Transport-Signalwegen spielt, interagierte über seine BAR-Domäne mit MuRF3. SNX5 und MuRF3 co-lokalisierten und assoziierten mit vesikulären Strukturen des subzellulären Transport-Signalweges. SNX5 wurde außerdem als Substrat von MuRF2 identifiziert. MuRF2 band und ubiquitinierte SNX5 in vivo und vermittelte damit dessen Abbau über das UPS. MuRF3 stabilisierte SNX5 durch die Inhibierung dieses Abbaus. Somit konnten MuRF2 und MuRF3 mit einem in subzellulärem Transport aktiven Protein in Verbindung gebracht werden, das direkt mit Mikrotubuli assoziiert und funktionell von einem stabilen Mikrotubuli-Netzwerk abhängig ist. Dies legt eine mögliche regulatorische Rolle von MuRF2 und MuRF3 in Mikrotubuli-abhängigen subzellulären Transportwegen nahe. / Muscle specific RING-Finger ubiquitin E3 ligases MuRF1, MuRF2 and MuRF3 have been implicated in several cellular functions. MuRF1 and MuRF3 have been shown to bind and degrade muscle contractile and structural proteins via the ubiquitin proteasome system (UPS), thus playing an important role in the maintenance of skeletal and cardiac muscle structure and function. MuRF1 is considered an atrophy marker since its expression increases during muscle atrophy. MuRF2 and MuRF3 are involved in myocyte differentiation and both bind to and stabilize microtubules. Nevertheless, many aspects of the functions of the MuRF-family are unknown. The domain structure of the MuRF family implicates several highly conserved domains involved in protein-protein interaction. Accordingly, one way to better understand the role of MuRF proteins in myocyte function and protein homeostasis is to identify and characterize their interactome. Therefore, quantitative mass spectrometric analysis was used to identify novel interaction partners and target proteins of MuRF1, 2 and 3. Sorting nexin 5 (SNX5), a mammalian retromer subunit which plays an important role in subcellular trafficking pathways, was identified as a novel interaction partner of MuRF3, with which it interacted via its Bin/Amphiphysin/Rvs (BAR)-domain. SNX5 and MuRF3 co-localized and associated with early endosomes, connecting the microtubule-binding MuRF3 to structures of subcellular trafficking pathway. SNX5 was also identified as a substrate of MuRF2, which interacted with and ubiquitinated SNX5 in vivo, mediating its degradation in a UPS-dependent manner. This MuRF2-mediated degradation was inhibited by MuRF3, which stabilized SNX5. Thus, MuRF2 and MuRF3 were linked to a subcellular trafficking protein, SNX5, which is directly associated with microtubules and functionally dependent on a stable microtubule network, suggesting a possible regulatory role of MuRF2 and MuRF3 in microtubule-dependent subcellular trafficking pathways.
344

Das Zytoskelett der Endothelzelle / Bedeutung des Mikrotubulus- und Mikrofilamentsystems für die Regulation der Endothelpermeabilität

