• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 16
  • 14
  • 2
  • 1
  • Tagged with
  • 53
  • 53
  • 19
  • 17
  • 13
  • 12
  • 11
  • 11
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Um estudo da influência do comportamento não linear na análise modal experimental /

Tahara, Lucas Zanovello. January 2019 (has links)
Orientador: Samuel da Silva / Resumo: Os métodos de análise modal tradicionalmente são limitados aos sistemas vibrando em regime linear de movimento. Assim, quando as estruturas sofrem altas amplitudes de excitação ou são muito flexíveis, gerando possíveis vibrações não-lineares, estes métodos acabam perdendo a sua validade e as propriedades características. Com base nesta motivação, este trabalho apresenta um estudo detalhado para mostrar quais as limitações de se aproximar por parâmetros modais sistemas vibrando em regime de movimento não linear. Para ilustrar a formulação, assume-se uma viga engastada e livre emulando um oscilador de Duffing com não linearidade concentrada, suave e polinomial (rigidez cúbica). Observa-se que para regimes de excitação baixa, pode-se extrair parâmetros modais do modelo e ajustá-los para níveis de excitação mais altos quando se induz vibração não-linear pelo aumento do nível da amplitude de excitação. Para situações de vibração não-linear opta-se por aproximar os sinais e saídas pelo método de superfície de resposta e identificar a dependência amplitude-frequência para extração de modos normais não-lineares. Os resultados apresentados com a formulação descrita neste trabalho permitem adaptar adequadamente as ferramentas convencionais de análise modal linear para validade e aplicação direta em casos de vibração em regime não linear, quando estes ainda são considerados de fraca influência. / Abstract: Modal analysis methods have traditionally been limited to systems vibrating in linear motion regime. Thus, when the structures undergo high excitation amplitudes or are very flexible, generating possible nonlinear vibrations, these methods end up losing their validity and characteristic properties. Based on this motivation, this work presents a detailed study to show the limitations of approaching by modal parameters systems vibrating in nonlinear regime. To illustrate the formulation, a cantilever beam is assumed to emulate a Duffing oscillator with concentrated, smooth, polynomial nonlinearity (cubic stiffness). It is observed that for low excitation regimes, one can extract modal parameters from the model and adjust them to higher excitation levels when inducing nonlinear vibration by increasing the excitation amplitude level. For nonlinear vibration situations, we choose to approximate the signals and outputs by the response surface method and identify the amplitude-frequency dependence for extraction of nonlinear normal modes. The results presented with the formulation described in this work allow to adapt adequately the conventional tools of linear modal analysis for validity and direct application in cases of vibration in nonlinear regime, when they are still considered of low influence. / Mestre
32

Calculation of Physical Processes at the LHC

Al-Binni, Usama Adnan 01 December 2011 (has links)
With the start of the age of the Large Hadron Collider (LHC) two challenges face theoreticians and computational physicists. The first is about understanding theories beyond the Standard Model and producing verifiable predictions that can be tested against what the LHC and subsequent machines would produce. The second is to improve computational methods so that the new experimental precision is matched by a theoretical one. But this improvement is also crucial for the detection of potential deviations from Standard Model predictions and possibly also finding the elusive Higgs. This work tries to address problems in both areas. In the first part we study the effects of adding tension in considering a black-hole on a brane. Such black-holes are predicted by some models as potential phenomena at the LHC. We calculate the effects of adding tension on observable quantities of black-holes, namely, quasinormal mode frequencies and Hawking radiation, and we show how this improves predictions. In the second part we investigate the computational problem of extending the Britto-Cachazo-Feng-Witten (BCFW) method to 1-loop level. The BCFW has been successfully used in recent years to compute scattering amplitudes at tree-level by suitably complex-shifting external momenta and reducing diagrams to simpler ones. In our investigation we establish that the BCFW can be extended to 1-loop, which means that 1-loop integrands can be treated as trees and can be broken down further into even simpler trees using the BCFW. We explicitly look at the effects of the shift for the lowest three n-point cases, but also demonstrate how the result extends to arbitrary n.
33

Caracterização in silico dos mecanismos de interação entre sequências de localização nuclear e Importina-α

