Spelling suggestions: "subject:"mouvement brownian."" "subject:"mouvement browning.""
41 |
Stochastic calculus with respect to multi-fractional Brownian motion and applications to finance / Calcul stochastique par rapport au mouvement brownien multifractionnaire et applications à la financeLebovits, Joachim 25 January 2012 (has links)
Le premier chapitre de cette thèse introduit les différentes notions que nous utiliserons et présente les travaux qui constituent ce mémoire.Dans le deuxième chapitre de cette thèse nous donnons une construction ainsi que les principales propriétés de l'intégrale stochastique par rapport au mBm harmonisable. Y sont également établies des formules d'Itô et une formule de Tanaka pour l'intégrale stochastique par rapport à ce mBm..Dans le troisième chapitre nous donnons une nouvelle définition, à la fois plus simple et plus générale, du mouvement brownien multifractionnaire. Nous montrons ensuite que le mBm apparaît naturellement comme limite de suite de somme de mouvement brownien fractionnaire (fBm) d’indices de Hurst différents.Nous appliquons alors cette idée pour tenter de construire une intégrale stochastique par rapport au mouvement brownien multifractionnaire à partir d’intégrales par rapport au fBm. Cela fait nous appliquons cette définition d’intégrale par rapport au mBm pour une méthode d’intégration donnée aux deux méthodes que sont le calcul de Malliavin et la théorie du bruit blanc.Dans ce dernier cas nous comparons alors l’intégrale ainsi construite à celle obtenue au chapitre 2. Le quatrième et dernier chapitre est une application du calcul stochastique développé dans les chapitres précédents. Nous y proposons un modèle à volatilité multifractionnaire où le processus de volatilité est dirigée par un mBm. L’intérêt résidant dans le fait que l’on peut ainsi prendre en compte à la fois la dépendance à long terme des accroissements de la volatilité mais aussi le fait que la trajectoire de ces accroissements varie au cours du temps.Utilisant alors la théorie de la quantification fonctionnelle pour, entre autres, approximer la solution de certaines des équations différentielles stochastiques, nous parvenons à calculer le prix d’option à départ forward et implicitons ainsi une nappe de volatilité que l’on représente graphiquement pour différentes maturités. / The aim of this PhD Thesis was to build and develop a stochastic calculus (in particular a stochastic integral) with respect to multifractional Brownian motion (mBm). Since the choice of the theory and the tools to use was not fixed a priori, we chose the White Noise theory which generalizes, in the case of fractional Brownian motion (fBm) , the Malliavin calculus. The first chapter of this thesis presents several notions we will use in the sequel.In the second chapter we present a construction as well as the main properties of stochastic integral with respect to harmonizable mBm.We also give Ito formulas and a Tanaka formula with respect to this mBm. In the third chapter we give a new definition, simplier and generalier of multifractional Brownian motion. We then show that mBm appears naturally as a limit of a sequence of fractional Brownian motions of different Hurst index.We then use this idea to build an integral with respect to mBm as a limit of sum of integrals with respect ot fBm. This being done we particularize this definition to the case of Malliavin calculus and White Noise theory. In this last case we compare the integral hence defined to the one we got in chapter 2. The fourth and last chapter propose a multifractional stochastic volatility model where the process of volatility is driven by a mBm. The interest lies in the fact that we can hence take into account, in the same time, the long range dependence of increments of volatility process and the fact that regularity vary along the time.Using the functional quantization theory in order to, among other things, approximate the solution of stochastic differential equations, we can compute the price of forward start options and then get and plot the implied volatility nappe that we graphically represent.
