Spelling suggestions: "subject:"fhysics, 1heory."" "subject:"fhysics, btheory.""
211 |
Transfert d'information quantique et intrication sur réseaux photoniquesBossé, Éric-Olivier 08 1900 (has links)
No description available.
|
212 |
q-oscillateurs et q-polynômes de MeixnerGaboriaud, Julien 10 1900 (has links)
No description available.
|
213 |
Les bulles de masse négative dans un espace de de SitterMbarek, Saoussen 12 1900 (has links)
No description available.
|
214 |
Classification de systèmes intégrables en coordonnées cylindriques en présence de champs magnétiquesFournier, Félix 08 1900 (has links)
No description available.
|
215 |
Stabilité des bulles de masse négative dans un espace-temps de de SitterSavard, Antoine 08 1900 (has links)
L'existence de la masse négative a un sens parfaitement physique du moment que les conditions d'énergie dominante sont satisfaites par le tenseur énergie-impulsion correspondant. Jusqu'à maintenant, seules des configurations de masses négatives avaient été trouvées. On démontre l'existence de bulles de masse négative stables dans un espace-temps qui s'approche asymptotiquement d'un espace-temps de de Sitter. Les bulles sont des solutions aux équations d'Einstein qui correspondent à une région intérieure qui contient une distribution de masse spécifique séparée par une coquille mince de l'espace-temps à masse négative de Schwarzschild-de Sitter à l'extérieur.
Ensuite, on applique les conditions de jonction d'Israel à la frontière de la bulle ce qui impose la conservation d'énergie-impulsion à travers la surface. Les conditions de jonction donnent une équation pour un potentiel pour le rayon de la bulle qui dépend de la distribution de masse à l'intérieur, ou vice versa.
Finalement, on trouve un potentiel qui aboutit à une solution stable, statique et non-singulière, ce qui crée une distribution de masse interne qui satisfait les conditions d'énergie dominante partout à l'intérieur. Cependant, la bulle ne satisfait pas ces conditions. De plus, on trouve une solution stable, statique et non-singulière pour une géométrie interne de de Sitter pure. La solution est fondamentalement différente: elle requiert que la densité d'énergie de la bulle change avec le rayon. La condition d'énergie dominante est satisfaite partout. / Negative mass makes perfect physical sense as long as the dominant energy condition is satisfied by the corresponding energy-momentum tensor. Until now, only configurations of negative mass have been found. We demonstrate the existence of stable, negative-mass bubbles in an asymptotic de Sitter space-time. The bubbles are solutions of the Einstein equations which correspond to an interior region of space-time containing a specific distribution of mass separated by a thin wall from the exact, negative mass Schwarzschild-de Sitter space-time in the exterior.
Then, we apply the Israel junction conditions at the wall which impose the conservation of energy and momentum across the wall. The junction conditions give rise to an effective potential for the radius of the wall that depends on the interior mass distribution, or vice versa.
Finally, we find a potential that gives rise to stable, non-singular, static solutions, which yields an interior mass distribution that everywhere satisfies the dominant energy condition. However, the energy momentum of the wall does not satisfy the dominant energy condition. Moreover, we find a stable, non-singular, static solution for a pure de Sitter geometry inside the bubble. The solution is fundamentally different: the energy density of the bubble is no longer a constant, but now varies with the radius. The dominant energy condition is everywhere satisfied.