Geraldo, Marcos Tadeu. January 2016 (has links)
Orientador: Ney Lemke / Resumo: Os sistemas de importação nuclear são responsáveis pelo intercâmbio entre o citoplasma e o núcleo da célula, permitindo que proteínas com função nuclear migrem através da membrana que separa essas duas regiões. A via de importação mais estudada é a via clássica de importação nuclear mediada pela Importina-α (Impα). A Impα é uma proteína solenóide, composta por repetições em tandem do motivo Armadillo (ARM) que formam uma estrutura longa e contorcida, com pequenos arcabouços ao longo do eixo da proteína. As sequências de localização nuclear clássicas (cNLSs) presentes nas proteínas-alvo de importação são compostas por resíduos carregados positivamente e estabelecem pontes salinas, ligações de hidrogênio e contatos hidrofóbicos com esses arcabouços da Impα. Esse reconhecimento pode ocorrer em um ou em dois sítios da Impα, caracterizando a cNLS como monopartida ou bipartida, respectivamente. A maioria das informações estruturais do complexo cNLS-Impα provém de dados de cristalografia e pouco se sabe sobre a dinâmica conformacional deste sistema. Uma abordagem para tratar da dinâmica de um sistema é o uso de técnicas de simulação de biomoléculas, tais como dinâmica molecular e análise de modos normais. Com base nessas técnicas de simulação, o presente estudo teve como objetivo compreender os mecanismos de interação e dinâmica conformacional envolvidos no reconhecimento de cNLSs pela Impα. Particularmente, este trabalho focou nas cNLSs das proteínas Nucleoplasmina e Ku70 complexa... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Nuclear import systems are responsible for the exchange between the cytoplasm and the nucleus of a cell, allowing nuclear proteins to migrate through the membrane that separates these two regions. The most studied import pathway is the classical nuclear import mediated by Importin-α (Impα). Impα is a solenoid protein consisting of tandem repeats of the Armadillo (ARM) motif, forming an extended and twisted structure with small grooves along the protein axis. The classical nuclear localization sequences (cNLSs) of cargo proteins are composed of positively charged residues and establish salt bridges, hydrogen bonds and hydrophobic contacts with the grooves of Impα. Such recognition can occur at one or two sites of Impα, thus characterizing the cNLS as monopartite or bipartite, respectively. Most structural information of the cNLS-Impα complex is from crystallographic data and little is known about the conformational dynamics of this system. One approach to address the dynamics of a system is the use of biomolecular simulation techniques such as molecular dynamics and normal modes analysis. Based on these techniques, this study aimed to understand the mechanisms of interaction and conformational dynamics involved in the recognition of cNLSs by Impα. In particular, this work focused on the cNLSs of Nucleoplasmin and Ku70 proteins complexed with Impα. The study of Nucleoplasmin determined two main motions of Impα that may be associated to the cNLS recognition: bending and twisting... (Complete abstract click electronic access below) / Doutor
34

Perturbations of black holes pierced by cosmic strings / Perturbações de buracos negros atravessados por cordas cósmicas

Matheus do Carmo Teodoro 22 March 2018 (has links)
The present-day interest in gravitational waves, justified by the recent direct detections made by LIGO, is opening the exciting possibility to answer many questions regarding General Relativity in extreme situations. One of these questions is whether black hole are – indeed – described totally by their mass, charge and angular momentum or whether they can have additional long-range hair. This project is concerned with this question. We aim at studying the influence of additional structure on the black hole horizon in the form of long-range hair by studying linearized Einstein equation the solutions when perturbed. More precisely, we will study the Schwarzschild solution, pierced by an infinitely long and thin cosmic string such that the space-time possesses a global deficit angle. Quasi-normal modes are believed to dominate the gravitational wave emission during the ring down phase of an excited black hole that would e.g. be the result of a merger of two ultra-compact objects, therefore linearized perturbations can be considered. With the advent of gravitational wave astronomy the proposed study will be very important when reconstructing the source of the detected gravitational wave signals. / O atual interesse em ondas gravitacionais, justificado pelas detecções diretas feitas pela colaboração LIGO recentemente, está abrindo a excitante possibilidade de responder várias questões a respeito da Relatividade Geral em condições estremas. Uma dessas questões é se buracos negros são – realmente – totalmente discritos apenas por sua massa, carga e momento angular ou se eles podem ter os chamados cabelos de longo alcance adicionais. Nosso projeto se preocupa em responder esta pergunta. Nosso objetivo está em estudar a influência de uma estrutura adicional no horizonte de eventos de um buraco negro através do comportamento da equação linearizada de Einstein quando a solução é perturbada. Mais precisamente, nós estudaremos a solução de Schwarzschild atravessada por uma corda cósmica infinitamente fina, tal corda faz com que o espaço-tempo tenha um hiato angular em seu plano equatorial. Acredita-se que modos quasi-normais dominem a emissão de ondas gravitacionais durante a fase de ringing down de buracos negros excitados que podem, por exemplo, se originar da colisão de objetos ultra compactos, portanto perturbações lineares podem ser consideradas. Com o advento da astronomia através de ondas gravitacionais o estudo proposto será importante para que se possa reconstruir a origem de sinais detectados.
35

