• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 6
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 62
  • 62
  • 62
  • 29
  • 21
  • 21
  • 20
  • 12
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Age sensitivity of the Barnes Maze and the Morris Water Maze: Associations with cerebellar cortical Purkinje neurons

Kennard, John Andrew January 2012 (has links)
The goal of this study was to examine age-related changes in spatial memory and its neurobiological substrates as assessed by the Morris water maze (MWM) and the Barnes maze. The MWM is one of the most widely used tests of spatial memory and numerous studies suggest that spatial memory abilities decline with age. To contrast, very few studies exist comparing different ages of mice in the less stressful Barnes maze, and no systematic life span analysis of performance has been published. As the cerebellum is one brain structure that undergoes a quantifiable change in anatomy across the life span (loss of Purkinje neurons), this study evaluated these behavioral tests in terms of sensitivity to both age-related changes in learning as well as age-related changes in the cerebellar cortex. A total of 65 CB6F1 mice were tested at one of five ages (4, 8, 12, 18, or 25 months) on the MWM and Barnes maze. Deficits in spatial memory acquisition were most apparent in both tasks when comparing a subset of good learning mice. Impairment began at 25 months in the MWM and 18 months in the Barnes maze. In all mice, retention was impaired at 25 months on the Barnes maze, but no clear retention deficits were found in the MWM. Unbiased stereology revealed an age-related loss in cerebellar cortical Purkinje neurons from 12-25 months, whereas hippocampus volume remained stable across the life span. Purkinje neuron number, but not hippocampus volume, was correlated with spatial learning in the Barnes maze, with impaired learning associated with lower neuron numbers. For the MWM, Purkinje neuron number was associated with performance in a subset of good learning animals. Overall, mice that learned the Barnes maze well had more Purkinje neurons than poor learners. Both tests were sensitive to heterogeneity in aging at each age tested. Comparisons of good and poor learners across the life span, as well as correlations between the two tasks and brain measures, suggested that the MWM and Barnes maze may be sensitive to different spatial learning abilities and mechanisms of aging. / Psychology
22

THE EFFECTS OF bFGF TREATMENT IN THE AGED BRAIN FOLLOWING TRAUMATIC BRAIN INJURY

Zeigler, Michael 11 June 2010 (has links)
The mature mammalian brain continually generates new neurons in the subventricular zone and hippocampus throughout life. Adult neurogenesis in the hippocampus is associated with hippocampal-dependent learning and memory function. During aging, this endogenous neurogenic potential is reduced which is accompanied by decreased cognitive function seen in the aging population. We have previously found that the injured adult brain shows heightened levels of endogenous neurogenesis and this response is associated with innate cognitive recovery. We have also found that basic fibroblast growth factor (bFGF), a potent neurotrophic polypeptide, can enhance injury-induced hippocampal neurogenesis and improve cognitive recovery following TBI. In this study, we administered bFGF into the lateral ventricle of aged rats following TBI and assessed the effect of bFGF treatment on hippocampal neurogenesis and cognitive recovery in aged animals. Specifically, male Fisher-344 rats at the age of 20 months received intraventricular infusion of bFGF for 7 days through osmotic mini-pump immediately following a moderate lateral fluid percussion injury. To label cell proliferation, animals received daily single i.p. BrdU injections for 6 days beginning 48 hr after injury. One group of animals was perfused at 1 wk after injury to assess cell proliferation. Another group of animals was first assessed for cognitive performance using the Morris water maze (MWM) at 21-25 days post-injury, then sacrificed at 4 weeks after injury to examine differentiation of newly generated cells. Brain sections were sliced and immunostained for BrdU, early neuronal marker doublecortin (DCX) and other cell type specific markers. Results showed that at 1 week post-injury, injured-aged animals infused with either vehicle or bFGF had a significantly higher number of cell proliferation in the dentate gyrus compared to sham animals. However, cell proliferation in the bFGF-infused animals was not significantly higher than vehicle-treated animals. Nevertheless, the number of DCX-labeled early stage neurons was significantly higher in the injured bFGF-treated animals than in vehicle-treated sham and injured animals. In MWM tests, unlike what we have observed in bFGF-treated younger animals, injured aged rats treated with bFGF did not show improved cognitive function. Furthermore, at 4 weeks post-injury, higher numbers of BrdU-labeled proliferative cells persisted in both injured groups, many of these cells labeled with glial and inflammatory cell markers. Collectively, the current data suggests that bFGF can enhance neurogenesis in the injured-aged hippocampus; however, this effect is not sufficient to improve functional recovery of aged rats following TBI due to the profound injury-induced inflammatory response.
23

