• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 25
  • 12
  • 7
  • 1
  • 1
  • Tagged with
  • 134
  • 134
  • 28
  • 27
  • 25
  • 21
  • 21
  • 19
  • 17
  • 17
  • 17
  • 16
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Multiscale Modeling of the Mechanical Behaviors and Failures of Additive Manufactured Titanium Metal Matrix Composites and Titanium Alloys Based on Microstructure Heterogeneity

Mohamed G Elkhateeb (8802758) 07 May 2020 (has links)
<p>This study is concerned with the predictive modeling of the machining and the mechanical behaviors of additive manufactured (AMed) Ti6AlV/TiC composites and Ti6Al4V, respectively, using microstructure-based hierarchical multiscale modeling. The predicted results could constitute as a basis for optimizing the parameters of machining and AM of the current materials.</p> <p>Through hierarchical flow of material behaviors from the atomistic, to the microscopic and the macroscopic scales, multiscale heterogeneous models (MHMs) coupled to the finite element method (FEM) are employed to simulate the conventional and the laser assisted machining (LAM) of Ti6AlV/TiC composites. In the atomistic level, molecular dynamics (MD) simulations are used to determine the traction-separation relationship for the cohesive zone model (CZM) describing the Ti6AlV/TiC interface. Bridging the microstructures across the scales in MHMs is achieved by representing the workpiece by macroscopic model with the microscopic heterogeneous structure including the Ti6Al4V matrix, the TiC particles, and their interfaces represented by the parameterized CZM. As a result, MHMs are capable of revealing the possible reasons of the peculiar high thrust forces behavior during conventional machining of Ti6Al4V/TiC composites, and how laser assisted machining can improve this behavior, which has not been conducted before.</p> <p>Extending MHMs to predict the mechanical behaviors of AMed Ti6Al4V would require including the heterogeneous microstructure at the grain level, which could be computational expensive. To solve this issue, the extended mechanics of structure genome (XMSG) is introduced as a novel multiscale homogenization approach to predict the mechanical behavior of AMed Ti6Al4V in a computationally efficient manner. This is realized by embedding the effects of microstructure heterogeneity, porosity growth, and crack propagation in the multiscale calculations of the mechanical behavior of the AMed Ti6Al4V using FEM. In addition, the XMSG can predict the asymmetry in the Young’s modulus of the AMed Ti6Al4V under tensile and compression loading as well as the anisotropy in the mechanical behaviors. The applicability of XMSG to fatigue life prediction with valid results is conducted by including the energy dissipations associated with cyclic loading/unloading in the calculations of the cyclic response of the material.</p>
112

Theoretical Description of Electronic Transitions in Large Molecular Systems in the Optical and X-Ray Regions

