41 |
Nanotechnologies pour la bolométrie infrarougeKoechlin, Charlie 05 October 2012 (has links) (PDF)
Les travaux de cette thèse ont porté sur les micro-bolomètres (détecteurs infrarouges non refroidis) qui fonctionnent selon le principe suivant : le rayonnement infrarouge incident provoque l'échauffement d'une membrane suspendue dont la résistivité électrique dépend de la température. Deux voies ont été explorées pour les améliorer, grâce aux nanotechnologies. D'une part, les propriétés optiques et électroniques (transport et bruit) des films de nanotube de carbone ont été étudiées afin d'évaluer le potentiel de ce nouveau matériau comme thermistor. Pour ce faire des procédés technologiques en salle blanche, des caractérisations et des modèles théoriques ont été mis au point. Après avoir obtenu les figures de mérite adaptées, cette étude a conclu au manque de potentiel de ce matériau pour une application aux micro-bolomètres. D'autre part, nous avons étudié des résonateurs sub-longueur d'onde basés sur des cavités métal-isolant-métal permettant d'obtenir des absorbants totaux, et omnidirectionnels. Un modèle analytique permettant de les décrire et de les concevoir rapidement a été mis au point. La combinaison de ces résonateurs à l'échelle sub-longueur d'onde a permis de mettre en évidence un phénomène de tri de photon et la possibilité de concevoir des absorbants large bande. Nous avons ainsi proposé (et breveté) l'utilisation de ces antennes comme absorbants pour les micro-bolomètres. En effet leur capacité à focaliser le champ dans des volumes sub-longueur d'onde permet d'introduire une rupture conceptuelle pour la conception de bolomètres à hautes performances.
|
42 |
Diffusion de second harmonique par les nanoparticules métalliques à symétrie sphériqueButet, Jeremy 06 July 2012 (has links) (PDF)
Ce travail de thèse a porté sur l'étude de la génération de second harmonique par les nanoparticules métalliques. La présence de résonances de plasmon de surface localisées dans les nanoparticules métalliques accroit la section efficace non linéaire et le but de ce travail a été de comprendre comment ce couplage peut être mis à profit. D'un point de vue fondamental, la comparaison entre expérience et théorie a permis de mettre en évidence le mode d'émission octupolaire ainsi que de pondérer les contributions de surface et de volume au signal total émis. Il a également été démontré que des profils de Fano non linéaire pouvaient être observés dans le cas de nano-objets très simples. Des applications pratiques, telle que les capteurs plasmoniques, ont été abordées montrant que les propriétés intrinsèques de la génération de second harmonique offrent plusieurs avantages et augmentent la sensibilité de tels capteurs. Des mesures expérimentales ont également été effectuées sur des nanoparticules d'or uniques enfermées dans une matrice homogène, ouvrant la voie pour une compréhension plus fine de l'impact de la morphologie des nanoparticules sur leur réponse non linéaire.
|
43 |
Nanocomposites plasmoniques anisotropes à base de copolymères à blocs et de nanoparticules d'orTallet, Clémence 06 December 2012 (has links) (PDF)
: La nanochimie et l'auto-assemblage sont des voies prometteuses de fabrication de matériaux nanostructurés aux propriétés optiques innovantes dans le domaine visible. Dans cette étude, des nanocomposites plasmoniques anisotropes sont formulés en introduisant sélectivement des nanoparticules métalliques dans des phases ordonnées de copolymères diblocs symétriques selon différentes stratégies d'incorporation. Pour la stratégie de post-incorporation, des nanoparticules d'or présynthétisées en milieu aqueux sont introduites sélectivement dans des phases pré-ordonnées d'un copolymère dibloc amphiphile. L'incorporation directe consiste à mélanger des nanoparticules d'or présynthétisées et un copolymère dibloc dans un solvant commun. La synthèse in situ de nanoparticules consiste à réduire des précurseurs métalliques préalablement introduits dans un des deux blocs d'un copolymère via une étape de réduction. Nous étudions, en particulier, comment la taille des nanoparticules d'or et leur fraction volumique influencent la nanostructure et les propriétés optiques de ces films nanocomposites. La morphologie des films macroscopiques est étudiée par microscopie électronique à transmission et diffusion des rayons X aux petits angles. Les films minces de nanocomposites sont caractérisés structurellement par microscopie à force atomique, microscopie électronique à transmission et réflectivité des rayons X. Les indices optiques déterminés par ellipsométrie spectroscopique peuvent être décrits par un modèle de Maxwell-Garnett, prenant éventuellement en compte de façon phénoménologique les effets de couplage entre nanoparticules d'or.