Mühle, Hans-Werner 16 January 2004 (has links)
F-Aktin spielt eine wichtige Rolle bei der Steuerung der endothelialen Barrierefunktion. In dieser Arbeit verwendeten wir Colchicin, Vinca-Alkaloide (Vinblastin, Vincristin) und Paclitaxel um Mikrotubulussysteme (MT) auszulenken und den Effekt auf die Permeabilität zu untersuchen. Endothelzellen wurden auf Polycarbonatfiltermembranen gepflanzt und einem kontinuierlichen hydrostatischen Druck von 10 cm H2O ausgesetzt. Die Exposition von Endothelzell-Monolayern gegenüber Colchicin und Vinca-Alkaloiden führte innerhalb von 60 100 Minuten zeit- und dosisabhängig zu einem fünf zehnfachen Anstieg der hydraulischen Konduktivität. Dagegen war nach MT-Stabilisation durch Paclitaxel keine Permeabilitätszunahme festzustellen. Doppelimmunfluoreszenz-Mikroskopie zeigte, dass die MT-Depolymerisation durch Colchicin und Vinca Alkaloide zu F-Aktin-Umverteilung, Stressfaserbildung und Zellretraktionen mit ausgeprägter parazellulärer Lücken-Bildung führt. Diese Phänomene wurden durch Kombinationen von Vinblastin und Paclitaxel deutlich abgeschwächt. Die fluorometrische Messung des intrazellulären F-Aktins nach MT-Depolymerisation durch Vinblastin resultierte in einer signifikanten Zunahme der Aktinfilamente. Auf der anderen Seite resultierte F-Aktin Abbau durch Cytochalasin D und Clostridium difficile (TcdB-10463) morphologisch nicht in einer Veränderung von MT-Strukturen. Dabei zeigten in Interzellularbrücken gelegene MT-Filamente Kolokalisation mit F-Aktin Fragmenten. Unsere Ergebnisse demonstrieren, dass MT-Systeme an der Regulation der endothelialen Barriere beteiligt sind. Darüber hinaus verdeutlichen die Resultate eine enge Bindung von MT- und Aktin-Filamenten innerhalb endothelzellulärer Adhäsionskontakte. / The endothelian cytosceleton plays an important role in the regulation of endothelial permeability via cellular actin filaments. We tested the effect of agents known to perturb cellular microtubules on the permeability of endothelial cell monolayers. The agents chosen were colchicine, the vinca alkaloids vinblastine and vincristine and paclitaxel. Cell monolayers were prepared on polycarbonate filter membranes and exposed to a continuous hydrostatic pressure of 10 cm H2O. Colchicine and the vinca alkaloids caused a five to tenfold increase in the hydraulic conductivity of the monolayers within 60 100 min. The effect was dose and time dependent. The microtubule stabilizer paclitaxel caused no increase in permeability. Double-immunofluorescence microscopy showed that microtubule depolymerisation was associated with certain morphological features such as inter-endothelial gaps, cell retraction, f-actin reorganisation and some stressfibre appearance. These phenomena were significantly reduced when vinblastine and paclitaxel were combined. Measurement of intracellular f-actin following microtubule inhibition with vinblastine showed a significant increase in endothelial actin filaments. No changes in microtubule structures were seen when actin filaments were perturbed with cytochalasin D and Clostridium difficile (TcdB-10463). However, in this case the intercellular bridges showed that microtubules were co-localised with fragments of actin filaments from neighbouring cells. Our data demonstrate that microtubules are important for the regulation of endothelial permeability. Moreover, our results support evidens of binding between microtubules and actin filaments within endothelial cell adhesion contacts.
345

Characterization of the flagellar beat of the single cell green alga Chlamydomonas Reinhardtii

Geyer, Veikko 07 January 2014 (has links) (PDF)
Subject of study: Cilia and flagella are slender appendages of eukaryotic cells. They are actively bending structures and display regular bending waves. These active flagellar bending waves drive fluid flows on cell surfaces like in the case of the ciliated trachea or propels single cell micro-swimmers like sperm or alga. Objective: The axoneme is the evolutionarily conserved mechanical apparatus within cilia and flagella. It is comprised of a cylindrical arrangement of microtubule doublets, which are the elastic elements and dyneins, which are the force generating elements in the axonemal structure. Dyneins collectively bend the axoneme and must be specifically regulated to generate symmetric and highly asymmetric waveforms. In this thesis, I address the question of the molecular origin of the asymmetric waveform and test different theoretical descriptions for motor regulation. Approach: I introduce the isolated and reactivated Chlamydomonas axoneme as an experimental model for the symmetric and asymmetric flagellar beat. This system allows to study the beat in a controlled and cell free environment. I use high-speed microscopy to record shapes with high spatial and temporal resolution. Through image analysis and shape parameterization I extract a minimal set of parameters that describe the flagellar waveform. Using Chlamydomonas, I make use of different structural and motor mutants to study their effect on the shape in different reactivation conditions. Although the isolated axoneme system has many advantages compared to the cell-bound flagellum, to my knowledge, it has not been characterized yet. Results: I present a shape parameterization of the asymmetric beat using Fourier decomposition methods and find, that the asymmetric waveform can be understood as a sinusoidal beat around a circular arc. This reveals the similarities of the two different beat types: the symmetric and the asymmetric beat. I investigate the origin of the beat-asymmetry and find evidence for a specific dynein motor to be responsible for the asymmetry. I furthermore find experimental evidence for a strong sliding restriction at the basal end of the axoneme, which is important to establish a static bend. In collaboration with P. Sartori and F. Jülicher, I compare theoretical descriptions of different motor control mechanisms and find that a curvature controlled motor-regulation mechanism describes the experimental data best. We furthermore find, that in the dynamic case an additional sliding restriction at the base is unnecessary. By comparing the waveforms of intact cells and isolated reactivated axonemes, I reveal the effect of hydrodynamic loading, and the influence of boundary conditions on the shape of the beating flagella.
346