|
42 |
Régularité locale de certains champs browniens fractionnaires / Local regularity of some fractional Brownian fieldsRichard, Alexandre 29 September 2014 (has links)
Dans cette thèse, nous examinons les propriétés de régularité locale de certains processus stochastiques multiparamètres définis sur RN + , sur une collection d’ensembles, ou encore sur des fonctions de L2. L’objectif est d’étendre certains outils standards de la théorie des processus stochastiques, en particulier concernant la régularité hölderienne locale, à des ensembles d’indexation qui ne sont pas totalement ordonnés. Le critère de continuité de Kolmogorov donne classiquement une borne inférieure pour la régularité hölderienne d’un processus stochastique indicé par un sous-ensemble de R ou RN . Tirant partie de la structure de treillis des ensembles d’indexations dans la théorie des processus indicés par des ensembles de Ivanoff et Merzbach, nous étendons le critère de Kolmogorov dans ce cadre. Différents accroissements pour les processus indicés par des ensembles sont considérés, et leur sont attachés en conséquence des exposants de Hölder. Pour les processus gaussiens, ces exposants sont, presque surement et uniformément le long des trajectoires, déterministes et calculés en fonction de la loi des accroissements du processus. Ces résultats sont appliqués au mouvement brownien fractionnaire set-indexed, pour lequel la régularité est constante. Afin d’exhiber un processus pour lequel la régularité n’est pas constante, nous utilisons la structure d’espace de Wiener abstrait pour introduire un champ brownien fractionnaire indicé par (0, 1=2]_L2(T,m), relié à une famille de covariances kh, h 2 (0, 1=2]. Ce formalisme permet de décrire un grand nombre de processus gaussiens fractionnaires, suivant le choix de l’espacemétrique (T,m). Il est montré que la loi des accroissements d’un tel champ est majorée par une fonction des accroissements en chacun des deux paramètres. Les techniques développées pour mesurer la régularité locale s’appliquent alors pour prouver qu’il existe dans ce cadre des processus gaussiens indicés par des ensembles ou par L2 ayant une régularité prescrite. La dernière partie est consacrée à l’étude des singularités produites par le processus multiparamètre défini par kh sur L2([0, 1]_,dx). Ce processus est une extension naturelle du mouvement brownien fractionnaire et du drap brownien. Au point origine de RN+, ce mouvement brownien fractionnaire multiparamètre possède une régularité hölderienne différente de celle observée en tout autre point qui ne soit pas sur les axes. Une loi du logarithme itéré de Chung permet d’observer finement cette différence. / In this thesis, local regularity properties of some multiparameter, set-indexed and eventually L2-indexed random fields are investigated. The goal is to extend standard tools of the theory of stochastic processes, in particular local Hölder regularity, to indexing collection which are not totally ordered.The classic Kolmogorov continuity criterion gives a lower estimate of the Hölder regularityof a stochastic process indexed by a subset of R or RN . Using the lattice structure of the indexing collections in the theory of set-indexed processes of Ivanoff and Merzbach, Kolmogorov’scriterion is extended to this framework. Different increments for set-indexed processes are considered,and several Hölder exponents are defined accordingly. For Gaussian processes, these exponents are, almost surely and uniformly along the sample paths, deterministic and related to the law of the increments of the process. This is applied to the set-indexed fractional Brownian motion, for which the regularity is constant. In order to exhibit a process having a variable regularity,we resorted to structures of Abstract Wiener Spaces, and defined a fractional Brownian field indexed by a product space (0, 1=2]_L2(T,m), based on a family of positive definite kernels kh, h 2 (0, 1=2]. This field encompasses a large class of existing multiparameter fractional Brownian processes, which are exhibited by choosing appropriate metric spaces (T,m). It is proven that the law of the increments of such a field is bounded above by a function of the increments in both parameters of the field. Applying the techniques developed to measure the local Hölder regularity, it is proven that this field can lead to a set-indexed, or L2-indexed, Gaussian process with prescribed local regularity.The last part is devoted to the study of the singularities induced by the multiparameter process defined by the covariance kh on L2([0, 1]_,dx). This process is a natural extension of the fractional Brownian motion and of the Brownian sheet. At the origin 0 of RN+, this multiparameter fractional Brownian motion has a different regularity behaviour. A Chung (or lim inf ) law of the iterated logarithm permits to observe this.