|
216 |
Nouvelles perspectives sur les algèbres de type Askey–WilsonGaboriaud, Julien 08 1900 (has links)
Cette thèse se divise en trois parties qui peuvent être toutes regroupées autour d'une même bannière : l'étude de structures algébriques reliées aux algèbres de type Askey–Wilson. Alors que dans la première partie on s'efforce d'obtenir des interprétations duales (au sens de Howe) de ces algèbres, dans les autres parties on étudie des généralisations de ces algèbres. Des dégénérations de l'algèbre de Sklyanin, générées par des blocs plus fondamentaux que ceux générant les algèbres de type Askey–Wilson, sont étudiées dans la deuxième partie et des généralisations de plus haut rang des algèbres de type Askey–Wilson sont étudiées dans la troisième partie. Dans la première partie, en invoquant la dualité de Howe, deux interprétations duales sont obtenues pour les algèbres de Racah, Bannai–Ito, Askey–Wilson, Higgs, Hahn, \(q\)-Hahn et dual \(-1\) Hahn. La façon dont la dualité de Howe opère est rendue explicite par l'examen de processus de réduction dimensionnelle. Un modèle superintégrable 2D de mécanique quantique superconforme dont l'algèbre de symétrie est celle de type dual \(-1\) Hahn est également introduit et solutionné. Dans la deuxième partie, des algèbres générées par des opérateurs de contiguïté et d'échelle encodant des propriétés de familles de polynômes sont étudiées. Ces opérateurs appartiennent à la classe des opérateurs de Sklyanin–Heun, qui peuvent être définis sur plusieurs grilles diverses. On découvre qu'ils génèrent des dégénérations de l'algèbre de Sklyanin. On démontre que les représentations irréductibles de dimension finie de ces algèbres ont pour base des familles de para-polynômes. Les grilles linéaires, quadratiques, exponentielles et d'Askey–Wilson sont étudiées et mènent respectivement aux polynômes orthogonaux des familles de para-Krawtchouk, para-Racah, \(q\)-para-Krawtchouk et \(q\)-para-Racah. Enfin, la façon dont les polynômes de para-Krawtchouk et d'autres familles de polynômes orthogonaux sont reliées aux représentations tridiagonales du plan de Jordan déformé est présentée. Dans la dernière partie, on explore des généralisations à plus haut rang pour les algèbres de Racah et Askey–Wilson. Pour ce faire, on étudie les réalisations de ces algèbres en termes de Casimirs intermédiaires. Le rôle de la matrice \(R\) tressée est élucidé : celle-ci permet de relier divers Casimirs intermédiaires entre eux par conjugaison. Un isomorphisme entre l'algèbre de skein du crochet de Kauffman de la sphère à 4 trous et l'algèbre engendrée par les Casimir intermédiaires dans \(U_q(\mathfrak{sl}_2)^{\otimes 3}\) est présenté et permet d'interpréter de façon diagrammatique la conjugaison par la matrice \(R\) tressée mentionnée ci-haut. Finalement, une présentation du centralisateur \(Z_n(\mathfrak{sl}_2)\) de \(U(\mathfrak{sl}_2)\) dans \(U(\mathfrak{sl}_2)^{\otimes n}\) par générateurs et relations est obtenue et on montre que ce centralisateur est isomorphe à un quotient (obtenu explicitement) de l'algèbre de Racah de plus haut rang \(R(n)\). / This thesis is divided in three parts which all orbit around the same theme: the study of algebraic structures related to the algebras of Askey–Wilson type. In the first part we obtain two interpretations that are dual in the sense of Howe for the algebras of Askey–Wilson type. Meanwhile, the other two parts are concerned with generalizations of these algebras. In the second part, we study degenerations of the Sklyanin algebra, which are built out of generators that are more fundamental than those of the Askey–Wilson algebra. In the last part, generalizations of the Askey–Wilson type algebras to higher rank are studied. In the first part, dual interpretations are obtained for the Racah, Bannai–Ito, Askey–Wilson, Higgs, Hahn, \(q\)-Higgs and dual \(-1\) Hahn algebras by invoking Howe duality. The way that this Howe duality operates is made explicit through the examination of a dimensional reduction procedure. A 2D superintegrable superconformal quantum mechanics model, whose symmetry algebra is the one of dual \(-1\) Hahn type, is also introduced and solved. In the second part, we study algebras that are generated by contiguity and ladder operators that encode properties of families of orthogonal polynomials. We show that these operators belong to the Sklyanin–Heun class of operators, which can be defined for various grids. We also show how their algebraic relations correspond to those of degenerations of the Sklyanin algebra. Then, we show how various families of para-polynomials support finite-dimensional irreducible representations of these degenerate algebras. From the linear, quadratic, exponential and Askey–Wilson grids, we are respectively led to the para-Krawtchouk, para-Racah, \(q\)-para-Krawtchouk and \(q\)-para-Racah polynomials. Later, we connect the para-Krawtchouk polynomials (and other families of orthogonal polynomials) to tridiagonal representations of the deformed Jordan plane. In the final part, we explore higher rank generalizations of the Racah and Askey–Wilson algebras. To that end, their realizations in terms of intermediate Casimir elements are studied. The role of the braided \(R\)-matrix is understood as follows: it connects various intermediate Casimir elements through conjugation. We obtain an isomorphism between the Kauffman bracket skein algebra of the four-punctured sphere and the algebra generated by the intermediate Casimir elements in \(U_q(\mathfrak{sl}_2)^{\otimes3}\). This leads to a diagrammatic interpretation of the conjugation by the braided \(R\)-matrix mentioned in the above. Lastly, a presentation of the centralizer \(Z_n(\mathfrak{sl}_2)\) of \(U(\mathfrak{sl}_2)\) in \(U(\mathfrak{sl}_2)^{\otimes n}\) by generators and relations is obtained and we show that this centralizer is isomorphic to a quotient (which we provide explicitly) of the higher rank Racah algebra \(R(n)\).