List, Nanna Holmgaard January 2015 (has links)
The size and conformational complexity of proteins and other large systems represent major challenges for today's methods of quantum chemistry.This thesis is centered around the development of new computational tools to gain molecular-level insight into electronic transitions in such systems. To meet this challenge, we focus on the polarizable embedding (PE) model, which takes advantage of the fact that many electronic transitions are localized to a smaller part of the entire system.This motivates a partitioning of the large system into two regions that are treated at different levels of theory:The smaller part directly involved in the electronic process is described using accurate quantum-chemical methods, while the effects of the rest of the system, the environment, are incorporated into the Hamiltonian of the quantum region in an effective manner. This thesis presents extensions of the PE model with theaim of expanding its range of applicability to describe electronic transitions in large molecular systemsin the optical and X-ray regions. The developments cover both improvements with regardto the quantum region as well as the embedding potential representing the environment.Regarding the former, a damped linear response formulation has been implemented to allow for calculations of absorption spectra of large molecular systems acrossthe entire frequency range. A special feature of this development is its abilityto address core excitations that are otherwise not easily accessible.Another important development presented in this thesis is the coupling of the PE model to a multi-configuration self-consistent-field description of the quantum region and its further combination with response theory. In essence, this extends the PE model to the study of electronic transitions in large systems that are prone to static correlation --- a situation that is frequently encountered in biological systems. In addition to the direct environmental effects on the electronic structure of the quantum region, another important component of the description of electronic transitions in large molecular systems is an accurate account of the indirect effects of the environment, i.e., the geometrical distortions in the quantum region imposed by the environment. In thisthesis we have taken the first step toward the inclusion of geometry distortions in the PE frameworkby formulating and implementing molecular gradients for the quantum region. To identify critical points related to the environment description, we perform a theoretical analysis of the PE model starting from a full quantum-mechanicaltreatment of a composite system. Based on this, we present strategies for an accurate yet efficient construction of the embedding potentialcovering both the calculation of ground state and transition properties. The accurate representation of the environment makes it possible to reduce the size of the quantum region without compromising the overall accuracy of the final results. This further enables use of highly accurate quantum-chemical methods despite their unfavorable scaling with the size of the system. Finally, some examples of applications will be presented to demonstrate how the PE model may be applied as a tool to gain insight into and rationalize the factors influencing electronic transitions in large molecular systems of increasing complexity. / <p>The dissertation was awarded the best PhD thesis prize 2016 by the Danish Academy of Natural Sciences.</p><p></p><p>QC 20170209</p>
113

Étude de l'évolution des micro-organismes bactériens par des approches de modélisation et de simulation informatique / Studying the evolution of bacterial micro-organisms by modeling and numerical simulation approaches

Rocabert, Charles 17 November 2017 (has links)
Variation et sélection sont au coeur de l'évolution Darwinienne. Cependant, ces deux mécanismes dépendent de processus eux-mêmes façonnés par l'évolution. Chez les micro-organismes, qui font face à des environnements souvent variables, ces propriétés adaptatives sont particulièrement bien exploitées, comme le démontrent de nombreuses expériences en laboratoire. Chez ses organismes, l'évolution semble donc avoir optimisé sa propre capacité à évoluer, un processus que nous nommons évolution de l'évolution (EvoEvo). La notion d'évolution de l'évolution englobe de nombreux concepts théoriques, tels que la variabilité, l'évolvabilité, la robustesse ou encore la capacité de l'évolution à innover (open-endedness). Ces propriétés évolutives des micro-organismes, et plus généralement de tous les organismes vivants, sont soupçonnées d'agir à tous les niveaux d'organisation biologique, en interaction ou en conflit, avec des conséquences souvent complexes et contre-intuitives. Ainsi, comprendre l'évolution de l'évolution implique l'étude de la trajectoire évolutive de micro-organismes — réels ou virtuels —, et ce à différents niveaux d'organisation (génome, interactome, population, …). L'objectif de ce travail de thèse a été de développer et d'étudier des modèles mathématiques et numériques afin de lever le voile sur certains aspects de l'évolution de l'évolution. Ce travail multidisciplinaire, car impliquant des collaborations avec des biologistes expérimentateur•rice•s, des bio-informaticien•ne•s et des mathématicien•ne•s, s'est divisé en deux parties distinctes, mais complémentaires par leurs approches : (i) l'extension d'un modèle historique en génétique des populations — le modèle géométrique de Fisher — afin d'étudier l'évolution du bruit phénotypique en sélection directionnelle, et (ii) le développement d'un modèle d'évolution in silico multi-échelles permettant une étude plus approfondie de l'évolution de l'évolution. Cette thèse a été financée par le projet européen EvoEvo (FP7-ICT-610427), grâce à la commission européenne. / Variation and selection are the two core processes of Darwinian Evolution. Yet, both are directly regulated by many processes that are themselves products of evolution. Microorganisms efficiently exploit this ability to dynamically adapt to new conditions. Thus, evolution seems to have optimized its own ability to evolve, as a primary means to react to environmental changes. We call this process evolution of evolution (EvoEvo). EvoEvo covers several aspects of evolution, encompassing major concepts such variability, evolvability, robustness, and open-endedness. Those phenomena are known to affect all levels of organization in bacterial populations. Indeed, understanding EvoEvo requires to study organisms experiencing evolution, and to decipher the evolutive interactions between all the components of the biological system of interest (genomes, biochemical networks, populations, ...). The objective of this thesis was to develop and exploit mathematical and numerical models to tackle different aspects of EvoEvo, in order to produce new knowledge on this topic, in collaboration with partners from diverse fields, including experimental biology, bioinformatics, mathematics and also theoretical and applied informatics. To this aim, we followed two complementary approaches: (i) a population genetics approach to study the evolution of phenotypic noise in directional selection, by extending Fisher's geometric model of adaptation, and (ii) a digital genetics approach to study multi-level evolution. This work was funded by the EvoEvo project, under the European Commission (FP7-ICT-610427).
114

