• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 36
  • 22
  • 10
  • 9
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 263
  • 61
  • 61
  • 46
  • 46
  • 44
  • 30
  • 30
  • 29
  • 29
  • 29
  • 28
  • 25
  • 24
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Étude des effets environnementaux sur les modes acoustiques confinés de nanoparticules par diffusion inélastique de la lumière / Study of the environmental effects on confined acoustic modes in nanoparticles using inelastic light scattering

Martinet, Quentin 19 September 2019 (has links)
Au cours des vingt dernières années, la diffusion inélastique de la lumière par les modes propres de vibration des nanoparticules, appelés modes de Lamb, s’est avérée être une méthode très efficace pour caractériser la taille et les propriétés mécaniques des nano-objets. La fréquence de résonance d’une nano-sphère, dans la gamme du gigahertz, est donnée, en première approximation, par le ratio de la vitesse acoustique du matériau massif et la taille du confinement. Les raffinements du modèle théorique permettent d’obtenir, à partir de ces modes de vibration, des informations essentielles sur la géométrie et l’environnement local des nano-objets. L’objectif de cette thèse est de sonder le domaine de validité du modèle de Lamb, d’analyser les différents impacts de l’environnement sur ces modes de vibration et de développer de nouvelles méthodes pour les mesurer. Plusieurs aspects de l’interaction avec le milieu extérieur peuvent ainsi être pris en considération selon le type de système étudié. D’une part, la délocalisation de l’onde acoustique dans le cas de systèmes cœur-coquille, qui est gouvernée par les impédances acoustiques respectives du cœur et de la coquille, et qui se traduit par un couplage mécanique. D’autre part, l’effet de masse inertielle induite par la présence de ligands organiques à la surface de la particule qui modifie la fréquence de résonance. La validité de ces deux approches est ainsi discutée en fonction de la configuration des objets considérés, puis ces modèles théoriques sont appliqués à des cas réels tels que des nanoparticules cœur-coquille et des nano-plaquettes de semi-conducteurs ou des agrégats métalliques colloïdaux. L’effet de masse inertielle s’avère non négligeable pour des objets de petites tailles et il est ainsi montré la faisabilité de réaliser des nano-balances ultra-sensibles capable de sonder l’environnement proche des nano-objets. Par ailleurs, dans le cas des agrégats d’or, cette approche permet de discuter les limites du modèle de Lamb, basé sur la théorie des milieux continus, sur des vibrations n’impliquant que six atomes. Ainsi, grâce à la spectroscopie Raman basses fréquences, il apparait que les résultats expérimentaux des vibrations de ces objets s’accordent à la fois avec l’approche des milieux continus en considérant l’effet de masse inertielle et aussi avec les calculs de dynamique moléculaire. Finalement, le développement expérimental d’un montage optique capable de mesurer ces modes Raman basses fréquences sur une particule unique en milieu liquide est présenté. Cette approche nécessite de localiser une particule en milieu liquide à l’aide de nano-pinces plasmoniques puis d’exalter le signal Raman basses fréquences en stimulant les modes de vibration par électrostriction. Les perspectives étant d’appliquer cette méthode à l’étude de la dynamique vibrationnelle de nano-objet unique tel que des virus ou des protéines / Over the past twenty years, inelastic light scattering by vibrational eigenmodes of nanoparticles, called Lamb modes, has proven to be an effective method for characterizing the size and mechanical properties of nano-objects. The resonant frequency of a nano-sphere, in the gigahertz range, is given, as a first approximation, by the ratio of the acoustic velocity of the bulk material and the size of confinement. The refinements of the theoretical model allow to obtain, from these eigenmodes, information on the shape and local environment of nano-objects.The objective of this thesis is to probe the domain of validity of the Lamb model, to analyze the different impacts of the environment on eigenmodes and to develop a new strategy to measure them. Several aspects of interaction with the external medium can be considered depending on the system studied. On the one hand, the delocalization of the acoustic wave in the case of core shell systems is ruled by the acoustic impedance of the core and the shell and leads to a mechanical coupling. On the other hand, the inertial mass effect induced by the presence of organic ligands on the surface of the particle modifies the resonant frequency. The validity of both approaches is discussed according to the configuration and these models are applied to real cases, such as semiconductor core shell nanoparticles and nanoplatelets, or gold colloidal clusters. The inertial mass effect is significant for small objects and it is shown the feasibility to realize ultra-sensitive nano-balance capable of probing the local environment of nano-objects. Furthermore, in the case of gold clusters, this approach makes it possible to discuss the limit of the Lamb model, based on continuum mechanics, to interpret vibrations involving only six atoms. Thanks to low frequency Raman spectroscopy, it appears that the experimental results are in good agreement with both the continuum mechanics approach, by considering the inertial mass effect, and also with density functional theory (DFT) calculations. Finally, the experimental development of an optical set-up capable of measuring low frequency Raman modes on a single nanoparticle in a liquid medium is presented. This technic requires to localize a nanoparticle in a liquid medium with plasmonic tweezers and to enhance the low frequency Raman signal by stimulating vibrational modes with electrostriction. The perspectives are to apply this method to the dynamical study of a single object such as viruses or proteins.
242