Traitements adaptés aux antennes linéaires horizontales pour la discrimination en immersion de sources Ultra Basse Fréquence / Depth discrimination of ultra-low-frequency acoustic sources with a horizontal line array

Conan, Ewen 26 September 2017 (has links)
Les travaux présentés s'intéressent à la discrimination en immersion d'une source acoustique sous-marine monochromatique ultra basse fréquence (UBF, 0-500 Hz) à l'aide d'une antenne horizontale d'hydrophones. La discrimination en immersion consiste à déterminer si un signal reçu a été émis à proximité de la surface ou par une source immergée. Cette problématique est particulièrement intéressante pour la lutte sous-marine (discrimination entre bâtiments de surface et sous-marins) ou la biologie marine (discrimination entre espèces vocalement actives à la surface et en profondeur). Le champ acoustique généré par une source UBF peut être décomposé en modes, dont les caractéristiques dépendent de l'environnement et de la position de la source. Cette propagation modale est source de dispersion modale : les différents modes se propagent à différentes vitesses. Cela empêche d'utiliser les techniques classiques de traitement d'antenne. Cependant, l'antenne horizontale peut être utilisée comme un filtre spatial pour estimer les propriétés des différents modes : on parle alors de filtrage modal. Si l'antenne est suffisamment longue, les modes sont résolus et les modes filtrés peuvent servir à localiser la source (matched-mode processing). Dans le cas d'une antenne trop courte, les modes sont mal filtrés et la localisation est impossible. Nous cherchons donc une information moins précise mais plus robuste sur la position de la source, d'où le problème de la discrimination en immersion.Dans ces travaux, nous cherchons à exploiter les modes mal filtrés pour prendre une décision sur le caractère immergé ou non de la source. Nous proposons de baser cette décision sur la valeur estimée du taux d'énergie piégée, i.e. la proportion de l'énergie acoustique qui est portée par les modes piégés. Le problème de la discrimination est alors posé comme un test d'hypothèses binaire sur la profondeur de la source. Cette formulation physique du problème permet d'utiliser des méthodes de Monte Carlo pour prédire, à l'aide de simulations, les performances en discrimination dans un contexte donné. Cela permet de comparer diverses méthodes d'estimation du taux d'énergie piégée, et surtout de choisir un seuil auquel comparer ce taux pour décider si la source est en surface ou immergée.La méthode développée pendant la thèse est validée sur des données expérimentales marines. Les résultats alors obtenus sont cohérents avec les conclusions tirées des simulations. La méthode proposée permet notamment d'identifier avec succès une source de surface (le bruit d'un navire en déplacement) ainsi qu'une source immergée (une source UBF tractée à 30 m de profondeur), à l'aide d'une antenne horizontale de 360 m. / This work focuses on acoustic source depth discrimination in the ultra-low frequency range (ULF, 0-500 Hz), using a horizontal line array. Depth discrimination is a binary classification problem, aiming to evaluate whether a received signal has been emitted by a source near the surface or by a submerged one. This could serve applications such as anti-submarine warfare or marine biology.The acoustic field generated by a ULF source can be described as a sum of modes, which properties depend on environment and source location. This modal propagation leads to modal dispersion: the different modes propagate at different velocities. This forbid the use of classical beamforming schemes. However, the horizontal array can be used as a spatial filter to estimate the properties of the modes: this is modal filtering. With a sufficient array length, modes are resolved, and the filtered modes can be used to localise the source using matched-mode processing. If the array is too short, the poorly-filtered modes cannot be used for localisation. Therefore, we are looking for a less precise but more robust information on source location, which leads to source depth discrimination.In this work, the poorly-filtered modes are used to decide whether the source is near the surface or submerged. Because some of the modes (the "trapped modes") are weakly excited by a surface source, we propose this decision relies on the estimation of the trapped energy ratio, i.e. the ratio of acoustic energy borne by trapped modes to the total acoustic energy. The problem of depth discrimination is then formulated as a binary hypothesis test on source depth. This physical formulation allows using Monte-Carlo methods and simulations to predict performance in a given context. This enables comparison between several estimators of the trapped energy ratio and the choice of a relevant threshold which this ratio is compared to in order to decide between the two hypotheses. The approach developped in the manuscript is validated by its application to marine experimental data. The results are consistent with the conclusions drawn from simulations. The proposed method enables the succesfull identification of both a surface source (the noise of a travelling ship) and a submerged source (a ULF source towed 30 m below the surface), using a 360-m horizontal array.
36