|
43 |
Construction et étude de quelques processus multifractals / Construction and study of some multifractal processesPerpète, Nicolas 19 February 2013 (has links)
Mis en évidence dans les années 80 dans les domaines de la turbulence et des attracteurs étranges, les multifractals ont rapidement gagné en popularité. On les trouve aujourd'hui en finance, en géophysique, dans l'étude du trafic internet et dans bien d'autres domaines des sciences appliquées. Cet essor s'est accompagné de la nécessité de construire des modèles théoriques adaptés. La Mesure Aléatoire Multifractale de Bacry et Muzy est l'un de ces modèles. Du fait de son caractère très général, de sa grande souplesse et de sa relative simplicité, elle est devenue un outil central du domaine des multifractals depuis dix ans. Après un chapitre introductif, on propose dans cette thèse la construction de deux familles de processus multifractals. Ces constructions reposent sur les travaux de Schmitt et de ses co-auteurs et sur ceux de Bacry et Muzy. Dans le chapitre 2, on construit des processus multifractals à partir de moyennes mobiles alpha-stables, tandis que le chapitre 3 est consacré à la construction des Marches Aléatoires Fractionnaires Multifractales d'indice de Hurst 0<H<1/2. Ces travaux sont complétés par l'étude de versions affines par morceaux et par des simulations numériques. De nombreux problèmes connexes sont également étudiés. / Since their emergence in the 80's in the areas of turbulence and of strange attractors, multifractals have gained popularity. They appear now in finance, geophysics, study of network traffic and in many other areas of applied sciences. This development required adapted theoretical models. Bacry and Muzy's Multifractal Random Measure is one of these models. Thanks to its generality, its flexibility and to its relative simplicity, it became central in the domain of multifractals over the past ten years.In this PhD thesis, two families of multifractal processes are proposed. Their construction is based on the works of Schmitt and co-authors and of those of Bacry and Muzy. After the introduction (chapter 1), we use in chapter 2 alpha-stable moving averages to build multifractal processes; whereas chapter 3 is devoted to the construction of Multifractal Fractional Random Walks with Hurst index 0<H<1/2. This work is complemented by the study of linear versions and by numerical simulations. We study also numerous related problems.
|
44 |
Tests statistiques pour l’analyse de trajectoires de particules : application à l’imagerie intracellulaire / Statistical tests for analysing particle trajectories : application to intracellular imagingBriane, Vincent 20 December 2017 (has links)
L'objet de cette thèse est l'étude quantitative du mouvement des particules intracellulaires, comme les protéines ou les molécules. L'estimation du mouvement des particules au sein de la cellule est en effet d'un intérêt majeur en biologie cellulaire puisqu'il permet de comprendre les interactions entre les différents composants de la cellule. Dans cette thèse, nous modélisons les trajectoires des particules avec des processus stochastiques puisque le milieu intra-cellulaire est soumis à de nombreux aléas. Les diffusions, des processus à trajectoires continues, permettent de modéliser un large panel de mouvements intra-cellulaires. Les biophysiciens distinguent trois principaux types de diffusion: le mouvement brownien, la super-diffusion et la sous-diffusion. Ces différents types de mouvement correspondent à des scénarios biologiques distincts. Le déplacement d'une particule évoluant sans contrainte dans le cytosol ou dans le plasma membranaire est modélisée par un mouvement brownien; la particule ne se déplace pas dans une direction précise et atteint sa destination en un temps long en moyenne. Les particules peuvent aussi être propulsées par des moteurs moléculaires le long des microtubules et filaments d'actine du cytosquelette de la cellule. Leur mouvement est alors modélisé par des super-diffusions. Enfin, la sous-diffusion peut être observée dans deux situations: i/ lorsque la particule est confinée dans un micro domaine, ii/ lorsqu’elle est ralentie par l'encombrement moléculaire et doit se frayer un chemin parmi des obstacles mobiles ou immobiles. Nous présentons un test statistique