Modelos multi-escala localmente perturbativos para o transporte de solutos iônicos em meios porosos argilosos / Locally perturbative multiscale methods for ionic solute transport in clayly soils

Igreja, Iury Higor Aguiar da 05 August 2010 (has links)
Made available in DSpace on 2015-03-04T18:51:21Z (GMT). No. of bitstreams: 1 Iury.pdf: 2129454 bytes, checksum: 6a7aff5ca085814119b9518b0aab9bef (MD5) Previous issue date: 2010-08-05 / Conselho Nacional de Desenvolvimento Cientifico e Tecnologico / This work aims at developing computational models capable of furnishing more realistic and less costly computationally for the problem of electrokinetic remediation of polluted clayey soils. Innovative results are obtained by improving the multiscale models previously developed by Lima and co-workers through the construction of perturbations of the local microscopic problems in conjuction with more realistic boundary conditions at the electrodes and with the development of precise estimates for the assymptotic behavior of the macroscopic solution. Considering the aliance of such techniques within the framework of the homogenization method of periodic structures we discretize the macroscopic model by the finite element method numerical simulations of an electroosmose experiment capable of predicting more realistic scenarios of electrokinetic remediation. / Este trabalho objetiva o desenvolvimento de modelos computacionais capazes de construir simulações numéricas mais realistas e menos custosas computacionalmente para o problema de descontaminação de solos argilosos por técnicas de eletrocinética. Resultados inovadores são obtidos aprimorando-se os modelos multi-escala desenvolvidos anteriormente por Lima e colaboradores via construção de soluções perturbativas dos problemas locais microscópicos aliada à condições de contorno mais realistas nos eletrodos e ao desenvolvimento de estimativas precisas para o comportamento assintótico da solução macroscópica. Por intermédio da conjunção destas técnicas imersas no contexto da teoria de homogeneização de estruturas periódicas discretizamos o modelo macroscópico pelo método dos elementos finitos e construimos simulações numéricas de um experimento de eletroosmose capazes de predizer cenários mais realistas em eletrorremediação de solos.
115

Modélisation de la réponse Immunitaire T-CD8 : analyse mathématique et modèles multiéchelles / Modeling the CD8 T-cell Immune Response : Mathematical Analysis and Multiscale Models