Inhibition of injury-induced cell proliferation in the dentate gyrus impairs cognitive recovery following traumatic brain injury

Daniels, Teresa 27 April 2012 (has links)
Traumatic brain injury (TBI) induces a robust cellular proliferative response among neural stem/progenitor cells (NS/NPCs) in the dentate gyrus of the hippocampus. This proliferative effect is thought to contribute to the innate cognitive recovery observed following TBI. Inhibition of hippocampal neurogenesis impairs cognitive function. Furthermore, enhancement of injury-induced hippocampal neurogenesis via intraventricular administration of basic fibroblast growth factor (bFGF) improves cognitive function in animals following TBI. In this experiment, we investigated the direct association between injury-induced hippocampal neurogenesis and cognitive recovery utilizing an antimitotic agent, arabinofuranosyl cytidine (Ara-C). In this study, adult rats received a moderate lateral fluid percussion injury (LFPI). Immediately following injury, Ara-C with or without bFGF was infused into the lateral ventricle via an osmotic mini-pump for 7 days. To label dividing cells animals received daily single injections of 5-bromo-2'-deoxyuridine (BrdU) at 2-7 days post-injury. To examine the effect of Ara-C on cell proliferation, a group of animals was sacrificed at 1 week following injury. Brain sections were immunostained for BrdU and cell type specific markers, and the number of BrdU+ cells in the hippocampus was assessed by stereology. To examine the effect of inhibition of injury-induced cell proliferation on cognitive recovery, animals were assessed on Morris water maze tasks (MWM) either at 21 to 25 days or 56-60 days post-injury. We found that post-injury Ara-C treatment significantly reduces injury-induced cell proliferation in the DG and abolishes the innate cognitive recovery on MWM performance at 56-60 days post-injury. Additionally, Ara-C diminishes bFGF enhanced cell proliferation in the DG and cognitive recovery following TBI. These results support the causal relationship between injury-induced hippocampal neurogenesis and cognitive functional recovery. Our studies suggest that the post-TBI neurogenic response is an endogenous repair mechanism that contributes to the restoration of hippocampal function post-injury.
24

Effets du sommeil et de la privation de sommeil sur le protéome hippocampique de rat après apprentissage topographique

Poirrier, Jean-Etienne 24 March 2010 (has links)
Une des hypothèses concernant la fonction du sommeil suggère que ce dernier permettrait la plasticité neuronale et l'organisation (ou la réorganisation) synaptique, phénomènes sous-tendant des fonctions cognitives. Des perturbations spécifiques du sommeil faisant suite à un apprentissage ont en effet montré une diminution significative des performances aux niveaux des gènes et du comportement. Notre travail à visé à étudier les conséquences d'une privation de sommeil faisant suite à un apprentissage d'une tâche mnésique au niveau de l'abondance de protéines dans l'hippocampe de rat. Pour ce faire, une première étude protéomique de l'hippocampe de rat en l'absence d'apprentissage spatial spécifique a d'abord été réalisée ; elle montre l'absence de différence quantitative d'abondance protéique entre les hippocampes gauche et droit. Ensuite, une seconde étude protéomique montre qu'une privation de courte durée affecte différents réseaux de protéines, principalement liés au métabolisme cellulaire, aux voies biochimiques de l'énergie, des transports, du trafic vésiculaire, du cytosquelette et du traitement des protéines dans l'hippocampe de rat. Finalement, une troisième étude protéomique montre les effets d'un apprentissage d'une tâche spatiale en début de période d'activité diurne sur le protéome d'hippocampe de rat. Les principales protéines affectées ont ici des fonctions liées au métabolisme cellulaire et au cytosquelette.
25