Characterization of the flagellar beat of the single cell green alga Chlamydomonas Reinhardtii

Geyer, Veikko 23 October 2013 (has links)
Subject of study: Cilia and flagella are slender appendages of eukaryotic cells. They are actively bending structures and display regular bending waves. These active flagellar bending waves drive fluid flows on cell surfaces like in the case of the ciliated trachea or propels single cell micro-swimmers like sperm or alga. Objective: The axoneme is the evolutionarily conserved mechanical apparatus within cilia and flagella. It is comprised of a cylindrical arrangement of microtubule doublets, which are the elastic elements and dyneins, which are the force generating elements in the axonemal structure. Dyneins collectively bend the axoneme and must be specifically regulated to generate symmetric and highly asymmetric waveforms. In this thesis, I address the question of the molecular origin of the asymmetric waveform and test different theoretical descriptions for motor regulation. Approach: I introduce the isolated and reactivated Chlamydomonas axoneme as an experimental model for the symmetric and asymmetric flagellar beat. This system allows to study the beat in a controlled and cell free environment. I use high-speed microscopy to record shapes with high spatial and temporal resolution. Through image analysis and shape parameterization I extract a minimal set of parameters that describe the flagellar waveform. Using Chlamydomonas, I make use of different structural and motor mutants to study their effect on the shape in different reactivation conditions. Although the isolated axoneme system has many advantages compared to the cell-bound flagellum, to my knowledge, it has not been characterized yet. Results: I present a shape parameterization of the asymmetric beat using Fourier decomposition methods and find, that the asymmetric waveform can be understood as a sinusoidal beat around a circular arc. This reveals the similarities of the two different beat types: the symmetric and the asymmetric beat. I investigate the origin of the beat-asymmetry and find evidence for a specific dynein motor to be responsible for the asymmetry. I furthermore find experimental evidence for a strong sliding restriction at the basal end of the axoneme, which is important to establish a static bend. In collaboration with P. Sartori and F. Jülicher, I compare theoretical descriptions of different motor control mechanisms and find that a curvature controlled motor-regulation mechanism describes the experimental data best. We furthermore find, that in the dynamic case an additional sliding restriction at the base is unnecessary. By comparing the waveforms of intact cells and isolated reactivated axonemes, I reveal the effect of hydrodynamic loading, and the influence of boundary conditions on the shape of the beating flagella.:Contents 1 Introduction. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 Biology of Cilia and Flagella . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 The dimensions of flagellated micro-swimmers . . . . . . . . . . . . . . . . . 4 1.1.2 The symmetric and the asymmetric beat . . . . . . . . .. . . . . . . . . . . . 5 1.1.3 Chlamydomonas reinhardtii as a flagella model . . . . . . . . . . 5 1.2 The axoneme is the internal structure in eukaryotic cilia and flagella . . 6 1.3 Structure and function of microtubules and dyneins . . . . . . . . . . . 9 1.3.1 Microtubules: The structural elements in the axoneme . . . . . . 9 1.3.2 Dyneins: The force generators that drive the axonemal beat . . . 10 1.3.3 The asymmetries in the axoneme and consequences for the beat 17 1.4 Axonemal waveform models and mechanisms: from sliding to bending to beating . . . . . . . . . . . . . . 20 1.5 Geometrical representation and parameterization of the axonemal beat . . . . . . . . . . . . . . . 23 2 Questions addressed in this thesis . . . . . . . . . . . . . . 27 3 Material and Methods . . . . . . . . . . . . . . 29 3.1 Chlamydomonas cells: Axoneme preparation and motility assays . . . . 