|
44 |
Synthesis, characterization and optical properties of hybrid nanoparticles working with plasmon-fluorescence couplingSui, Ning 10 September 2012 (has links) (PDF)
L'exaltation de fluorescence par un métal est de plus en plus utilisée pour augmenter la sensibilité de détection dans les systèmes utilisant la fluorescence. Au cours de ce travail de thèse, nous avons étudié ce phénomène dans des nanoparticules hybrides Métal@SiO2 possédant des émetteurs de fluorescence immobilisés sur la silice. Dans un premier temps, nous avons élaboré les nanoparticules cœur-coquille Métal@SiO2 (Métal = Au ou Ag) en utilisant différentes méthodes et en les comparant pour choisir la plus adaptée selon le diamètre du cœur métallique. Dans un deuxième temps, nous avons étudié les propriétés de fluorescence exaltée des nanoparticules hybrides. Deux types d'émetteurs de fluorescence ont été sélectionnés : des nanoparticules semi-conductrices (SiC) et des fluorophores organiques (cyanine 3 et fluorescéine). Après fonctionnalisation de la silice, les émetteurs de fluorescence ont été greffés à la surface des nanoparticules Métal@SiO2. L'exaltation de leur fluorescence a été analysée en fonction de leur densité surfacique, de leur distance par rapport au cœur métallique (fixée par l'épaisseur de silice), du diamètre du cœur métallique et de la longueur d'onde d'excitation. Le facteur d'exaltation le plus important (de l'ordre de 103) a été obtenu avec une faible épaisseur de silice (10 nm) pour les nanoparticules de SiC dont le rendement quantique intrinsèque est très faible (inférieur à 1%). Enfin, la surface de nanoparticules hybrides a été fonctionnalisée avec des nanoparticules d'oxyde de fer de manière à obtenir une combinaison de propriétés optiques (fluorescentes et plasmoniques) et magnétiques à l'intérieur d'une même nanoparticule hybride.
|
45 |
Réponse optique de nano-objets uniques d'argent : couplage plasmonique et photo-oxydationGrillet, Nadia 04 July 2011 (has links) (PDF)
La réponse optique de nanostructures métalliques est caractérisée par une amplification locale du champ électromagnétique appelée Résonance Plasmon de Surface (RPS) reliée à leur nature et leur morphologie. Pour étudier la réponse optique d'une nanoparticule unique, un dispositif ultra-sensible de spectroscopie à modulation spatiale utilisant une source de lumière blanche a été développé : il permet de mesurer la section efficace d'extinction absolue de nano-objets uniques sur un large domaine spectral (300-900 nm). Des images de microscopie électronique à transmission peuvent être obtenues indépendamment sur les mêmes objets. On a ainsi une corrélation directe entre la morphologie des nanoparticules et leur signature optique. Ce travail de thèse a permis d'une part de mettre en évidence les paramètres qui entrent en jeu dans le processus de vieillissement de nanoparticules uniques d'argent sous éclairement. En particulier, l'étude de nanocubes d'argent révèle une " sphérisation " et une photo-oxydation au cours du temps due à la partie UV du spectre. D'autre part, des mesures réalisées sur des doublets de nanocubes d'argent en interaction ont montré l'importance de la morphologie à l'interface entre les deux nanoparticules sur le couplage plasmonique. Pour une excitation lumineuse longitudinale, on observe, outre le décalage de la RPS vers les basses énergies lorsque la distance interparticule diminue, un dédoublement de cette bande de résonance. Des calculs théoriques réalisés avec la méthode DDA ont permis de corréler ce phénomène de dédoublement à des variations de courbure de surface dans la zone interparticule liées principalement au rognage des arêtes des cubes
|
46 |
Anomalies de réseaux de diffraction du reliefPopov, Evgeni 16 April 1991 (has links) (PDF)
La thèse d'état est présentée en vue d'obtenir le grade Docteur es Sciences. La thèse contient 10 chapitres divisés en trois partie. La première partie contient trois chapitres et présent des propriétés générales de la diffraction de la lumière par de réseaux du relief (présentation du problème, quelques théorèmes principales), revue historique des recherches sur des anomalies et la classification récente. La deuxième partie présent d'anomalies de réseaux métalliques nus résonantes (chapitre 5) et non-résonantes (chapitres 4 et 6) et des exemples de l'interaction (chapitre 7). Nos avons démontré comment de propriétés générales de réseaux métalliques peuvent être expliquées d'un point de vue microscopique. La troisième partie présent l'analyse des anomalies de guides diélectriques ondulés - l'influence d'excitation de modes guidés sur la efficacité de diffraction sans (chapitre 8) et avec (chapitre 10) interaction modale. L'anomalie du coefficient de couplage est étudiée dans chapitre 10. Les anomalies non-résonantes de réseaux diélectriques nus sont discutées dans chapitre 9.