Nonlinear network wave equations : periodic solutions and graph characterizations / Equations d'ondes non-linéraires de réseaux : solutions périodiques et caractérisations de graphes

Khames, Imene 27 September 2018 (has links)
Dans cette thèse, nous étudions les équations d’ondes non-linéaires discrètes dans des réseaux finis arbitraires. C’est un modèle général, où le Laplacien continu est remplacé par le Laplacien de graphe. Nous considérons une telle équation d’onde avec une non-linéarité cubique sur les nœuds du graphe, qui est le modèle φ4 discret, décrivant un réseau mécanique d’oscillateurs non-linéaires couplés ou un réseau électrique où les composantes sont des diodes ou des jonctions Josephson. L’équation d’onde linéaire est bien comprise en termes de modes normaux, ce sont des solutions périodiques associées aux vecteurs propres du Laplacien de graphe. Notre premier objectif est d’étudier la continuation des modes normaux dans le régime non-linéaire et le couplage des modes en présence de la non-linéarité. En inspectant les modes normaux du Laplacien de graphe, nous identifions ceux qui peuvent être étendus à des orbites périodiques non-linéaires. Il s’agit des modes normaux dont les vecteurs propres du Laplacien sont composés uniquement de {1}, {-1,+1} ou {-1,0,+1}. Nous effectuons systématiquement une analyse de stabilité linéaire (Floquet) de ces orbites et montrons le couplage des modes lorsque l’orbite est instable. Ensuite, nous caractérisons tous les graphes pour lesquels il existe des vecteurs propres du Laplacien ayant tous leurs composantes dans {-1,+1} ou {-1,0,+1}, en utilisant la théorie spectrale des graphes. Dans la deuxième partie, nous étudions des solutions périodiques localisées spatialement. En supposant une condition initiale de grande amplitude localisée sur un nœud du graphe, nous approchons l’évolution du système par l’équation de Duffing pour le nœud excité et un système linéaire forcé pour le reste du réseau. Cette approximation est validée en réduisant l’équation φ4 discrète à l’équation de Schrödinger non-linéaire de graphes et par l’analyse de Fourier de la solution numérique. Les résultats de cette thèse relient la dynamique non-linéaire à la théorie spectrale des graphes. / In this thesis, we study the discrete nonlinear wave equations in arbitrary finite networks. This is a general model, where the usual continuum Laplacian is replaced by the graph Laplacian. We consider such a wave equation with a cubic on-site nonlinearity which is the discrete φ4 model, describing a mechanical network of coupled nonlinear oscillators or an electrical network where the components are diodes or Josephson junctions. The linear graph wave equation is well understood in terms of normal modes, these are periodic solutions associated to the eigenvectors of the graph Laplacian. Our first goal is to investigate the continuation of normal modes in the nonlinear regime and the modes coupling in the presence of nonlinearity. By inspecting the normal modes of the graph Laplacian, we identify which ones can be extended into nonlinear periodic orbits. They are normal modes whose Laplacian eigenvectors are composed uniquely of {1}, {-1,+1} or {-1,0,+1}. We perform a systematic linear stability (Floquet) analysis of these orbits and show the modes coupling when the orbit is unstable. Then, we characterize all graphs for which there are eigenvectors of the graph Laplacian having all their components in {-1,+1} or {-1,0,+1}, using graph spectral theory. In the second part, we investigate periodic solutions that are spatially localized. Assuming a large amplitude localized initial condition on one node of the graph, we approximate its evolution by the Duffing equation. The rest of the network satisfies a linear system forced by the excited node. This approximation is validated by reducing the discrete φ4 equation to the graph nonlinear Schrödinger equation and by Fourier analysis. The results of this thesis relate nonlinear dynamics to graph spectral theory.
37

Analyse et modélisation des ondes sismiques générées par des impacts et des explosions atmosphériques des météores aux planètes telluriques avec une atmosphère / Analysis and modeling of meteor impact and airburst generated seismic waves on terrestrial planets with atmosphere