29 3.1.1 Culturing of Chlamydomonas reinhardtii cells . . . . . . . . . . . 29 3.1.2 Isolation, demembranation and storage of axonemes . . . . . . . 33 3.1.3 Reactivation of axonemes in controlled conditions . . . . . . . . . 35 3.1.4 Axoneme gliding assay using kinesin 1 . . . . . . . . . . . . . . . 36 3.2 Imaging and image processing . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.1 High-speed imaging of the flagella and axonemes . . . . . . . . . 38 3.2.2 Precise tracking of isolated axonemes and the flagella of cells . . 42 3.2.3 High throughput frequency evaluation of isolated axonemes . . . 47 3.2.4 Beat frequency characterization of the reactivated WT axoneme . . . . . . . . . . . . . . 49 4 Results and Discussion . . . . . . . . . . . . . . 53 4.1 The beat of the axoneme propagates from base to tip . . . . . . . . . . . 53 4.1.1 TEM study reveals no sliding at the base of a bend axoneme . . 53 4.1.2 The direction of wave propagation is directly determined from the reactivation of polarity marked axonemes . . . . . . . . . . 57 4.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2 The asymmetric beat is the superposition of a static semi-circular arc and a sinusoidal beat . . . . . . .. . . . . . . . . . . . . . . . . 61 4.2.1 The waveform is parameterized by Fourier decomposition in time . . . . . . . . . . . . . . 61 4.2.2 The 0th and 1st Fourier modes describe the axonemal waveform . . . . . . . . . . . . . . 65 4.2.3 General dependence of shape parameters on axoneme length and beat frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2.4 The isolated axoneme is a good model for the intact flagellum . .. . . . . . . . . . . . . . 71 4.2.5 Summary: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.3 The circular motion is a consequence of the axonemal waveform . . . . . . . . . . . . . . . . . . . 79 4.3.1 Hydrodynamic relations for small amplitude waves explain the relation between swimming and shape of axonemes . . . . 79 4.3.2 The swimming path can be reconstructed using shape information and a hydrodynamic model . . . . . . . . . . . . . . . . 83 4.3.3 Motor mutations alter the direction of rotation of reactivated axonemes. . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.4 Summary: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.4 The molecular origin of the circular mean shape. . . . . . . . . . . . . . 89 4.4.1 Motor Mutations do not abolish the mean shape, a structural mutation does . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.2 The axoneme is straight in absence of ATP but bend at low ATP concentrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.4.3 Viscous load decreases the mean curvature . . . . . . . . . . . . 99 4.4.4 Summary: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.5 Curvature-dependent dynein activation accounts for the shape of the beat of the isolated axoneme . . . . . . . . . . . . . . . . 103 5 Conclusions and Outlook . . . . . . . . . . . . . . . . 109 5.1 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Abbreviations . . . . . . . . . . . . . . . . 111 List of figures . . . . . . . . . . . . . . . . 116 List of tables . . . . . . . . . . . . . . . . 118 Bibliography
347

Semiflexible biopolymers in bundled arrangements

Schnauß, Jörg, Händler, Tina, Käs, Josef A. 04 August 2016 (has links) (PDF)
Bundles and networks of semiflexible biopolymers are key elements in cells, lending them mechanical integrity while also enabling dynamic functions. Networks have been the subject of many studies, revealing a variety of fundamental characteristics often determined via bulk measurements. Although bundles are equally important in biological systems, they have garnered much less scientific attention since they have to be probed on the mesoscopic scale. Here, we review theoretical as well as experimental approaches, which mainly employ the naturally occurring biopolymer actin, to highlight the principles behind these structures on the single bundle level.
348

Proteínas estruturais em retinas humana e murina. / Structural proteins in human and murine retina.