Core-Shell Based Metamaterials: Fabrication Protocol and Optical Properties

De Silva, Vashista C 12 1900 (has links)
The objective of this study is to examine core-shell type plasmonic metamaterials aimed at the development of materials with unique electromagnetic properties. The building blocks of metamaterials under study consist of gold as a metal component, and silica and precipitated calcium carbonate (PCC) as the dielectric media. The results of this study demonstrate important applications of the core-shells including scattering suppression, airborne obscurants made of fractal gold shells, photomodification of the fractal structure providing windows of transparency, and plasmonics core-shell with a gain shell as an active device. Plasmonic resonances of the metallic shells depend on their nanostructure and geometry of the core, which can be optimized for the broadband extinction. Significant extinction from the visible to mid-infrared makes fractal shells very attractive as bandpass filters and aerosolized obscurants. In contrast to the planar fractal films, where the absorption and reflection equally contribute to the extinction, the shells' extinction is caused mainly by the absorption. This work shows that the Mie scattering resonance of a silica core with 780 nm diameter at 560 nm is suppressed by 75% and only partially substituted by the absorption in the shell so that the total transmission is noticeably increased. Effective medium theory supports our experiments and indicates that light goes mostly through the epsilon-near-zero shell with approximately wavelength independent absorption rate. Broadband extinction in fractal shells allows as well for a laser photoburning of holes in the extinction spectra and consequently windows of transparency in a controlled manner. Au fractal nanostructures grown on PCC flakes provide the highest mass normalized extinction, up to 3 m^2/g, which has been demonstrated in the broad spectral range. In the nanoplasmonic field active devices consist of a Au nanoparticle that acts as a cavity and the dye molecules attached to it via thin silica shell as the active medium. Such kind of devices is considered as a nano-laser or nano-amplifier. The fabricated nanolasers were studied for their photoluminescence kinetic properties. It is shown that the cooperative effects due to the coupling of dye molecules via Au nanoparticle plasmons result in bi-exponential emission decay characteristics in accord with theory predictions. These bi-exponential decays involve a fast superradiant decay, which is followed by a slow subradiant decay. To summarize, this work shows new attractive properties of core-shell nanoparticles. Fractal Au shells on silica cores prove to be a good scattering suppressor and a band pass filter in a broadband spectral range. They can also be used as an obscurant when PCC is used as the core material. Finally, gold nanoparticles coated with silica with dye results in bi-exponential decays.
243

Using plasmonic nanostructures to control electrically excited light emission / Nanostructures plasmoniques pour le contrôle de l'émission de lumière excitée électriquement