Karakostas, Foivos Georgios 07 September 2018 (has links)
Les évènements météoriques constituent une source d’importance fondamentale pour la sismologie planétaire, étant donné que leur localisation, et dans certains cas, leur temps d’origine peuvent être déterminés précisément par des orbiteurs. Cette importance augmente encore dans le cas d’une expérimentation à 1 seul sismomètre, comme dans le cas de SEIS (Seismic Experimentof Interior Structure) de la mission actuelle InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport). En effet, la localisation précise permet de réaliser une inversion directe des temps de propagation différentiels et des formes d’ondes pour la détermination de la structure interne. Les impacts de météorites génèrent des ondes de volume et de surface lors de leur arrivée à la surface d’une planète. Quand ils explosent dans l’atmosphère, ils produisent des ondes de chocs qui sont converties en ondes linéaires, sismiques pour la partie solide, et acoustiques pour la partie atmosphérique. Ce phénomène peut être modélisé par l’amplitude de l’excitation de modes sphéroïdaux, dû aux effets de couplage entre l’atmosphère et le sol. Ce manuscrit de thèse est consacré à l’investigation et la modélisation des ondes de Rayleigh générées par des météores. Un rappel général des avancées en sciences planétaires est d’abord fourni, avec un focus sur la sismologie planétaire et les études des sources sismiques atmosphériques. Ensuite, la théorie concernant les ondes de choc dans l’atmosphère et au sol est présentée plus en détails. Dans le cas de la formation d’une onde de choc dans l’atmosphère, l’effet de transition d’un régime de propagation non linéaire vers un régime linéaire est documenté pour le superbolide de Chelyabinsk. Pour la génération d’ondes dans la subsurface, un impact de météorite sur la lune est passé en revue, en utilisant des codes hydrodynamiques. Une analyse comparée de ces deux cas est réalisée de façon à présenter les processus de transition du régime de propagation. Une inversion de la source sismique du superbolide de Chelyabinsk est effectuée, de manière à examiner les propriétés de la source associée dans l’atmosphère terrestre. Nous avons développé une source multiple, composée d’une série de points source consécutifs, basé sur une trajectoire fournie. Les calculs des sismogrammes synthétiques des ondes de Rayleigh associées à l’événement sont réalisés par la sommation des modes propres du modèle de la partie solide et de la partie atmosphérique de la planète. A travers une technique d’inversion basée sur la décomposition des valeurs singulières et la méthode du moindre carré, nous fournissons des solutions pour la magnitude du moment. De plus, nous avons trouvé dans les données sismiques un effet Doppler, associée à la directivité de la source. En plus, nous avons réalisé des modélisations 3-D basées sur la méthode des éléments spectraux dans le cas d’un modèle solide uniquement, de façon à comprendre les effets des caractéristiques 3-D crustales, et surligner les différences avec une source inversée dans le sol par rapport à une source correctement positionnée dans l’atmosphère. Dans le cas de Mars, la sommation des modes propres est utilisée pour fournir les formes d’ondes associées aux impacts à la surface de la planète ou à basse altitude dans l’atmosphère martienne. Il est montré que la contribution du mode solide sphéroïdal fondamental domine les formes d’onde, par rapport aux deux premières harmoniques. La comparaison entre les amplitudes de sismogramme synthétiques de tailles différentes, montre que les petits impacteurs (diamètre de 0,5 mètre à 2 mètres) peuvent être détectés par les capteurs VBB de SEIS, seulement pour les hautes fréquences des ondes de Rayleigh, même pour des distances épicentrales très faibles. / Meteoric events constitute a source of paramount