Girel, Simon 13 November 2018 (has links)
L'infection d'un organisme par un agent pathogène déclenche l'activation des lymphocytes T-CD8 et l'initiation de la réponse immunitaire. Il s'ensuit un programme complexe de prolifération et de différenciation des lymphocytes T-CD8, contrôlé par l'évolution de leur contenu moléculaire. Dans ce manuscrit, nous présentons deux modèles mathématiques de la réponse T-CD8. Le premier se présente comme une équation différentielle à impulsions grâce à laquelle nous étudions l'effet du partage inégal des protéines lors des divisions cellulaires sur la régulation de l'hétérogénéité moléculaire. Le second est un modèle à base d'agents couplant la description d'une population discrète de lymphocytes T-CD8 à celle du contenu moléculaire de ces derniers. Ce modèle s'avère capable de reproduire les différentes phases caractéristiques de la réponse T-CD8 aux échelle cellulaire et moléculaire. Ces deux travaux supportent l'hypothèse que la dynamique cellulaire observée in vivo est le reflet de l'hétérogénéité moléculaire qui structure la population de lymphocytes T-CD8 / Infection of an organism by a pathogen triggers the activation of the CD8 T-cells and the initiation of the immune response. The result is a complex program of proliferation and differentiation of the CD8 T-cells, controlled by the evolution of their molecular content. In this manuscript, we present two mathematical models of the CD8 T-cell response. The first one is presented as an impulsive differential equation by which we study the effect of unequal molecular partitioning at cell division on the regulation of molecular heterogeneity. The second one is an agent-based-model that couples the description of a discrete population of CD8 T-cells and that of their molecular content. This model can reproduce the different typical phases of the CD8 T-cell response at both the cellular and the molecular scales. These two studies support the hypothesis that the cell dynamics observed in vivo is a consequence of the molecular heterogeneity structuring the CD8 T-cell population
116

Nano-chemo-mechanics of advanced materials for hydrogen storage and lithium battery applications

Huang, Shan 01 November 2011 (has links)
Chemo-mechanics studies the material behavior and phenomena at the interface of mechanics and chemistry. Material failures due to coupled chemo-mechanical effects are serious roadblocks in the development of renewable energy technologies. Among the sources of renewable energies for the mass market, hydrogen and lithium-ion battery are promising candidates due to their high efficiency and easiness of conversion into other types of energy. However, hydrogen will degrade material mechanical properties and lithium insertion can cause electrode failures in battery owing to their high mobilities and strong chemo-mechanical coupling effects. These problems seriously prevent the large-scale applications of these renewable energy sources. In this thesis, the atomistic and continuum modeling are performed to study the chemical-mechanical failures. The objective is to understand the hydrogen embrittlement of grain boundary engineered metals and the lithium insertion-induced fracture in alloy electrodes for lithium-ion batteries. Hydrogen in metallic containment systems such as high-pressure vessels and pipelines causes the degradation of their mechanical properties that can result in sudden catastrophic fracture. A wide range of hydrogen embrittlement phenomena was attributed to the loss of cohesion of interfaces (between grains, inclusion and matrix, or phases) due to interstitially dissolved hydrogen. Our modeling and simulation of hydrogen embrittlement will address the question of why susceptibility to hydrogen embrittlement in metallic materials can be markedly reduced by grain boundary engineering. Implications of our results for efficient hydrogen storage and transport at high pressures are discussed. Silicon is one of the most promising anode materials for Li-ion batteries (LIB) because of the highest known theoretical charge capacity. However, Si anodes often suffer from pulverization and capacity fading. This is caused by the large volume changes of Si (~300%) upon Li insertion/extraction close to the theoretical charging/discharging limit. In particular, large incompatible deformation between areas of different Li contents tends to initiate fracture, leading to electro-chemical-mechanical failures of Si electrodes. In order to understand the chemo-mechanical mechanisms, we begin with the study of basic fracture modes in pure silicon, and then study the diffusion induced deformation and fracture in lithiated Si. Results have implications for increasing battery capacity and reliability. To improve mechanical stability of LIB anode, failure mechanisms of silicon and coated tin-oxide nanowires have been studied at continuum level. It's shown that anisotropic diffusivity and anisotropic deformation play vital roles in lithiation process. Our predictions of fracture initiation and evolution are verified by in situ experiment observations. Due to the mechanical confinement of the coating layers, our study demonstrates that it is possible to simultaneously control the electrochemical reaction rate and the mechanical strain of the electrode materials through carbon or aluminum coating, which opens new avenues of designing better lithium ion batteries. This thesis addresses the nano-chemo-mechanical failure problems in two green energy-carrier systems toward improving the performance of Li-ion battery anode and hydrogen storage system. It provides an atomistic and continuum modeling framework for the study of chemo-mechanics of advanced materials such as nano-structured metals and alloys. The results help understand the chemical effects of impurities on the mechanical properties of host materials with different metallic and covalent bonding characteristics.
117