|
217 |
Generalised ladder operators, degeneracy and coherent states in two-dimensional quantum mechanicsMoran, James 11 1900 (has links)
Dans cette thèse, nous discutons de la dégénérescence et de la construction d’états cohérents généralisés dans les systèmes quantiques en deux dimensions d’espace. Nous développons un schéma pour obtenir des spectres non dégénérés et des combinaisons linéaires appropriées des états propres d’énergie correspondants. Lorsque la dégénérescence dans le spectre d’énergie est linéaire dans les nombres quantiques, nous définissons des opérateurs d’échelle général- isés qui conduisent à une chaîne d’états avec un ensemble naturel de coefficients. De plus, nous récupérons des relations de complétude pour les états généralisés. Lorsque le spectre d’énergie est quadratique dans les nombres quantiques, nous utilisons certains résultats de la théorie des nombres pour catégoriser la dégénérescence et, par conséquent, les combinaisons linéaires appropriées des états propres d’énergie associés. En particulier, nous étudions des oscillateurs harmoniques bidimensionnels isotropes et anisotropes ainsi que le potentiel Morse bidimensionnel et son partenaire supersymétrique non séparable. Dans tous les cas, nous construisons des états cohérents et discutons certains aspects de leur caractère non classique. On retrouve une certaine compression dans les quadratures conjuguées, une dépendance non triviale des variances des quadratures vis-à-vis des paramètres introduits lors de la définition des spectres non dégénérés, et un problème de localisation pour les fonctions d’onde. Comme application, nous étudions le problème de la quantification et de l’analyse semi-classique de l’espace des phases en deux dimensions en exploitant la complétude des familles généralisées d’états cohérents comprimés en deux dimensions. / In this thesis we discuss degeneracy and the construction of generalised coherent states in two-dimensional quantum systems. We develop a scheme for defining non-degenerate spectra and the corresponding averaged energy eigenstates. When the degeneracy in the spectrum is linear in the quantum numbers, we are able to define generalised ladder operators which lead to a chain of states with a natural set of coefficients. Additionally, we are able to recover completeness relations for the generalised states. On the other hand, when the spectrum is quadratic in the quantum numbers, we utilise some results from number theory to categorise the degeneracy and correspondingly the averaged energy eigenstates. In particular we study the two-dimensional isotropic and anisotropic oscillators as well the two-dimensional Morse potential and its non-separable supersymmetric partner. In all cases, we compute the coherent states and discuss certain aspects of their non-classicality. We find squeezing between conjugate quadratures, non-trivial dependence of the quadrature variances on the parameters introduced when defining the non-degenerate spectra, and non-localisation of wavefunctions. As an application, we study the problem of quantisation and semiclassical phase space analysis in two dimensions by exploiting the completeness of generalised families of two-dimensional squeezed coherent states.
|
218 |
Intégrabilité et superintégrabilité de deuxième ordre dans l'espace Euclidien tridimensionelAbdul-Reda, Hassan 02 1900 (has links)
L'article "A systematic search for nonrelativistic systems with dynamical symetries, Part I" publié il y a à peu près 50 ans a commencé une classification de ce qui est maintenant appelé les systèmes superintégrables. Il était dévoué aux systèmes dans l'espace Euclidien ayant plus d'intégrales de mouvement que de degrés de liberté. Les intégrales étaient toutes supposées de second ordre en quantité de mouvement. Dans ce mémoire, sont présentés de nouveaux résultats sur la superintégrabilité de second ordre qui sont pertinents à l'étude de la superintégrabilité d'ordre supérieur et de la superintégrabilité de systèmes ayant des potentiels vecteurs ou des particules avec spin. / The article "A systematic search for nonrelativistic systems with dynamical symetries, Part I" published about 50 years ago started the classification of what is now called superintegrable systems. It was devoted to systems in Euclidean space with more integrals of motion than degrees of freedom. The integrals were all assumed to be second order polynomials in the
particle momentum. Here we present some further results on second order superintegrability that are relevant for studies of higher order superintegrability and for superintegrability for systems with vector potentials or for particles with spin.