importance for Planetary Seismology, since their locations and, in some cases, their occurence times can be accurately known from orbiters, tracking or visual inspections. Their contribution is enhanced in the case of a seismic experi- ment with one seismometer, as the SEIS (Seismic Experiment of Interior Structure) of the im- minent Martian mission “InSight” (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport), as the known location allows a direct inversion of differential travel times and wave forms for structure identification. Meteor impacts generate body and surface waves when they reach the surface of a planet. When they explode into the atmosphere, they generate shock waves which are converted into linear, seismic waves in the solid part and acoustic waves in the atmosphere. This effect can be modeled as the amplitude of Rayleigh and other Spheroidal modes excitation, due to atmo- spheric/ground coupling effects. This PhD dissertation is focusing on the investigation and modeling of the meteor generated Rayleigh waves. A brief recall to the advance of planetary science with focus on planetary seismology and the study of atmospheric seismic sources is presented. Thereafter, the theory concerning the shock waves in the atmosphere and in the ground is presented in further detail. In the case of shock wave generation in the atmosphere, the effect of transition from a highly nonlinear propagation regime to the linear one is presented for Chelyabinsk superbolide. In the case of the generation in the subsurface, a meteor impact on the Moon is investigated, using hydrodynamic codes. A comparative analysis of both cases is performed in order to present the transition processes of the propagation regime. An inversion of the seismic source of Chelyabinsk superbolide is performed, in order to examine the properties of the associated source in Earth’s atmosphere. We develop a line source, made of a series of consecutive point sources, based on a provided trajectory. The calculation of synthetic seismograms of Rayleigh waves associated to the event is performed by the summation of normal modes of a model for the solid part and the atmosphere of the planet. Through an inversion technique based on singular value decomposition and least square method, solutions for the moment magnitude are provided. Moreover we found in the seismic data a Doppler effect, associated with the directivity of the source. In addition, we perform 3D modeling based on spectral element method in a purely solid model, to assess the effects of 3D crustal features and highlight differences with a source inverted in the ground versus on a source correctly positioned in the atmosphere. In the case of Mars, normal mode summation is used in order to provide waveforms asso- ciated to impacts on the planetary surface or in low altitudes in the martian atmosphere. It is shown that the contribution of the fundamental spheroidal solid mode is dominating the wave- forms, compared to the one of the first two overtones. The comparison between the amplitudes of synthetic seismograms of different size, show that small impactors (diameter of 0.5 to 2 meters) can be detected by the SEIS VBB seismometer of InSight mission, only in the higher frequencies of Rayleigh waves, even for short epicentral distances. An analysis based on im- pact rate estimations enables to calculate the number of detectable events of meteor impacts for projectiles with diameter greater than 1 meter and it leads to the conclusion of 6.7 to 13.4 detectable impacts during a Mars year, the nominal operational period of InSight mission. Finally, an analysis on the ground characteristics of a shallow low velocity zone under InSight landing site is presented. Through an investigation by classical test of geomechanics, it is shown that this zone is supposed to affect the quality of seismic signals.
38