Physique des métamorphoses de la neige sèche : de la microstructure aux propriétés macroscopiques / Physics of dry snow metamorphism : from microstructure to macroscopic properties

Calonne, Neige 14 November 2014 (has links)
L’objectif général de la thèse est de contribuer à l’amélioration de nos connaissances sur les métamorphoses de la neige sèche et sur sa description physique, à l’échelle microscopique (grains de glace et pores) et macroscopique (couche de neige). Dans un premier temps,la méthode d’homogénéisation basée sur les développements asymptotiques à échelles multiples est appliquée à la physique des métamorphoses de la neige sèche. On présente ainsi les descriptions macroscopiques équivalentes du transport de vapeur et de chaleur dérivées à partir de la description de la physique à micro-échelle. On considère à l’échelle des grains la diffusion, la conduction, et la convection forcée, couplées aux changements de phase (sublimation et déposition). Dans un second temps, les propriétés effectives de transport impliquées dans les descriptions macroscopiques (conductivité thermique effective, coefficient effectif de diffusion de vapeur et perméabilité intrinsèque) sont estimées à l’aide d’images 3D de neige couvrant toute la gamme de masse volumique et de types de neige. Enfin, on s’intéresse au suivi temporel des métamorphoses. Les liens entre la microstructure et les propriétés effectives d’une couche de neige sont mis en évidence au cours d’une métamorphose de gradient de température en utilisant des images 3D.On présente ensuite une cellule cryogénique que nous avons mise au point pour le suivi grains à grains par tomographie des évolutions d’un échantillon de neige au cours des métamorphoses, et qui s’utilise à température ambiante. / The main objective of the thesis is to improve our knowledge about dry snow metamorphismand its physical description, at the microscopic (ice grains and pores) andmacroscopic (snow layer) scales. First, the homogenization method of multiple scaleexpansions is applied for the first time to the physics involved in dry snow metamorphism.This way, we present the equivalent macroscopic descriptions of heat and vaportransfers derived from the physical description at micro-scale. We consider at the grainscale diffusion, conduction, and forced convection, coupled to phase changes (sublimationand deposition). Second, the effective properties of transport arising in the macroscopicdescriptions (effective thermal conductivity, effective coefficient of vapor diffusion, andintrinsic permeability) are estimated from 3D images of snow spanning the whole range ofdensity and snow types. Finally, the monitoring of metamorphism with time is considered.The relationship between the microstructure and the effective properties of a snow layerare investigated during temperature gradient metamorphism using 3D images. We presentthen a new cryogenic cell that we developed to monitor the grain to grain evolution of asnow sample by time-lapse tomography during the metamorphism, and which operates atroom temperature.
118

Locally perturbative multiscale methods for ionic solute transport in clayly soils / Modelos multi-escala localmente perturbativos para o transporte de solutos iônicos em meios porosos argilosos