pour effectuer la classification des trajectoires en trois groupes: brownien, super-diffusif et sous-diffusif. Nous développons également un algorithme pour détecter les ruptures de mouvement le long d’une trajectoire. Nous définissons les temps de rupture comme les instants où la particule change de régime de diffusion (brownien, sous-diffusif ou super-diffusif). Enfin, nous associons une méthode de regroupement avec notre procédure de test pour identifier les micro domaines dans lesquels des particules sont confinées. De telles zones correspondent à des lieux d’interactions moléculaires dans la cellule. / In this thesis, we are interested in quantifying the dynamics of intracellular particles, as proteins or molecules, inside living cells. In fact, inference on the modes of mobility of molecules is central in cell biology since it reflects the interactions between the structures of the cell. We model the particle trajectories with stochastic processes as the interior of a living cell is a fluctuating environment. Diffusions are stochastic processes with continuous paths and can model a large range of intracellular movements. Biophysicists distinguish three main types of diffusions, namely Brownian motion, superdiffusion and subdiffusion. These different diffusion processes correspond to distinct biological scenarios. A particle evolving freely inside the cytosol or along the plasma membrane is modelled by Brownian motion; the particle does not travel along any particular direction and can take a very long time to go to a precise area in the cell. Active intracellular transport can overcome this difficulty so that motion is faster and direct specific. In this case, particles are carried by molecular motors along microtubular filament networks and their motion is modelled with superdiffusions. Subdiffusion can be observed in two cases i/ when the particle is confined in a microdomain, ii/ when the particle is hindered by molecular crowding and encounters dynamic or fixed obstacles. We develop a statistical test for classifying the observed trajectories into the three groups of diffusion of interest namely Brownian motion, super-diffusion and subdiffusion. We also design an algorithm to detect the changes of dynamics along a single trajectory. We define the change points as the times at which the particle switches from one diffusion type (Brownian motion, superdiffusion or subdiffusion) to another. Finally, we combine a clustering algorithm with our test procedure to identify micro domains that is zones where the particles are confined. Molecular interactions of great importance for the functioning of the cell take place in such areas.
|
45 |
Brownian motion on stationary random manifolds / Mouvement brownien sur les variétés aléatoires stationnairesLessa, Pablo 18 March 2014 (has links)
On introduit le concept d'une variété aléatoire stationnaire avec l'objectif de traiter de façon unifiée les résultats sur les variétés avec un group d'isométries transitif, les variétés avec quotient compact, et les feuilles génériques d'un feuilletage compact. On démontre des inégalités entre la vitesse de fuite, l'entropie du mouvement brownien et la croissance de volume de la variété aléatoire, en généralisant des résultats d'Avez, Kaimanovich, et Ledrappier. Dans la deuxième partie on démontre que la fonction feuille d'un feuilletage compact est semicontinue, en obtenant comme conséquences le théorème de stabilité local de Reeb, une partie du théorème de structure local pour les feuilletages à feuilles compactes d'Epstein, et un théorème de continuité d'Álvarez et Candel. / We introduce the concept of a stationary random manifold with the objective of treating in a unified way results about manifolds with transitive isometry group, manifolds with a compact quotient, and generic leaves of compact foliations. We prove inequalities relating linear drift and entropy of Brownian motion with the volume growth of such manifolds, generalizing previous work by Avez, Kaimanovich, and Ledrappier among others. In the second part we prove that the leaf function of a compact foliation is semicontinuous, obtaining as corollaries Reeb's local stability theorem, part of Epstein's the local structure theorem for foliations by compact leaves, and a continuity theorem of Álvarez and Candel.