Développement de champs de forces polarisables et applications à la spectroscopie vibrationnelle / Development of polarizable force fields and applications in vibrational spectroscpy

Thaunay, Florian 02 September 2016 (has links)
La spectroscopie de dissociation par absorption de photons infrarouges (IRPD) permet d’obtenir les signatures vibrationnelles d’espèces chargées en phase gazeuse, telles que de petits peptides ou des ions hydratés dans des agrégats d’eau. L’attribution des modes de vibration pour établir une relation entre le spectre expérimental et une structure moléculaire est une tâche délicate et nécessite le recours à la modélisation moléculaire.Ce manuscrit présente un ensemble d’outils théoriques pour le calcul et l’attribution de spectres vibrationnels, basée principalement sur la dynamique moléculaire classique et le champ de forces polarisable AMOEBA, ainsi que son application à des ions gazeux de tailles diverses. Les ions hydratés dans des agrégats d’eau M(H2O)n (n allant de 6 à 100) sont caractérisés par une dynamique importante, et leur spectre expérimental ne peut pas être décrit par une seule structure. La signature des peptides évolue avec la température et les effets d’anharmonicité dynamique. Ils peuvent également être le siège de mécanismes de transfert de proton, présentant une signature vibrationnelle très caractéristique.La surface d’énergie potentielle de ces systèmes est explorée par la dynamique moléculaire classique en trajectoires individuelles ou avec échange de répliques, afin d’engendrer des structures énergétiquement stables. Pour les plus petits systèmes, les méthodes quantiques DFT et post-HF sont utilisées pour confirmer les structures de plus basse énergie, calculer leurs spectres IR statiques et proposer des attributions des modes de vibration. Pour les plus systèmes de plus grandes tailles, c’est-à-dire les ions dans des gouttes d’eau de plusieurs dizaines de molécules, la simulation des spectres IR à température finie est basée sur la transformée de Fourier de la fonction d’autocorrélation du moment dipolaire (DACF), calculée pour une trajectoire de dynamique moléculaire classique. Cette méthode n’offrant pas d’accès direct aux modes normaux de vibration, nous avons implémenté une méthode d’attribution dynamique, basée sur la Driven Molecular Dynamics (DMD) et couplée au DACF. La combinaison AMOEBA/DACF/DMD a été utilisée pour reproduire et attribuer le spectre du dipeptide Ace-Phe-Ala-NH2, et ceux d’ions hydratés dans des agrégats d’eau.Enfin, la signature vibrationnelle d’un transfert de proton ne peut être décrite, ni par des méthodes statiques quantiques, ni par la dynamique classique. Sa modélisation a nécessité le développement d’un modèle Empirical Valence Bond (EVB) à deux états, couplé au champ de forces polarisable AMOEBA. Le modèle EVB a été implémenté dans la suite logicielle Tinker. Il permet de reproduire le comportement dynamique du transfert de proton au sein de petits peptides et de diacides déprotonés, ainsi que la signature spectroscopique observée expérimentalement.Une partie importante des applications de ces développements concerne des ions simples hydratés dans des nano-gouttelettes, et en particulier l’ion sulfate de grande importance environnementale. Nous avons pu reproduire de façon satisfaisante, pour la première fois, les spectres d’agrégats contenant jusqu’à 100 molécules d’eau. Le principal contributeur à cette spectroscopie expérimentale est l’équipe d’E. Williams à l’université de Californie à Berkeley. Nous avons établi avec eux une collaboration pour compléter ce travail en modélisant les spectres IR d’ions sulfates hydratés [SO4(H2O)n=9-36]2-, dont ils ont obtenu les signatures expérimentales. / Spectroscopy dissociation by absorption of infrared photons (IRPD) provides vibrational signatures of charged species in the gas phase, such as small peptides or hydrated ions in water clusters. The vibrational normal modes assignment to establish a relationship between the experimental spectrum and molecular structure is a delicate task and requires the use of molecular modeling.This manuscript presents a set of theoretical tools for calculation and assignment of vibrational spectra, based mainly on classical molecular dynamics and polarizable AMOEBA force field, and its application to gaseous ions of various sizes. Hydrated ions in water clusters M(H2O)n (n in 6-100 range) are characterized by a dynamic behavior, and their experimental spectrum can not be described by a single structure. The signature of peptides changes with temperature and dynamic anharmonicity effects. They can also be the site of proton transfer mechanisms, with a very characteristic vibrational signature.The potential energy surface of these systems is explored by classical molecular dynamics in individual trajectories or replica exchange to generate energetically stable structures. For smaller systems, quantum methods, as DFT and post-HF, are used to confirm the lowest energy structures, calculate their static IR and propose normal modes assignments. For larger systems, i.e ions in water drops of several tens of molecules, the simulation of IR spectra at finite temperature is based on the Fourier transform of the autocorrelation function of the dipole moment (DACF), calculated during a classical molecular dynamics trajectory. As this method does not allow direct access to the vibrational normal modes, we implemented a method of dynamic assigments, based on the Driven Molecular Dynamics (DMD) and coupled to the DACF. The combination AMOEBA /DACF / DMD was used to reproduce and assign the spectrum of the dipeptide Ace-Phe-Ala-NH2, and those of hydrated ions in water clusters.Finally, the vibrational signature of a proton transfer can not be described by quantum static methods or by classical dynamics. Its modeling required the development of a two states Empirical Valence Bond Model (EVB), coupled with AMOEBA polarizable force field. The two states EVB model was implemented in the software TINKER. It can reproduce the dynamic behavior of proton transfer in small peptides and deprotonated acids, as well as the spectroscopic signatures observed experimentally.An important part of the applications of these developments relates simple hydrated ions in nano-droplets, and in particular the sulfate ion of great environmental importance. We were able to reproduce satisfactorily, for the first time, the spectra of clusters containing up to 100 water molecules. The main contributor to this experimental spectroscopy is the team of E. Williams from the University of California of Berkeley. We have established cooperation with them to complete this work by modeling the IR spectra of hydrated sulfates ions [SO4(H2O) n=9-36]2-, for which they obtained experimental signatures.
39

Méthodes numériques pour les systèmes dynamiques non linéaires : application aux instruments de musique auto-oscillants