Iury Higor Aguiar da Igreja 05 August 2010 (has links)
This work aims at developing computational models capable of furnishing more realistic and less costly computationally for the problem of electrokinetic remediation of polluted clayey soils. Innovative results are obtained by improving the multiscale models previously developed by Lima and co-workers through the construction of perturbations of the local microscopic problems in conjuction with more realistic boundary conditions at the electrodes and with the development of precise estimates for the assymptotic behavior of the macroscopic solution. Considering the aliance of such techniques within the framework of the homogenization method of periodic structures we discretize the macroscopic model by the finite element method numerical simulations of an electroosmose experiment capable of predicting more realistic scenarios of electrokinetic remediation. / Este trabalho objetiva o desenvolvimento de modelos computacionais capazes de construir simulações numéricas mais realistas e menos custosas computacionalmente para o problema de descontaminação de solos argilosos por técnicas de eletrocinética. Resultados inovadores são obtidos aprimorando-se os modelos multi-escala desenvolvidos anteriormente por Lima e colaboradores via construção de soluções perturbativas dos problemas locais microscópicos aliada à condições de contorno mais realistas nos eletrodos e ao desenvolvimento de estimativas precisas para o comportamento assintótico da solução macroscópica. Por intermédio da conjunção destas técnicas imersas no contexto da teoria de homogeneização de estruturas periódicas discretizamos o modelo macroscópico pelo método dos elementos finitos e construimos simulações numéricas de um experimento de eletroosmose capazes de predizer cenários mais realistas em eletrorremediação de solos.
119

Multiscale modelling of atmospheric flows: towards improving the representation of boundary layer physics

Munoz Esparza, Domingo 30 September 2013 (has links)
Atmospheric boundary layer flows are characterized by the coexistence of a broad range of scales. These scales cover from synoptic- (100-5000 km) and meso-scales (1-100 km) up to three-dimensional micro-scale turbulence (less than a few kilometers). This multiscale nature inherent to atmospheric flows clearly determines the behaviour of the atmospheric boundary layer, whose structure and evolution are of major importance for the wind energy community. This PhD thesis is focused on the development of a numerical methodology that allows to include contribution from all the above mentioned scales, with the purpose of improving the representation of boundary layer processes. The multiscale numerical methodology is developed based on a numerical weather prediction (NWP) model, the Weather Research and Forecasting (WRF) model.<p><p>Prior to the development of the multiscale numerical methodology, one-year of sonic anemometer and wind LiDAR measurements from the FINO1 offshore platform are analyzed. A comprehensive database of offshore measurements in the lowest 250 m of the boundary layer is developed after quality data check and correction for flow distortion effects by the measurement mast, allowing the characterization of the offshore conditions at FINO1. Spectral analysis of high frequency sonic anemometer measurements is used to estimate a robust averaing time for the turbulent fluxes that minimizes non-universal contributions from mesoscale structures but captures the contribution from boundary layer turbulence, employing the Ogive function concept. A stability classification of the measurements is carried out based on the Obukhov length. Results compare well to other surface layer observational studies while vertical wind speed profiles exhibit the expected stability-dependency.<p><p>Although NWP models have been extensively used for weather forecasting purposes, a comprehensive analysis of its suitability to meet the wind energy requirements needs to be carried out. The applicability of the WRF mesoscale model to reproduce offshore boundary layer characteristics is evaluated and validated against field measurements from FINO1. The ability of six planetary boundary layer (PBL) parameterizations to account for stability effects is analyzed. Overall, PBL parameterizations are rather accurate in reproducing the vertical structure of the boundary layer for convective and neutral stabilities. However, difficulties are found under stable stratifications, due to the general tendency of PBL formulations to be overdiffusive and therefore, not capable to develope the strong vertical gradients found in the observations. A low-level jet and a very shallow boundary layer cases are simulated to provide further insights into the limits of the parameterizations.<p><p>Large-eddy simulations (LES) based on averaged conditions from a convective episode at FINO1 are conducted to understand the mechanisms of transition and equilibration that occur in turbulent one-way nested simulations. The nonlinear backscatter and anisotropy subgrid scale model with a prognostic turbulent kinetic energy equation is found to be capable of providing similar results when performing one-way nested large-eddy simulations to a reference stand-alone domain using periodic lateral boundary conditions. A good agreement is obtained in terms of velocity shear and turbulent fluxes of heat and momentum, while velocity variances are overestimated. A considerable streamwise fetch is needed following each domain transition for appropriate energy levels to be reached at high wavelengths and for the solution to reach quasi-stationary results. A pile-up of energy is observed at low wavelengths on the first nested domain, mitigated by the inclusion of a second nested domain with higher resolution that allows the development of an appropriate turbulent energy cascade.<p><p>As the final step towards developing the multiscale capabilities of WRF, the specific problem of the transition from meso- to micro-scales in atmospheric models is addressed. The challenge is to generate turbulence on inner LES domain from smooth mesoscale inflow. Several new methods are proposed to trigger the development of turbulent features. The inclusion of adequate potential temperature perturbations near the inflow boundaries of the LES domain results in a very good agreement of mean velocity profiles, variances and turbulent fluxes, as well as velocity spectra, when compared to periodic stand-alone simulations. This perturbation method allows an efficient generation of fully developed turbulence and is tested under a broad range of atmospheric stabilities: convective, neutral and stable conditions, showing successful results in all the regimes. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
120