Cao, Shuiyan 16 February 2018 (has links)
Dans cette thèse, nous utilisons différentes nanostructures plasmoniques pour contrôler l'émission de lumière excitée électriquement. Notre émission électrique provient d'une "nanosource STM" qui utilise le courant tunnel inélastique entre la pointe d'un microscope à effet tunnel (STM) et un échantillon métallique, pour exciter localement les plasmons polaritons de surface localisés et propagatifs. L’interaction de notre nanosource STM et d'une lentille plasmonique circulaire (une série de fentes concentriques gravées dans un film d'or épais) produit une microsource radialement polarisée de faible dispersion angulaire (≈ ± 4 °). L'influence des paramètres structuraux sur la propagation angulaire de la microsource résultante est également étudiée. En outre, une faible dispersion angulaire (<± 7 °) pour une grande plage de longueurs d'onde (650-850 nm) est obtenue. Ainsi, cette microsource électrique de lumière presque collimatée a une réponse spectrale large et est optimale sur une large plage d'énergie, en particulier en comparaison avec d'autres structures plasmoniques résonantes telles que les nanoantennes Yagi-Uda. L'interaction de notre nanosource STM et d'une lentille plasmonique elliptique (une seule fente elliptique gravée dans un film d'or épais) est également étudiée. Lorsque l'excitation STM est située au point focal de la lentille plasmonique elliptique, un faisceau lumineux directionnel à faible divergence est acquis. De plus, expérimentalement, nous trouvons qu'en changeant l'excentricité de la lentille plasmique elliptique, l'angle d'émission varie. On constate que plus l'excentricité de la lentille elliptique est grande, plus l'angle d'émission est élevé. Cette étude permet de mieux comprendre comment les nanostructures plasmoniques façonnent l'émission de lumière. L'interaction de SPP excités par STM et d'une structure de pile multicouche planaire plasmonique est également étudiée. Il est démontré qu'en utilisant l'excitation STM, nous pouvons sonder la structure de bande optique de la pile Au-SiO₂-Au. Nous trouvons que l'épaisseur du diélectrique joue un rôle important dans la modification du couplage entre les modes. Nous comparons également les résultats obtenus par excitation laser et STM de la même structure de pile. Les résultats indiquent que la technique STM est supérieure en sensibilité. Ces résultats mettent en évidence le potentiel de la STM en tant que technique de nanoscopie optique sensible pour sonder les bandes optiques des nanostructures plasmoniques. Enfin, l'interaction d'une nanosource STM et d'une plaque triangulaire individuelle est également étudiée. Nous trouvons que lorsque l'excitation STM est centrée sur la plaque triangulaire, il n'y a pas d'émission de lumière directionnelle. Cependant, lorsque la nanosource STM est située sur le bord du triangle, on obtient une émission de lumière directionnelle. Cette étude nous fournit une nouvelle voie pour atteindre l'émission de lumière directionnelle. Nous étudions également l'exploration du LDOS optique du triangle avec la nanosource STM. Ainsi, nos résultats montrent que la manipulation de la lumière est réalisée par des interactions SPP-matière. En utilisant des nanostructures plasmoniques, nous contrôlons la collimation, la polarisation et la direction de la lumière provenant de la nanosource STM. / In this thesis, we use different plasmonic nanostructures to control the emission of electrically-excited light. Our electrical emission is from an “STM-nanosource” which uses the inelastic tunnel current between the tip of a scanning tunneling microscope (STM) and a metallic sample, to locally excite both localized and propagating surface plasmon polaritons. The interaction of our STM-nanosource and a circular plasmonic lens (a series of concentric slits etched in a thick gold film) produces a radially polarized microsource of low angular spread (≈±4°). The influence of the structural parameters on the angular spread of the resulting microsource is also investigated. In addition, a low angular spread (<±7°) for a large wavelength range (650-850 nm) is achieved. Thus this electrically-driven microsource of nearly collimated light has a broad spectral response and is optimal over a wide energy range, especially in comparison with other resonant plasmonic structures such as Yagi-Uda nanoantennas. The interaction of our STM-nanosource and an elliptical plasmonic lens (a single elliptical slit etched in a thick gold film) is also studied. When the STM excitation is located at the focal point position of the elliptical plasmonic lens, a directional light beam of low angular spread is acquired. Moreover, in the experiment we find that by changing the eccentricity of the elliptical plasmonic lens, the emission angle is varied. It is found that the larger the eccentricity of the elliptical lens, the higher the emission angle. This study provides a better understanding of how plasmonic nanostructures shape the emission of light. The interaction of STM-excited SPPs and a planar plasmonic multi-layer stack structure is also investigated. It is demonstrated that using STM excitation we can probe the optical band structure of the Au-SiO₂-Au stack. We find that the thickness of the dielectric plays an important role in changing the coupling between the modes. We also compare the results obtained by both laser and STM excitation of the same stack structure. The results indicate that the STM technique is superior in sensitivity. These findings highlight the potential of the STM as a sensitive optical nanoscopic technique to probe the optical bands of plasmonic nanostructures. Finally, the interaction of an STM-nanosource and an individual triangular plate is also studied. We find that when the STM excitation is centered on the triangular plate, there is no directional light emission. However, when the STM-nanosource is located on the edge of the triangle, directional light emission is obtained. This study provides us a novel avenue to achieve directional light emission. We also study probing the optical LDOS of the triangle with the STM-nanosource. Thus, our results show that the manipulation of light is achieved through SPP-matter interactions. Using plasmonic nanostructures, we control the collimation, polarization, and direction of the light originating from the STM-nanosource.
244

Modification de nanoparticules d’argent par jet de plasma à la pression atmosphérique