|
46 |
Processus stochastiques et systèmes désordonnés : autour du mouvement Brownien / Stochastic processes and disordered systems : around Brownian motionDelorme, Mathieu 02 November 2016 (has links)
Dans cette thèse, on étudie des processus stochastiques issus de la physique statistique. Le mouvement Brownien fractionnaire, objet central des premiers chapitres, généralise le mouvement Brownien aux cas où la mémoire est importante pour la dynamique. Ces effets de mémoire apparaissent par exemple dans les systèmes complexes et la diffusion anormale. L’absence de la propriété de Markov rend difficile l’étude probabiliste du processus. On développe une approche perturbative autour du mouvement Brownien pour obtenir de nouveaux résultats, sur des observables liées aux statistiques des extrêmes. En plus de leurs applications physiques, on explore les liens de ces résultats avec des objets mathématiques, comme les lois de Lévy et la constante de Pickands. / In this thesis, we study stochastic processes appearing in different areas of statistical physics: Firstly, fractional Brownian motion is a generalization of the well-known Brownian motion to include memory. Memory effects appear for example in complex systems and anomalous diffusion, and are difficult to treat analytically, due to the absence of the Markov property. We develop a perturbative expansion around standard Brownian motion to obtain new results for this case. We focus on observables related to extreme-value statistics, with links to mathematical objects: Levy’s arcsine laws and Pickands’ constant. Secondly, the model of elastic interfaces in disordered media is investigated. We consider the case of a Brownian random disorder force. We study avalanches, i.e. the response of the system to a kick, for which several distributions of observables are calculated analytically. To do so, the initial stochastic equation is solved using a deterministic non-linear instanton equation. Avalanche observables are characterized by power-law distributions at small-scale with universal exponents, for which we give new results.
|
47 |
Simulation du mouvement brownien et des diffusionsFaure, Olivier 21 February 1992 (has links) (PDF)
L'objet de cette thèse est l'étude de la simulation numérique de certains processus stochastiques, les diffusions, dont le mouvement brownien est un exemple typique. Nous commençons par quelques rappels sur le mouvement brownien au chapitre 1. Il s'agit d'une présentation élémentaire, qui s'appuie sur la simulation numérique, et permet de rappeler quelques propriétés classiques. Puis nous présentons au chapitre 2 une simulation alternative du mouvement brownien, en un sens plus naturelle, qui s'attache davantage à son comportement spatial que les méthodes traditionnelles. Le mouvement brownien est simulé à des instants aléatoires qui gouvernent son comportement; ce sont les temps de sortie de certaines "boîtes noires". En choisissant la taille et la position de ces boîtes noires dans l'espace, et sous réserve qu'elles se chevauchent, on peut ainsi simuler très précisément une trajectoire brownienne. La suite de la thèse est consacrée à l'analyse numérique des équations différentielles stochastiques (E.D.S) et à la simulation informatique de leur solution. Nous commençons au chapitre 3 par une introduction qui rappelle ce que sont les E.D.S, cite quelques unes de leurs propriétés et applications classiques dans les sciences de l'ingénieur. Au chapitre 4 nous présentons un résultat de convergence trajectorielle du schéma d'Euler en en précisant l'ordre de convergence. Un résultat similaire est présenté pour le schéma de Milshtein au chapitre 5. Comme on peut s'y attendre, ce schéma est plus performant que le schéma d'Euler, quand la condition classique de commutativité est vérifiée. Ceci améliore partiellement un résultat de Denis Talay. On étudie ensuite au chapitre 6 une classe de schémas de discrétisation à pas variables permettant une approximation spatiale des diffusions dans l'esprit du chapitre 2. Nous commençons par un résultat assez général de convergence d'un schéma d'Euler défini le long d'une subdivision aléatoire. Dans le cas où cette subdivision est gouvernée par les temps de passage successifs du mouvement brownien, nous retrouvons et étendons partiellement des travaux de Nigel Newton. Dans le cas où cette subdivision de façon à ce que les accroissements du schéma de discrétisation soient constants, nous étudions un schéma de discrétisation originalement présenté par Bichteler. Nous précisons sa vitesse de convergence et donnons une méthode de simulation numérique. Le chapitre 7 est un panorama des travaux existants sur la discrétisation des équations différentielles stochastiques. Sans prétendre être exhaustif, nous présentons au contraire une relecture des travaux existants dans l'optique de la simulation numérique. Enfin le chapitre 8 s'attache à quelques questions ou problèmes non résolus qui représentent un intérêt évident pour les applications. Nous suggérons pour chacune de ces questions quelques commencements de réponse.