Progesterone metabolites : learning, tolerance, antagonism & metabolism

Öfverman, Charlotte January 2009 (has links)
Progesterone metabolites as allopregnanolone, isoallopregnanolone and tetrahydrodeoxy-corticosterone (THDOC) are increased in the luteal phase of the menstrual cycle, throughout pregnancy and during stress. Allopregnanolone and THDOC are neurosteroids with 3α-hydroxy, 5α-configurations and positive modulating effect on the GABAA receptor. They have similar properties and effect, and share the same binding sites on the GABAA receptor. Isoallopregnanolone has a 3β-hydroxy, 5α-configuration and a diverse effect as a proposed antagonist to both allopregnanolone and THDOC. Neurosteroids are thought to exert their effect predominantly at extrasynaptic GABAA receptors, containing for example α4- or α5-subunits. Such receptors are involved in the tonic response. Different subunits have diverse distribution pattern in the brain and are involved in different functions. The α5-subunit, mainly expressed in the hippocampus, is involved in learning, while α4 is more widespread and involved in e.g. anxiety and anaesthesia. The aim of the present thesis was to contribute to the knowledge about selected progesterone metabolites and their effects on learning and tolerance development, as well as their metabolism. Also basic characteristics between different α-subunits of the GABAA receptor were evaluated. The thesis shows that the effect of bicuculline and pentobarbital is not dependent on the α-subunit isoform of the GABAA receptor expressed in oocytes. Acute tolerance developed after allopregnanolone-induced anaesthesia with a decrease at both mRNA and protein levels of the GABAA receptor α4-subunit in the thalamus VPM nucleus. A negative correlation between the α4 mRNA and the increased dose of allopregnanolone needed to maintain the anaesthesia level was also shown. In addition, allopregnanolone induces a learning impairment in the Morris water maze test, when high concentrations of allopregnanolone are present in the brain. This impairment is not possible to reverse by isoallopregnanolone. In α5β3γ2L-transfected HEK-293 cells THDOC induces a baseline shift of its own and also potentiate the GABA-current. Neither of those THDOC effects can be inhibited by isoallopregnanolone. Instead isoallopregnanolone shows an agonistic effect on the THDOC-potentiation of the GABA-response. The main allopregnanolone metabolites identified, 5α-DHP and isoallopregnanolone, as well as allopregnanolone itself are mainly localized to the brain after an i.v. injection. After an isoallopregnanolone injection there is a more even distribution of the given steroid and the metabolites between plasma and brain. There is an epimerisation between isoallopregnanolone and allopregnanolone and vice versa. In conclusion, the present thesis shows that the α4-subunit in the thalamus VPM nucleus is likely to be involved in the acute tolerance development against allopregnanolone and that allopregnanolone-induced learning impairment is likely to be hippocampus dependent. The lack of antagonistic effect of isoallopregnanolone on the THDOC-induced α5β3γ2L-GABAA response, together with epimerisation of isoallopregnanolone to allopregnanolone, could explain why isoallopregnanolone does not work as an antagonist to the allopregnanolone-induced learning impairment in a hippocampus dependent learning task.
26

Cellular Reactions and Behavioral Changes in Focal and Diffuse Traumatic Brain Injury : A Study in the Rat and Mouse

Ekmark Lewén, Sara January 2013 (has links)
Traumatic brain injury (TBI) is a severe condition and a major cause of death and disability. There is no pharmacological treatment available in clinical practice today and knowledge of brain injury mechanisms is of importance for development of neuroprotective drugs. The aims of the thesis were to get a better understanding of astrocyte reactions and immune responses, as well as behavioral changes after focal unilateral cortical contusion injury and diffuse bilateral central fluid percussion injury in rats and mice. In the focal injury models, the astrocyte reactions were generally restricted to the ipsilateral hemisphere. After diffuse TBI, vimentin and glial fibrillary acidic protein (GFAP) positive reactive astrocytes were bilaterally expressed in brain regions even distant from the injury site, including regions where axonal injury was seen. Early after diffuse TBI, there was a robust immune response, including activation of macrophages/microglia (Mac-2+) and infiltration of neutrophils (GR-1+) and T-cells (CD3+). In order to measure functional outcome, the recently established Multivariate Concentric Square Field™ (MCSF) test for complex behaviors, including risk taking and explorative strategies was used. The Morris water maze (MWM) was applied for testing learning and memory. The MCSF test revealed alterations in risk taking, risk assessment and exploratory behavior, in the mice subjected to focal injury whereas mice subjected to the diffuse injury showed a deviant stereotyped behavior. After focal injury mice showed a decreased ability to adapt to the arena in the second trial, when tested repeatedly in the MCSF test. Mice subjected to diffuse injury had an impaired memory but not learning, in the MWM test. Post-injury treatment with the anti-inflammatory anti-interleukin-1β (IgG2 a/k) antibody showed a positive effect on functional outcome in the diffuse injury model. Altogether, the results demonstrate that focal and diffuse TBI models produce differences in cellular reactions and behavioral outcome and that the immune response plays a key role in the pathology after brain injury.
27