Trahan, Julien 05 1900 (has links)
Grace à leurs propriétés électriques, antimicrobiennes et plasmoniques tout à fait exceptionnelles, les nanoparticules d’argent présentent un vif intérêt pour plusieurs secteurs technologiques. Selon l’application envisagée, il peut néanmoins être souhaitable d’ajuster certaines de ces caractéristiques. Dans ce contexte, l’objectif de ce travail de maîtrise est d’explorer la possibilité de modifier des films de nanoparticules d’argent en balayant la surface avec un jet de plasma hors équilibre thermodynamique dans l’argon à la pression atmosphérique. En ayant recours à un champ électrique de haute fréquence (2450 MHz) pour la production du plasma d’argon ouvert à l’air ambiant, les températures des espèces neutres obtenues par spectroscopie optique d’émission peuvent atteindre 1500-2000 K selon les conditions opératoires, permettant ainsi de coupler l’interaction plasma-surface à des apports d’énergie thermique significatifs. Pour des nanoparticules d’argent de quelques dizaines de nm encapsulées dans une matrice carbonée et une distance entre le jet de plasma et la surface de 10 mm, le traitement fait apparaitre des microparticules polygonales munies d’arrêtes bien définies et réparties sur un lit de nanoparticules frittées. À titre de comparaison, des recuits thermiques à 1000-1300 K conduisent uniquement à des microparticules sphériques. Dans les deux cas (plasma et recuit), des analyses chimiques révèlent une oxydation de la surface des micro et nanostructures. Cependant, en ayant recours à des mesures par imagerie Raman hyperspectrale, seules les nanoparticules d’argent traitées par jet de plasma présentent une augmentation significative de l’intensité des pics de l’oxyde métallique. À plus fortes distances entre le jet de plasma et la surface, les modifications deviennent beaucoup plus rapides et font apparaître des structures plus complexes. Il est démontré que le retrait de la coquille carbonée joue un rôle important sur l’évolution morphologique et les signatures optiques. / Due to their unique electrical, antimicrobial and plasmonic properties, silver nanoparticles present a considerable interest for many applications. Depending on the foreseen use, it may be judicious to finely tune these characteristics. In this context, the objective of this master’s work is to explore the possibility of modifying silver nanoparticles by scanning the surface with an outof- thermodynamic equilibrium plasma jet operated in argon at atmospheric pressure. For opento- ambient-air argon plasmas sustained by high-frequency electric field (2450MHz), the neutral gas temperature obtained by optical emission spectroscopy can reach 1500-2000 K depending on the operating conditions. Hence, the plasma-surface interaction can rely on significant thermal energy input. For few tens of nm silver nanoparticles encapsulated in a carbonic matrix and a 10 mm distance between the plasma jet and the surface, polygonal microstructures with sharp edges on a bed of sintered nanoparticles is formed. As a comparison, thermal annealing at 1000- 1300 K yields to spherical microparticles. In both cases (thermal annealing and plasma treatment), chemical analysis reveals oxidation of the micro and nanostructures. However, based on hyperspectral Raman imaging, only the silver nanoparticles exposed to the plasma jet exhibit a significant rise in the Raman signal of oxidized silver. At higher plasma-jet-to-surface distance, plasma-induced modifications occur faster and produce even more complex structures. It is exposed that the removal of the carbonic shell plays an important role on the morphological evolution and the optical signatures.
245