|
47 |
Contrôle de la fluorescence par des nanoantennes plasmoniquesHabert, Benjamin 02 April 2014 (has links) (PDF)
Dans ce travail de these, nous étudions comment des nano-structures métalliques modifient le processus d'émission spontannée d'objets fluorescents et jouent ainsi un rôle d'antenne. Ces structures supportent des modes optiques confinés aux interfaces metal-diélectrique: ce sont des modes plasmoniques.De par leur fort confinement, ces modes modifient la densité locale d'états optiques et permettent notamment d'accélérer le processus d'émission spontannée (facteur de Purcell). Nous étudions le cas d'une structure planaire metal-isolant-métal de type patch couplée à un ensemble de nanocristaux colloïdaux fluorescents. Nos mesures, soutenues par des calculs numériques, montrent une acceleration de l'émission fluorescente d'un facteur 80 ainsi qu'une augmentation de la directivité de l'émission. Nous décrivons ensuite le procedé de fabrication d'une structure patch metal-semiconducteur-métal pour laquelle la source fluorescente est un puits quantique émettant dans le proche infra-rouge. Nous montrons que l'antenne permet d'augmenter l'extraction fluorescente d'un facteur 8. Enfin, nous considérons le cas d'une structure sphérique composée d'un unique nanocristal fluorescent au centre d'une bille de silice entourée par une fine coquille métallique. Cette structure plasmonique accélère l'émission d'une facteur 10 et permet de supprimer le scintillement caractéristique de l'émission des nanocristaux. La coquille métallique permet également d'isoler chimiquement le nanocristal de l'environnement, assurant ainsi une grande photostabilité et une toxicité réduite. L'émetteur ainsi obtenu est donc un candidat prometteur pour des applications de marquage de fluorescence in-vivo.
|
48 |
Nanophotonique pour la détection exaltée de molécules fluorescentesWenger, Jérôme 05 June 2012 (has links) (PDF)
J'étudie comment des nanostructures photoniques permettent d'exalter l'émission optique de molécules. L'objectif est de dépasser les limites imposées par la diffraction en microscopie optique pour améliorer la détection de nano-émetteurs. Mes travaux combinent recherche fondamentale et applications. L'axe recherche fondamentale porte sur la compréhension des phénomènes électromagnétiques mis en jeu dans des antennes de dimensions nanométriques. L'axe recherche appliquée porte sur le développement de nouvelles techniques de détection et d'analyse de biomolécules. Ces travaux s'inscrivent dans les thématiques très actives actuellement des nano- antennes plasmoniques et des capteurs pour la biophotonique.
|
49 |
Les nanoparticules d'or comme agents de nanostructuration et de transduction pour les biocapteurs. Application à l'immunodétection du diclofénac et de l'entérotoxine A de S. aureus / Gold nanoparticles as nanostructuring and transduction agents for biosensors. Application in the immunodetection of diclofenac and enterotoxin A from S.aureusBen Haddada, Maroua 21 October 2016 (has links)
Ce travail s’est focalisé sur l’apport des nanoparticules d’or (GNPs) dans la construction d’immunocapteurs piézoélectriques et plasmoniques. Deux stratégies ont été mises en œuvre, mettant à profit les propriétés physico-chimiques uniques des GNPs La première approche a consisté à nanostructurer la surface de capteurs piézoélectriques par des GNPs en exploitant leur haut rapport volume / surface. La deuxième stratégie a consisté à employer les GNPs comme transducteur de biocapteurs colorimétriques en exploitant leurs propriétés optiques. Dans une première partie, la nanostructuration de matériaux plans recouverts d'or ou de silicium par des GNPs (14 nm) a été réalisée. Chaque étape d'élaboration des films fins de nanoparticules a été vérifiée par différentes techniques de caractérisation de surface comme la mesure d’angle de contact, la spectroscopie IR, XPS et MEB. Ces surfaces ont été ensuite employées au développement d’immunocapteurs piézoélectriques pour la détection de diclofénac, un polluant pharmaceutique et d’entérotoxine A (SEA), une toxine bactérienne produite par la bactérie S. aureus.L’apport des GNPs a été mis en évidence par comparaison des performances des immunocapteurs plans et nanostructurés. Dans une deuxième partie, la construction d’un immunocapteur colorimétrique opérant en phase homogène a été réalisée en mettant à profit le changement de la position de la bande de résonance localisée de plasmon de surface (LSPR) résultant du changement d'indice de réfraction local induit par la réaction immunologique entre la SEA et un bioconjugué GNP-anti-SEA. Ces études constituent une alternative séduisante pour la détection rapide dans la gamme du ng/mL. / This project focussed on the asset of gold