Chemical vapor deposition of Al, Fe and of the Al13Fe4 approximant intermetallic phase : experiments and multiscale simulations / Dépôt chimique en phase vapeur d'Al, Fe et de la phase approximante Al13Fe4 : expériences et simulations multi-échelles

Aviziotis, Ioannis 15 November 2016 (has links)
Des couches minces contenant des phases intermétalliques présent et des propriétés et de combinaisons de propriétés qui ne sont que partiellement explorées. Elles portent des solutions potentielles pour conférer des multifonctionnalités à des matériaux avancés requis par les secteurs industriels et sont source derupture et de l'innovation. Leur élaboration par dépôt chimique en phase vapeur à partir de précurseurs métallo-organiques (MOCVD) permet un dépôt conforme sur, et la fonctionnalisation de surfaces complexes, avec un temps de traitement court et à un coût modéré.Pour ceci, il est nécessaire de contrôler les réactions chimiques complexes et des mécanismes de transport impliqués. La modélisation informatique du procédé, alimentée avec des données obtenues par des expériences de dépôt ciblées, est un outil intégré pour l'étude et la compréhension des phénomènes qui se produisent à différentes échelles,de l’échelle macroscopique à celle nanométrique. La MOCVD de composés intermétalliques Al-Fe est étudiée en tant que paradigme de la mise en oeuvre d'une telle approche combinée, expérimentale et théorique. La phase approximanteAl13Fe4 est particulièrement ciblée,en raison de son intérêt comme alternative peu onéreuse aux catalyseurs à base de métaux noble dans l'industrie chimique. La mise au point du dépôt de la phase Al13Fe4est subordonnée à l'étude des proc /min à 185oC. La simulation du procédé prédit des vitesses de croissance en bon accord avec ces résultats, en particulier dans la gamme 139oC-227oC. La modélisation multi-échelle prédit la rugosité RMS avec précision, permettant ainsi le contrôle des propriétés telles que la résistivité électrique. La possibilité d'obtenir des films MOCVD de Fe à faible contamination en O et C est explorée dans la gamme 130oC-250oC à partir de fer pentacarbonyle, Fe(CO)5. La morphologie de la surface des films dépend fortement de la température de dépôt; elle devient plus lisse au-dessus de200oC, qui correspond aussi à la vitesse de croissance maximale, 60nm/min. La vitesse de dépôt diminue fortement lorsque la pression augmente. Les prédictions de la modélisation macroscopique reproduisent précisément ce comportement. Elles indiquent que la diminution de la vitesse de croissance à des températures et des pressions élevées est due à l’augmentation de la décomposition du précurseur en phase gazeuse et à l'inhibition de la réactivité de surface par le ligand CO. Le modèle multi échelle conduit à des valeurs RMS en bon accord avec les mesures expérimentales, en particulier à des températures plus élevées. Suite à l’étude des deux procédés, des co-dépôts d'Al-Fe effectués à 200oCrésultent en des films riches en Alavec une microstructure poreuse et rugueuse. Ceux-ci ne contiennent pas de phases intermétalliques et sont riches en oxygène dû à la réaction d'Al avec les ligandscarbonyles. Afin d’éliminer la contamination, des dépôts séquentiels d'Al et de Fe sont réalisés, ce dernier dans des conditions modifiées à 140oC, 40Torr et 10 min. Ces films sont exemptes d’hétéroélements et présentent un rapport atomique Al:Fe13:4. Diffraction des rayons X et microscopies électroniques révèlent qu’un recuit in situ à 575oC pendant 1 h conduit à des films à gradient de la composition sur l'épaisseur,composés de la phase approximantem-Al13Fe4 conjointement avec des phases intermétalliques Al-Fesecondaires. Il est ainsi démontré que des procédés MOCVD sont appropriés pour obtenir des