Investigating the role of AMPAkines in an animal model of post-traumatic stress disorder (PTSD) / Eugene Hamlyn

Hamlyn, Eugene January 2008 (has links)
Post-traumatic stress disorder (PTSD) is a severe anxiety disorder affecting cognitive function. 1 in 4 individuals exposed to a life-threatening event may develop PTSD, which is characterised by symptoms of hyperarousal, avoidance and intrusions. Although treatment is effective in most cases, the response is far from satisfactory. It is now clear that novel drug treatment and a better understanding of the neurobiology of PTSD are necessary if we are to realise a better response and treatment outcome in these patients. Glutamatergic pathways play an important role in cognition, while recent studies have emphasized a causal role for glutamate in PTSD, and of the potential value of glutamate receptor modulators in treating the disorder. Stress-related elevation in glutamate exerts detrimental effects on cognition, especially via activation of the N-methyl-D-aspartate (NMDA) receptor, and has been implicated in PTSD associated cognitive deficits. Recently, the cr-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor has been found to exert a modulatory action on NMDA receptor function. Ampakines are positive allosteric modulators of the AMPA receptor, and have demonstrated beneficial effects in animal models of learning as well as antidepressant action, and to improve short-term memory in humans. The aims of this study were firstly to study the effects of the ampakine, Org 26576, on spatial memory performance in healthy male Sprague-Dawley rats. Secondly, since PTSD is associated with pronounced deficits in cognition, we studied the ability of Org 26576 to modify stress-evoked spatial memory deficits in rats subjected to single prolonged stress (SPS), a putative animal model of PTSD. In both cases, neuroreceptor studies were performed to determine any relationship between hippocampal and cortical NMDA receptor binding characteristics and effects on spatial memory performance. After exposure of the animals to either normal handling or SPS conditions, spatial memory performance was assessed using a 5 day memory acquisition and consolidation protocol in a modified version of the Morris water maze (MWM). Experimental and control groups both received either saline (1 ml/kg i.p.) or Org 26576 at incremental doses of 1, 3 or 10 mg/kg intraperitoneally twice daily for 12 days. Separate groups of animals were used for the neuroreceptor studies, except that behavioural testing was not performed. 24hrs after drug treatment discontinuation, the animals were sacrificed and frontal cortex and hippocampus removed for NMDA receptor binding analysis. In normal rats, Org 26576 3 mg/kg and 10 mg/kg exerted a short-lasting reduction in escape latency on day 1, but which lost prominence over the subsequent training days. Org 26576 1, 3 and 10 mg/kg, however, significantly improved spatial memory retrieval on day 5. No changes in frontal cortical or hippocampal NMDA receptors were observed. Contrary to expected, rats subjected to SPS failed to express noteworthy deficits in spatial memory as previously described. Treatment of SPS-exposed animals with Org 26576 did not significantly alter spatial learning evident in SPS animals on day 1 of acquisition training, as well as on subsequent training days. Org 26576 1 mg/kg increased spatial memory retrieval compared to the unstressed saline control, but not compared to the SPS group. Org 26576 only at a dose of 1 mg/kg decreased cortical, but not hippocampal NMDA receptor density (Bmax) in SPS animals versus unstressed but not saline treated SPS animals. No changes in receptor affinity (Kd) were noted. Org 26576 therefore improves early initial spatial learning in healthy rats, but exerts a lesser effect on memory consolidation over the remainder of the training period. However, Org 26576 significantly improves retrieval of spatial memory without simultaneous changes in frontal cortical and hippocampal NMDA receptor binding. Org 26576 thus may benefit both short-term and long-term memory processes in normal animals without effects on limbic NMDA receptor binding, and provides a rationale for testing in conditions that present with cognitive disturbances. However, the SPS model failed to engender marked deficits in spatial memory performance; this result ultimately complicated the interpretation of the combined stress-drug treatment studies. Studies in healthy animals therefore conclude that Org 26576 is an effective agent to enhance long-term memory processes and should be investigated further for its possible application in disorders of cognition. Although the value of Org 26576 in an animal model of PTSD were inconclusive, further studies in SPS and other PTSD models, as well as models of relevance for schizophrenia, Alzheimer's disease and depression, are encouraged. / Thesis (M.Sc. (Pharmacology))--North-West University, Potchefstroom Campus, 2009.
28