nanoparticles (GNPs) in the build up of piezoelectric and plasmonic immunosensors. Two strategies were implemented, taking advantage of the unique physico-chemical features of GNPs. The first approach consisted in nanostructuring the surface of piezoelectric sensors by GNPs, to exploit their high surface / volume ratio. The second approach consisted in employing the GNPs as transducer in colorimetric biosensors, by making use of their optical properties. In a first part, nanostructuration of planar materials covered with gold or silicon by GNPs (14 nm) was achieved. Each step of the construction of thin films of GNPs was checked by various surface characterization techniques, including contact angle measurements, IR spectroscopy, XPS and SEM. These surfaces were then employed in the development of piezoelectric immunosensors for the detection of the pharmaceutical pollutant diclofenac and staphylococcal enterotoxin A (SEA), a bacterial toxin produced by S. aureus. The input of GNPs was evidenced by comparison with the performances of planar immunosensors. In a second part, the build up of a colorimetric immunosensor operating in the homogeneous phase was achieved by making use of the shift of the localized surface plasmon resonance (LSPR) band resulting from the change of local refraction index induced by the immunological reaction between SEA and GNP-anti-SEA bioconjugate. These studies establish a model for the development of immunosensor for a rapid detection in the ng/mL range.
|
50 |
Highly doped semiconductor plasmonic resonators for surface enhanced infrared absorption / Ingénierie de résonateurs plasmoniques à base de semi-conducteurs fortement dopés pour l’exaltation de l’absorption de molécules dans le moyen infrarougeBarho, Franziska Barbara 29 November 2017 (has links)
La détection et l'identification des substances biologiques ou chimiques peuvent être accomplies par des biocapteurs. On exige des biocapteurs d'être simple et rapide à utiliser, d'avoir une taille réduite, et d'être suffisamment sensible afin de pouvoir détecter des molécules en petite quantité. Des dispositifs plasmoniques se sont révélés adaptés pour l'usage en tant qu'élément transducteur des biocapteurs. Les plasmon-polaritons de surface (SPP) sont des oscillations collectives du nuage électronique des métaux, couplées à des ondes électromagnétiques. Leur fréquence de résonance dépend de l'indice de réfraction de leur environnement diélectrique. Ceci permet de sonder de manière efficace la présence des molécules par la modification de l'indice de réfraction engendrée par celles-ci. La technique reposant sur ce principe s'appelle la détection par résonance des plasmons de surface (SPR sensing en anglais). De plus, les SPP confinent le champ électrique incident à des volumes sub-longueurs d'onde et l'exaltent ainsi. Les molécules qui se situent dans ces zones de forte exaltation du champ électrique interagissent plus efficacement avec la lumière incidente par l'intermédiaire du SPP, tel que leur section efficace de l'absorption infrarouge (IR) augmente. La spectroscopie IR est une technique standard d'identification de molécules en quantités suffisantes. Pour améliorer la sensibilité, la spectroscopie vibrationnelle d'absorption exaltée par la surface (SEIRA pour surface enhanced infrared absorption en anglais) est particulièrement bien adaptée.Alors que la plasmonique s'est principalement développée dans le visible via les métaux nobles, les semi-conducteurs III-V fortement dopés présentent une alternative intéressante pour la plasmonique dans le moyen IR. Leur fonction diélectrique ressemble à celle des métaux nobles dans le visible, mais décalée dans le moyen IR. Leur densité de charges moindre que celle de l'or permet de réduire considérablement leurs pertes. La spectroscopie SEIRA utilise des nanoantennes plasmoniques dont les résonances se situent dans l'IR pour couvrir la gamme spectrale des modes vibrationnels moléculaires. L'InAsSb fortement dopé accordé en maille sur un substrat en GaSb présente des propriétés plasmoniques au-delà de 5 µm de longueurs d'onde.Dans ce manuscrit, nous proposons des nanostructures en InAsSb:Si/GaSb pour développer un biocapteur utilisant les techniques de SEIRA et de SPR "sensing". Les nanostructures ont été réalisées soit par photolithographie et gravure chimique humide soit par lithographie interférentielle et gravure par plasma réactif. Les caractérisations optiques ont été effectuées par spectroscopie IR à transformée de Fourier. Des calculs numériques par la méthode des différences finies dans le domaine temporel (FDTD) ont permis d'étudier l'effet des paramètres géométriques sur la réponse optique des structures. Deux types de structure ont été proposés : des réseaux