|
219 |
Corrections radiatives en Supersymétrie et applications au calcul de la densité relique au-delà de l'ordre dominant.Chalons, Guillaume 08 July 2010 (has links) (PDF)
Cette thèse porte sur le calcul des corrections radiatives supersymétriques pour des processus entrants dans le calcul de la densité relique de matière noire, dans le MSSM et le scénario cosmologique standard, ainsi que sur l'influence du choix du schéma de renormalisation du secteur des neutralinos/charginos à partir de la mesure de trois masses physiques. Cette étude a été faite à l'aide d'un programme automatique de calcul à une boucle d'observables physiques dans le MSSM, appelé SloopS. Pour le calcul de la densité relique nous nous sommes penchés sur des scénarios où le candidat supersymétrique le plus étudié, le neutralino, se désintégrait en majoritairement en bosons de jauge. Nous avons couvert les cas où sa masse était de l'ordre de quelques centaines de GeV jusqu'à 2 TeV. Cela a nécessité la prise en compte complète des corrections électrofaibles et fortes, impliquées dans des processus sous-dominants impliquant des quarks. Dans le cas des neutralinos très lourds deux effets importants ont été mis à jour : les amplifications de type Sommerfeld dues aux bosons de jauge massifs et peut-être plus important encore des corrections de type Sudakov.
|
220 |
Algèbres de Temperley-Lieb, Birman-Murakami-Wenzl et Askey-Wilson, et autres centralisateurs de U_q(sl_2)Zaimi, Meri 08 1900 (has links)
Mémoire par articles. / Ce mémoire contient trois articles reliés par l'idée sous-jacente d'une généralisation de la dualité de Schur-Weyl. L'objectif principal est d'obtenir une description algébrique du centralisateur de l'image de l'action diagonale de U_q(sl_2) dans le produit tensoriel de trois représentations irréductibles, lorsque q n'est pas une racine de l'unité. La relation entre une algèbre de Askey-Wilson étendue AW(3) et ce centralisateur est examinée à cet effet. Dans le premier article, les éléments du centralisateur de l'action de U_q(sl_2) dans son produit tensoriel triple sont définis à l'aide de la matrice R universelle de U_q(sl_2). Il est montré que ces éléments respectent les relations définissantes de AW(3). Dans le deuxième article, la matrice R universelle de la superalgèbre de Lie osp(1|2) est utilisée de manière similaire avec l'algèbre de Bannai-Ito BI(3). Dans ce cas, le formalisme de la matrice R permet de définir l'algèbre de Bannai-Ito de rang supérieur BI(n) comme le centralisateur de l'action de osp(1|2) dans son produit tensoriel n-fois. Le troisième article propose une conjecture qui établit un isomorphisme entre un quotient de AW(3) et le centralisateur de l'image de l'action diagonale de U_q(sl_2) dans le produit tensoriel de trois représentations irréductibles quelconques. La conjecture est prouvée pour plusieurs cas, et les algèbres de Temperley-Lieb, Birman-Murakami-Wenzl et Temperley-Lieb à une frontière sont retrouvées comme quotients de l'algèbre de Askey-Wilson. / This master thesis contains three articles related by the underlying idea of a generalization of the Schur-Weyl duality. The main objective is to obtain an algebraic description of the centralizer of the image of the diagonal action of U_q(sl_2) in the tensor product of three irreducible representations, when q is not a root of unity. The connection between a centrally extended Askey-Wilson algebra AW(3) and this centralizer is examined for this purpose. In the first article, the elements of the centralizer of the action of U_q(sl_2) in its threefold tensor product are defined with the help of the universal R-matrix of U_q(sl_2). These elements are shown to satisfy the defining relations of AW(3). In the second article, the universal R-matrix of the Lie superalgebra osp(1|2) is used in a similar fashion with the Bannai-Ito algebra BI(3). In this case, the formalism of the R-matrix allows to define the higher rank Bannai-Ito algebra BI(n) as the centralizer of the action of osp(1|2) in its n-fold tensor product. The third article proposes a conjecture that establishes an isomorphism between a quotient of AW(3) and the centralizer of the image of the diagonal action of U_q(sl_2) in the tensor product of any three irreducible representations. The conjecture is proved for several cases, and the Temperley-Lieb, Birman-Murakami-Wenzl and one-boundary Temperley-Lieb algebras are recovered as quotients of the Askey-Wilson algebra.
|
Page generated in 0.0532 seconds