Investigating the role of AMPAkines in an animal model of post-traumatic stress disorder (PTSD) / Eugene Hamlyn

Hamlyn, Eugene January 2008 (has links)
Post-traumatic stress disorder (PTSD) is a severe anxiety disorder affecting cognitive function. 1 in 4 individuals exposed to a life-threatening event may develop PTSD, which is characterised by symptoms of hyperarousal, avoidance and intrusions. Although treatment is effective in most cases, the response is far from satisfactory. It is now clear that novel drug treatment and a better understanding of the neurobiology of PTSD are necessary if we are to realise a better response and treatment outcome in these patients. Glutamatergic pathways play an important role in cognition, while recent studies have emphasized a causal role for glutamate in PTSD, and of the potential value of glutamate receptor modulators in treating the disorder. Stress-related elevation in glutamate exerts detrimental effects on cognition, especially via activation of the N-methyl-D-aspartate (NMDA) receptor, and has been implicated in PTSD associated cognitive deficits. Recently, the cr-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor has been found to exert a modulatory action on NMDA receptor function. Ampakines are positive allosteric modulators of the AMPA receptor, and have demonstrated beneficial effects in animal models of learning as well as antidepressant action, and to improve short-term memory in humans. The aims of this study were firstly to study the effects of the ampakine, Org 26576, on spatial memory performance in healthy male Sprague-Dawley rats. Secondly, since PTSD is associated with pronounced deficits in cognition, we studied the ability of Org 26576 to modify stress-evoked spatial memory deficits in rats subjected to single prolonged stress (SPS), a putative animal model of PTSD. In both cases, neuroreceptor studies were performed to determine any relationship between hippocampal and cortical NMDA receptor binding characteristics and effects on spatial memory performance. After exposure of the animals to either normal handling or SPS conditions, spatial memory performance was assessed using a 5 day memory acquisition and consolidation protocol in a modified version of the Morris water maze (MWM). Experimental and control groups both received either saline (1 ml/kg i.p.) or Org 26576 at incremental doses of 1, 3 or 10 mg/kg intraperitoneally twice daily for 12 days. Separate groups of animals were used for the neuroreceptor studies, except that behavioural testing was not performed. 24hrs after drug treatment discontinuation, the animals were sacrificed and frontal cortex and hippocampus removed for NMDA receptor binding analysis. In normal rats, Org 26576 3 mg/kg and 10 mg/kg exerted a short-lasting reduction in escape latency on day 1, but which lost prominence over the subsequent training days. Org 26576 1, 3 and 10 mg/kg, however, significantly improved spatial memory retrieval on day 5. No changes in frontal cortical or hippocampal NMDA receptors were observed. Contrary to expected, rats subjected to SPS failed to express noteworthy deficits in spatial memory as previously described. Treatment of SPS-exposed animals with Org 26576 did not significantly alter spatial learning evident in SPS animals on day 1 of acquisition training, as well as on subsequent training days. Org 26576 1 mg/kg increased spatial memory retrieval compared to the unstressed saline control, but not compared to the SPS group. Org 26576 only at a dose of 1 mg/kg decreased cortical, but not hippocampal NMDA receptor density (Bmax) in SPS animals versus unstressed but not saline treated SPS animals. No changes in receptor affinity (Kd) were noted. Org 26576 therefore improves early initial spatial learning in healthy rats, but exerts a lesser effect on memory consolidation over the remainder of the training period. However, Org 26576 significantly improves retrieval of spatial memory without simultaneous changes in frontal cortical and hippocampal NMDA receptor binding. Org 26576 thus may benefit both short-term and long-term memory processes in normal animals without effects on limbic NMDA receptor binding, and provides a rationale for testing in conditions that present with cognitive disturbances. However, the SPS model failed to engender marked deficits in spatial memory performance; this result ultimately complicated the interpretation of the combined stress-drug treatment studies. Studies in healthy animals therefore conclude that Org 26576 is an effective agent to enhance long-term memory processes and should be investigated further for its possible application in disorders of cognition. Although the value of Org 26576 in an animal model of PTSD were inconclusive, further studies in SPS and other PTSD models, as well as models of relevance for schizophrenia, Alzheimer's disease and depression, are encouraged. / Thesis (M.Sc. (Pharmacology))--North-West University, Potchefstroom Campus, 2009.
29