Karkar, Sami 10 January 2012 (has links)
Ces travaux s'articulent autour du calcul des solutions périodiques dans les systèmes dynamiques non linéaires, au moyen de méthodes numériques de continuation. La recherche de solutions périodiques se traduit par un problème avec conditions aux limites périodiques, pour lequel nous avons implémenté deux méthodes d'approximation : - Une méthode spectrale dans le domaine fréquentiel, l'équilibrage harmonique d'ordre élevé, qui repose sur une formulation quadratique des équations. Nous proposons en outre une extension de cette méthode aux cas de non-linéarités non rationnelles. - Une méthode pseudo-spectrale dans le domaine temporel, la collocation à l'aide fonctions polynômiales par morceaux. Ces méthodes transforment le problème continu en un système d'équations algébriques non linéaires, dont les solutions sont calculées par continuation à l'aide de la méthode asymptotique numérique. L'ensemble de ces outils, complétés d'une analyse linéaire de stabilité, sont intégrés au code de calcul MANLAB. Applications : Un modèle physique non-régulier de clarinette est étudié en détail : à partir de la branche de solutions statiques et ses bifurcations, on calcule les différentes branches de solutions périodiques, ainsi que leur stabilité et leurs bifurcations. Ce modèle est ensuite adapté au cas du saxophone, pour lequel on intègre une caractérisation acoustique expérimentale, afin de mieux tenir compte de la géométrie complexe de l'instrument. Enfin, nous étudions un modèle physique simplifié de violon, avec une non-régularité liée frottement de Coulomb. / Periodic solutions of nonlinear dynamical systems are the focus of this work. We compute periodic solutions through a BVP formulation, solved with two numerical methods: - a spectral method, in the frequency domain: the hogh-order Harmonic Balance Method, using a quadratic formulation of the original equations. We also propose an extension to nonrational nonlinearities. - a pseudo-spectral method, in the time domain : the arthogonal collocation at Gauss point, with piece-wise polynomial interpolation. Both methods lead to a system of nonlinear algebraic equations, and its solutions are computed by a continuation algorithm : the Asymptotic Numerical Method. These methods are embeded in the numerical package MANLAB, together with a linear stability analysis. Application We then apply these methods to physical models of several instruments : a clarinet, a saxophone, and a violin. The clarinet model contains a non-smooth contact between the reed and the mouthpiece. The study focuses on the evolution of frequency, loudness, and spectrum along the branch of periodic solutions when varying the mouth pressure. The saxophone model is very similar, but an experimental characterization of the bore is used in that case. Finally, the violin model with a non-smooth Coulomb contact law and a simplified resonator is studied, showing the variety of models that can be treated using this method.
40

Schémas numériques d'advection et de propagation d'ondes de gravité dans les modèles de circulation océanique / Advection and gravity waves propagation numerical schemes for oceanic circulation models

Demange, Jérémie 21 October 2014 (has links)
Les modèles numériques d'océans régionaux tridimensionnels sont basés sur la résolution des équations primitives et utilisent pour la plupart des méthodes de résolution eulérienne de type différences finies sur des grilles décalées. Ces modèles doivent représenter fidèlement les transports et transferts d'énergie. L'amélioration de ces modèles numériques exige donc (i) l'identification des processus prépondérants, notamment en terme de dissipation, dans ces transferts et (ii) la construction de méthodes numériques respectant un certain nombre d'équilibres. La première partie du travail se concentre sur la propagation des ondes externes et internes de gravité. Nous nous intéresserons en premier lieu à la stabilité de la séparation en mode rapide (barotrope) et lents (baroclines) et montrons qu'elle peut être ameliorée en levant certaines hypothèses traditionnellement effectuées. Dans un second temps, nous étudions l'impact de la discrétisation (ordre des schémas, grilles décalées ou non) sur la propagation des ondes internes de gravité provenant du couplage vitesse pression. Une décomposition en modes verticaux nous permet également de proposer un schéma espace temps très efficace. La seconde partie étudie en détail les schémas d'advection de quantité de mouvement et de traceurs, tout particulièrement dans l'objectif d'une réduction de la diffusion diapycnale (diffusion dans les directions orthogonales aux couches de densité constante). Ce travail nous amène tout d'abord à porter notre attention sur les schémas d'advection verticaux souvent négligés au regard de la dimension horizontale. Les bonnes propriétés d'un schéma compact (et de ses variantes espace temps et monotones) sont mises en avant. Enfin nous analysons le comportement multidimensionnel de ces schémas d'advection. / Three-dimensional regional ocean numerical models are based on solving the primitive equations and mostly use Eulerian finite differences methods of resolution on staggered grids. These models must accurately represent transports and energy transfers. Improving these numerical models therefore requires (i) the identification of predominant process, particularly in terms of dissipation in these transfers and (ii) the construction of numerical methods respecting a number of balances. The first part of the work focuses on the propagation of external and internal gravity waves. We focus primarily on the stability of the separation in fast mode (barotropic) and slow (baroclinic) and show that it can be improved by removing certain assumptions traditionally made. In a second step, we study the impact of the discretization (order of schemes, staggered grids or not) on the propagation of internal gravity waves coming from the coupling velocity pressure. A decomposition into vertical modes also allows us to offer a highly effective space-time scheme. The second part examines in detail the numerical advection schemes of momentum and tracers, especially with the aim of reducing the diapycnal diffusion (diffusion in the orthogonal direction of constant density layers). This work leads us first to focus our attention on the vertical advection schemes often overlooked in front of the horizontal dimension. The good properties of a compact schema (and its space-time and monotonous variants ) are highlighted. Finally we analyze the multidimensional behavior of these advection schemes.

Page generated in 0.0559 seconds