Vidal, Kallene Summer Moreira 15 September 2014 (has links)
O objetivo deste estudo foi descrever a distribuição dos neurofilamentos (NFs) e da proteína associada ao microtúbulo do tipo 2 (MAP-2) em retinas humanas e murinas. Para isso, usamos camundongos C57BL/6, submetidos à cirurgia estereotáxica para realização de lesão eletrolítica no colículo superior direito provocando degeneração retrógrada de células ganglionares da retina. Utilizamos ensaios de imunohistoquímica e PCR em tempo real (qPCR) para a caracterização dessas proteínas nas duas espécies. Na retina humana, observou-se que NFs e MAP-2 estão presentes nas células ganglionares do tipo M. No modelo animal, houve diminuição dos NFs e aumento de MAP-2, na análise de imuno-histoquímica. Já o ensaio com qPCR mostrou um aumento e diminuição da expressão dos NFs e MAP-2, respectivamente. Assim, concluímos que houve alterações na expressão do RNAm e na marcação dos NFs e do MAP-2 nas retinas murinas, e esses resultados podem ser extrapolados para os seres humanos, uma vez que essas proteínas estão presentes nas células M que são inicialmente afetadas no glaucoma. / This study aimed to describe the distribution of NFs and type 2 protein associated with microtubule (MAP-2) in human retinas of these proteins and evaluate a model of retrograde retinal ganglion cell degeneration in murine retinas. To achieve this, we submitted C57bl/6 to a stereotaxic surgery for superior colliculus electrolytic lesion in the right side. The characterization of these proteins was obtained through immunohistochemical essays and real-time PCR (qPCR). The results revealed that both proteins are present in the ganglion cell M in the human retina. In the experimental animal model the immunohistochemical essays demonstrated decrease of NFs and increased MAP-2. However, the qPCR analysis demonstrated increased NFs and decreased MAP-2 expression. We can conclude that there was variation of mRNA expression and structural protein levels in the experimental retina. And, the results related to NFs and MAP-2 in this animal model can be extrapolated to humans, as these proteins are also present in the human ganglion cell that are affected early in glaucoma.
349

Impact of tululin binding cofactor C (TBCC) on microtubule mass and dynamics, cell cycle, tumor growth and response to chemotherapy in breast cancer / Effets de la protéine tubulin binding cofactor C (TBCC) sur la masse et la dynamique microtubulaire, le cycle cellulaire, la croissance tumorale et la réponse à la chimiothérapie dans le cancer du sein