films constitués d'alliages intermétalliques.Ces films multifonctionnels,appliqués de façon conforme sur des surfaces complexes sont utiles pour un grand nombre d'applications. / Films containing intermetallic compounds exhibit properties and combination of properties which are only partially explored. They carry potential solutions to confer multifunctionality to advanced materials required by industrial sectors and to become a source of breakthrough and innovation.Metalorganic chemical vapor deposition (MOCVD) potentially allows conformal deposition on, and functionalization of complex surfaces, with high throughput and moderate cost. For this reason, it is necessary to control the complex chemical reactions and the transport mechanisms involved in a MOCVD process. In this perspective, computational modeling of the process, fed with experimental information from targeted deposition experiments, provides an integrated tool for the investigation and the understanding of the phenomena occurring at different length scales, from the macro- to the nanoscale. The MOCVD of Al-Fe intermetallic compounds is investigated in the present thesis as a paradigm of implementation of such a combined, experimental and theoretical approach. Processing of the approximant phase Al13Fe4 is particularly targeted, due to its potential interest as low-cost and environmentally benign alternative to noble metal catalysts in the chemical industry. The attainment of the targeted Al13Fe4 intermetallic phase passes through the investigation of the MOCVD of unary Al and Fe films. The MOCVD of Al from dimethylethylamine alane (DMEAA) in the range 139oC-241oC results in pure films. Increase of the deposition temperature yields higher film density and decreased roughness. The Aldeposition rate increases to a maximum of 15.5 nm/min at 185oC and then decreases. Macroscopic simulations of the process predictdeposition rates in sufficient agreement with experimental measurements, especially in the range 139oC-227oC. At higher temperatures, competitive gas phase and surface phenomena cannot be captured by the applied model. Multiscale modeling of the process predicts the RMS roughness of the films accurately, thus allowing the control of properties such as electrical resistivity which depend on the microstructure. The MOCVD of Fe from iron pentacarbonyl, Fe(CO)5, is investigated in the range 130oC-250oC for the possibility toobtain fairly pure Fe films with low Oand C contamination. The surface morphology depends strongly on the temperature and changes are observed above 200oC. The Fe deposition rate increases up to 200oC, to a maximum of 60 nm/min, and then decreases. Moreover, the deposition rate decreases sharply with increasing pressure. Computational predictions capture accurately the experimental behavior and they reveal that the decrease athigher temperatures and pressures is attributed to the high gas phase decomposition rate of the precursor and to inhibition of the surface fromCO. The multiscale model calculates RMS roughness in good agreement with experimental data, especially at higher temperatures. Upon investigation of the two processes, aseries of Al-Fe co-depositions performed at 200oC results in Al-rich films with a loose microstructure. They contain no intermetallic phases and they are O-contaminated due to the reaction of the Al with the carbonyl ligands. Sequential deposition of Al and Fe followed by in situ annealing at 575oC for 1 h is applied to bypass the Ocontamination. The process conditions of Fe are modified to 140oC, 40 Torr and 10 min resulting in O-free films with Al:Fe atomic ratio close to the targeted 13:4 one. Characterization techniques including X-ray diffraction, TEM and

Page generated in 0.296 seconds