unidimensionnels ainsi que des réseaux bidimensionnels de nanoantennes rectangulaires supportant des résonances de plasmon de surface localisé (LSPR) dans les deux directions de polarisation de la lumière par rapport aux axes de la structure. Ce type de structures permet ainsi une réponse optique ayant des résonances dans deux bandes spectrales différentes. Les techniques de SPR "sensing" et de SEIRA ont été démontrées pour l'ensemble des structures uni- et bidimensionnelles. Différents types d'analytes comme les polymères et le benzaldéhyde vanilline ont servi de systèmes de tests pour les structures plasmoniques. Les sensibilités se situent entre 10² et 10^3 nm/RIU. Les facteurs d'augmentation des signaux vibrationnels obtenus sont compris dans une gamme de 1,2 à 5,7 et les facteurs d'exaltation ont été évalués autour de 10^3 à 10^4 pour les réseaux bidimensionnels de nanoantennes plasmoniques. / The detection and identification of biological and chemical substances can be performed with biosensors. Biosensors are required to be simple and rapid to use, small, and sensitive in order to detect minute amounts of analyte molecules. Plasmonic devices have proven their utility as biosensing transducers. Surface plasmon-polaritons (SPP), collective oscillations of the electron cloud in metallic media coupled to an electromagnetic wave, are sensitive to the refractive index of their environment, providing thus an efficient way to probe the presence of molecules by the refractive index modification. This technique is called surface plasmon resonance (SPR) sensing. Moreover, SPP confine the incident electric field to sub-wavelength dimensions and enhance the field strength. Molecules located in these so-called field hotspots interact more efficiently with incident light due to a coupling mechanism mediated by the SPP, so that their infrared (IR) absorption cross section is increased. While IR spectroscopy is a standard tool for molecular identification, it does not provide sufficient sensitivity for the detection of smallest quantities. Exploiting the surface enhanced IR absorption (SEIRA) due to the plasmonic enhancement enables the detection of small amounts of analyte.While surface plasmons were mainly discovered using noble metals such as gold and silver, nowadays other material systems are also considered which display complementary or improved properties compared to the standard materials in plasmonics, especially to enlarge the spectral range where plasmonic effects can be observed and exploited. Material science enables to tailor the dielectric function of a material and consequently to control the plasmonic properties. Highly doped III-V semiconductors constitute an alternative to gold and silver for mid-IR plasmonics, due to their dielectric function which resembles the one of the noble metals, but shifted to the mid-IR spectral range. Indeed, InAsSb in the IR is even less lossy than gold in the visible. SEIRA using plasmonic resonances spectrally tuned to molecular absorption lines, or resonant SEIRA, requires nanoantenna substrates displaying their resonances in the IR. Highly doped InAsSb grown lattice matched on GaSb substrates is an interesting material system for this task. InAsSb is plasmonic for wavelengths above approximately 5 µm.In this work, we propose InAsSb:Si/GaSb nanostructures as SEIRA and SPR substrates for an application in biosensing devices. InAsSb nanoantennas on GaSb substrates have been prepared using photolithography and wet chemical etching by a citric acid: hydrogen peroxyde solution or alternatively, by interferential lithography and reactive ion etching, especially to reduce the lattice parameter. An optical characterization of the structures was performed by FTIR spectroscopy, supported by numerical finite-difference time-domain (FDTD) calculations which were also applied to study the impact of geometrical parameters on the optical response. Notably, two types of structure designs were proposed: one-dimensional periodic gratings and two-dimensional arrays of rectangular shaped nanoantennas which provide localized surface plasmon resonances (LSPR) in both polarization directions contrary to the gratings and enable hence a dual band optical response. SPR sensing and SEIRA have successfully been demonstrated using both types of structures, with proof-of-concept analytes such as different polymers and the aromatic compound vanillin with absorption features at high IR wavelengths. A bulk sensitivity in the range of 10² to 10^3 nm/RIU was reached. The vibrational signals increased of factors ranging between approximately 1.2-5.7, and the SEIRA enhancement was estimated to be in the range of 10^3 to 10^4 for the rectangular nanoantenna arrays.
|
Page generated in 0.0422 seconds