|
48 |
Mouvement brownien branchant avec sélectionMaillard, Pascal 11 October 2012 (has links) (PDF)
Dans cette thèse, le mouvement brownien branchant (MBB) est un système aléatoire de particules, où celles-ci diffusent sur la droite réelle selon des mouvements browniens et branchent à taux constant en un nombre aléatoire de particules d'espérance supérieure à 1. Nous étudions deux modèles de MBB avec sélection : le MBB avec absorption à une droite espace-temps et le N -MBB, où, dès que le nombre de particules dépasse un nombre donné N , seules les N particules les plus à droite sont gardées tandis que les autres sont enlevées du système. Pour le premier modèle, nous étudions la loi du nombre de particules absorbées dans le cas où le processus s'éteint presque sûrement, en utilisant un lien entre les équations de Fisher-Kolmogorov-Petrovskii-Piskounov (FKPP) et de Briot-Bouquet. Pour le deuxième modèle, dont l'étude représente la plus grande partie de cette thèse, nous donnons des asymptotiques précises sur la position du nuage de particules quand N est grand. Plus précisément, nous montrons qu'elle converge à l'échelle de temps log³ N vers un processus de Lévy plus une dérive linéaire, tous les deux explicites, confirmant des prévisions de Brunet, Derrida, Mueller et Munier. Cette étude contribue à la compréhension de fronts du type FKPP sous l'influence de bruit. Enfin, une troisième partie montre le lien qui existe entre le MBB et des processus ponctuels stables.
|
49 |
Calcul de Malliavin, processus de Lévy et applications en finance : quelques contributionsRenaud, Jean-François January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
50 |
Temps de Branchement du Mouvement Brownien Branchant InhomogèneTurcotte, Jean-Sébastien 04 1900 (has links)
Ce mémoire étudie le comportement des particules dont la position est maximale
au temps t dans la marche aléatoire branchante et le mouvement brownien
branchant sur R, pour des valeurs de t grandes. Plus exactement, on regarde le
comportement du maximum d’une marche aléatoire branchante dans un environnement
inhomogène en temps, au sens où la loi des accroissements varie en fonction
du temps. On compare avec des modèles connus ou simplifiés, en particulier
le modèle i.i.d., où l’on observe des marches aléatoires indépendantes et le modèle
de la marche aléatoire homogène. On s’intéresse par la suite aux corrélations entre
les particules maximales d’un mouvement brownien branchant. Plus précisément,
on étudie le temps de branchement entre deux particules maximales. Finalement,
on applique les méthodes et les résultats des premiers chapitres afin d’étudier
les corrélations dans un mouvement brownien branchant dans un environnement
inhomogène. Le résultat principal du mémoire stipule qu’il y a existence de temps
de branchement au centre de l’intervalle [0, t] dans le mouvement brownien branchant
inhomogène, ce qui n’est pas le cas pour le mouvement brownien branchant
standard. On présentera également certaines simulations numériques afin de corroborer
les résultats numériques et pour établir des hypothèses pour une recherche
future. / This thesis studies the behavior of particles that are maximal at time t in
branching random walk and branching Brownian motion on R, for large values of
t. Precisely, we look at the behavior of the maximum in a branching random walk
in a time-inhomogeneous environment, where the law of the increments varies
with respect to time. We compare with known or simplified models such as the
model where random walks are taken to be i.i.d. and the branching random walk
in a time-homogeneous environment model. We then take a look at the correlations
between maximal particles in a branching brownian motion. Specifically, we
look at the branching time between those maximal particles. Finally, we apply
results and methods from the first chapters to study those same correlations in
branching Brownian motion in a inhomogeneous environment. The thesis’ main
result establishes existence of branching time at the center of the interval [0, t] for
the branching Brownian motion in a inhomogeneous environment, which is not
the case for standard branching brownian motion.We also present results of simulations
that agree with theoretical results and help establishing new hypotheses
for future research.
|
Page generated in 0.0897 seconds