Hage-Sleiman, Rouba 11 June 2010 (has links)
La mise en conformation de l’α et β tubulines en hétérodimeres polymérisables nécessite l’intervention de cinq protéines « Tubulin Binding Cofactors » (TBCA a TBCE) dont TBCC qui joue un rôle indispensable. Dans des cellules humaines d’adénocarcinome mammaire, nous avons modifié le niveau d’expression de TBCC et nous avons montre que ceci avait un impact sur le contenu des fractions de tubuline, la dynamique des microtubules ainsi que sur le phénotype et chimiosensibilité des cellules. La distribution en cycle cellulaire et les durées de la mitose et de la phase S ont été altérées. La modification de TBCC avait un faible effet sur la vitesse de prolifération in vitro par contre les cellules présentaient des différences significatives de croissance tumorale in vivo. Les réponses aux agents antimicrotubulaires et à la gemcitabine ont montrées une chimiosensibilité dépendante de la distribution en cycle cellulaire. Tous ces résultats montrent l’importance de la régulation du contenu en tubulines et l’impact de ceci sur le comportement de la cellule en général et vis-à-vis des traitements / The proper folding pathway of α and β-tubulin into the α/β-tubulin heterodimers involve five Tubulin Binding Cofactors (TBCA to TBCE). TBCC plays a crucial role in the formation of polymerization-competent the α/β-tubulin heterodimers. To evaluate the impact of microtubule mass and dynamics on the phenotype and chemosensitivity of breast cancer cells, we targeted TBCC in human breast adenocarcinoma and developed variants of breast cancer cells with modified content of TBCC. We have shown that the modifications in TBCC expression level influenced tubulin fraction distribution and microtubule dynamics. Cell cycle distribution and the durations of mitosis and S-phase were altered. The proliferation rate in vitro was slightly modified whereas in vivo the TBCC variants presented major differences in tumor growth capacity. Chemosensitivity to antimicrotubule agents (paclitaxel and vinorelbine) as well as to gemcitabine was observed to be dependent on the cell cycle distribution of the TBCC variants. These results underline the essential role of fine tuned regulation of tubulin content in tumor cells and the major impact of dysregulation of tubulin dimer content on tumor cell phenotype, cell cycle progression and response to chemotherapy. A better understanding of how the microtubule cytoskeleton is dysregulated in cancer cells would greatly contribute to a better understanding of tumor cell biology and characterization of resistant phenotypes
350

Etudes in vivo des malformations du développement cortical associées à des mutations dans le gène TUBG1 / In-vivo studies of malformations of cortical development associated with mutations in TUBG1

Ivanova, Ekaterina 14 September 2018 (has links)
Des mutations hétérozygotes faux-sens dans le gène de la tubuline gamma TUBG1, ont été identifiées dans le contexte des malformations du développement cortical, associées à une déficience intellectuelle et à l'épilepsie. Ici, nous avons étudié par la technique d’électroporation in-utero et par des études in vivo, l’effet de quatre de ces variantes sur le développement cortical. Nous montrons que les mutations dans TUBG1 affectent le positionnement neuronal dans la plaque corticale, en perturbant la locomotion des neurones nouvellement nés, mais sans affecter la neurogenèse. Nous proposons que la γ-tubuline mutante affecte le fonctionnement global de ses complexes, et en particulier leur rôle dans la régulation de la dynamique des microtubules. De plus, nous avons développé un modèle de souris knock-in Tubg1Y92C/+ et évalué les conséquences de la mutation sur le développement cortical, les caractéristiques neuroanatomiques et le comportement. Les souris mutantes présentent une microcéphalie globale, des anomalies du néocortex et de l'hippocampe, des altérations du comportement et une susceptibilité épileptique. Ainsi, nous montrons que les souris Tubg1Y92C/+ miment au moins partiellement le phénotype humain et représentent donc un modèle pertinent pour d'autres investigations de la physiopathologie des malformations du développement cortical. / Missense heterozygous variants in the gamma tubulin gene TUBG1 have been linked to malformations of cortical development, associated with intellectual disability and epilepsy. Here, we investigated through in-utero electroporation and in-vivo studies, how four of these variants affect cortical development. We show that TUBG1 mutants affect neuronal positioning within the cortical wall, by a disrupting the locomotion of newly born neurons but without affecting neurogenesis. We propose that mutant γ-tubulin affects overall functioning of γ-tubulin complexes, and in particular their role in the regulation of microtubule dynamics. Additionally, we developed a knock-in Tubg1Y92C/+ model and assessed consequences of the mutation on cortical development, neuroanatomical features and behaviour. Mutant mice present with global microcephaly, neocortical and hippocampal abnormalities, behavioural alterations and epileptic susceptibility. Thus, we show that Tubg1Y92C/+ mice partially mimic the human phenotype and therefore represent a relevant model for further investigations of the physiopathology of malformations of cortical development.

Page generated in 0.0492 seconds