Tolerance and antagonism to allopregnanolone effects in the rat CNS

Turkmen, Sahruh January 2006 (has links)
Many studies have suggested a relationship between sex steroids and negative mental and mood changes in women. Allopregnanolone, a potent endogenous ligand of the GABA-A receptor and a metabolite of progesterone, is one of the most accused neuroactive steroids. Variations in the levels of neuroactive steroids that influence the activity of the GABA-A receptor cause a vulnerability to mental and emotional pathology. In women, there are physiological conditions in which allopregnanolone production increases acutely (e.g. stress) or chronically (e.g. menstrual cycle, pregnancy), thus exposing the GABA-A receptor to high allopregnanolone concentrations. In such conditions, tolerance to allopregnanolone probably develops. We have evaluated the 3β-hydroxy pregnane steroid UC1011 as a functional antagonist to allopregnanolone-induced negative effects in rats. In vivo, we used the Morris Water Maze (MWM) test of learning and, in vitro, we studied chloride ion uptake into cortical and hippocampal membrane preparations. The steroid UC1011 reduces the allopregnanolone-induced learning impairment in the MWM and the increase in chloride ion uptake induced by allopregnanolone. To detect whether chronic tolerance develops to an allopregnanolone-induced condition, male rats were pretreated with allopregnanolone injections for three or seven days. These rats were then tested in the Morris Water Maze for five days and compared with relevant controls. Rats with seven days’ allopregnanolone pretreatment experienced improved performance compared with the acutely allopregnanolone-exposed group, reflecting chronic tolerance development. To study the GABA-A receptor changes in acute allopregnanolone tolerance, we used the silent second (SS) anaesthesia threshold method. At acute tolerance, 90 minutes of anaesthesia, the abundance of the GABA-A receptor α4 subunit and the expression of the α4 subunit mRNA in the thalamus ventral-posteriomedial (VPM) nucleus were reduced. There was also a significant negative correlation between the increase in the allopregnanolone dose needed to maintain anaesthesia and the α4 mRNA in the VPM nucleus. We also investigated whether allopregnanolone tolerance was still present one or two days after the end of the anaesthesia-induced acute tolerance. Tolerance persisted to one day, but not two days, after the treatment and the α4 subunit mRNA expression in the VPM nucleus was negatively related to the allopregnanolone doses needed after one day. In conclusion, the current thesis shows that the substance UC1011 can reduce the allopregnanolone-induced negative effects in the water maze test. Chronic allopregnanolone tolerance can develop to the effects of allopregnanolone. Allopregnanolone tolerance persists one day after the induction of acute allopregnanolone tolerance. The GABA-A receptor α4 subunit in the thalamus might be involved in the development and persistence of acute tolerance to allopregnanolone.
30

Neuropathological and behavioral alterations in two transgenic mouse models of Alzheimer´s disease

Meißner, Julius Nicolai 19 July 2016 (has links)
No description available.

Page generated in 0.0588 seconds