MORPHOLOGY TUNING OF OXIDE-METAL VERTICALLY ALIGNED NANOCOMPOSITES FOR HYBRID METAMATERIALS

Juanjuan Lu (17658789) 19 December 2023 (has links)
<p dir="ltr">Metamaterials are artificially engineered nanoscale systems with a three-dimensional repetitive arrangement of certain components, and present exceptional optical properties for applications in nanophotonics, solar cells, plasmonic devices, and more. Self-assembled oxide-metal vertically aligned nanocomposites (VANs), with metallic phase as nanopillars embedded in the matrix oxide, have been recently proposed as a promising candidate for metamaterial applications. However, precise microstructural control and the structure-property relationships in VANs are still in high demand. Thus, by employing multiple approaches for structural design, this dissertation attempts to investigate the mechanisms of nanostructure evolutions and the corresponding optical responses.</p><p dir="ltr">In this dissertation, the precise control over the nanostructures has been demonstrated through morphology tuning, nanopillar orderings, and strain engineering. Firstly, Au, a well-known plasmonic mediator, has been selected as the metallic phase that forms nanopillars. Based on the previously proposed strain compensation model which describes the basic formation mechanism of VAN morphology, two oxides were then considered: La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3 </sub>(LSMO) and CeO<sub>2</sub>. In the first two chapters of this dissertation, LSMO was considered due to its similar lattice (a<sub>LSMO </sub>= 3.87 Å, a<sub>Au </sub>= 4.08 Å) and its enormous potential in nanoelectronics and spintronics. Deposited on SrTiO<sub>3</sub> (001) substrate through pulsed laser deposition (PLD), LSMO-Au nanocomposites exhibit ideal VAN morphology as well as promising hyperbolic dispersions in response to the incident illuminations. By substrate surface treatment of annealing at 1000°C, and variation of STO substate orientations from (001), to (111) and (110), the improved and tunable in-plan orderings of Au nanopillars have been successfully achieved. In the third chapter, a new oxide-metal VAN system of <a href="" target="_blank">CeO<sub>2</sub></a>-Au (a<sub>CeO2 </sub>= 5.411 Å, and a<sub> CeO2</sub>/= 3.83 Å) has been deposited. The intriguing 45° rotated in-plan epitaxy presents an unexpected update to the strain compensation model, and tuning of Au morphology from nanopillars, nanoantennas, to nanoparticles also shows an effective modulation of the LSPR responses. COMSOL simulations have been exploited to reveal the relationships between Au morphologies and optical responses. In the last chapter, the two VAN systems of LSMO-Au and CeO<sub>2</sub>-Au have been combined to form a complex layered VAN thin film. Investigations into the strain states, the nature of complex interfaces, and the according hybrid properties, show dramatic possibilities for further strain engineering. In summary, this dissertation has provided multiple routes for highly tailorable oxide-metal nanocomposite designs. And the two proposed material systems present great potential in optical metamaterial applications including biosensors, photovoltaics, super lenses, and more.</p>
246

Understanding Fundamentals of Plasmonic Nanoparticle Self-assembly at Liquid-air Interface

Joshi, Chakra Prasad January 2013 (has links)
No description available.
247

Optical characterization of semiconductor nanostructures with high spatial resolution

Milekhin, Ilya 04 October 2022 (has links)
Ein grundlegender Trend der modernen Mikro- und Optoelektronik ist die sinkende Größe der aktiven Elemente der Bauteile. Mit typischen Dimensionen im Bereich 1-10 nm werden Effekte des sogenannten quantenmechanischen Confinements bemerkbar, die die elektronischen und phononischen Eigenschaften der Materialien stark beeinflussen. Der aktuelle Entwicklungsstand von Nanotechnologie macht es möglich, Halbleiternanokristalle mit verschiedenen Strukturparametern wie Größe, Form und chemischer Zusammensetzung herzustellen, welche neue fundamentaleтhysikalische Eigenschaften zeigen. Gleichzeitig ist die Herausforderung, die Zusammenhänge von Struktur der Nanokristalle mit deren optischen, elektronischen und phononischen Eigenschaften zu erkunden, weiterhin relevant. Der Grund dafür besteht darin, dass klassische optische Methoden zur Untersuchung von makroskopischen Materialien und dünnen Schichten – Raman-, Infrarot- und Photolumineszenz-Spektroskopie, bei Anwendung auf Nanostrukturen nicht einzelne, sondern gleich eine Vielzahl von Nanoobjekten mit unterschiedlichen Größen, Formen, Zusammensetzungen etc. messen. Als Resultat davon sind die gemessenen Werte nicht sehr aussagekräftig, da effektiv über eine große Anzahl von Nanokristallen gemittelt wird, während der Beitrag von einzelnen Nanokristallen unter dem Detektionslimit liegen. Aus diesem Grund wurden die Methoden der plasmonverstärkten optischen Spektroskopie, inklusive oberflächenverstärkter Ramanstreuung (SERS, Surface Enhanced Raman Spectroscopy), Photolumineszenz (SEPL, Surface Enhanced Photoluminescence) und Infrarotabsorption (SEIRA, Surface Enhanced IR Absorption) in den letzten Jahren mit dem Ziel, das erreichbare Signal einzelner Halbleiternanostrukturen zu verbessern, stark vorangetrieben. Diese Methoden basieren auf der lokalen Verstärkung des elektromagnetischen Feldes nahe metallischer Nanostrukturen durch das Anregen lokalisierter Oberflächenplasmonenresonanz (LSPR, Localized Surface Plasmon Resonance) mittels Licht im sichtbaren oder infraroten Spektralbereich. Diese oberflächenverstärkten Methoden erlauben das Untersuchen des Phononenspektrum aus SERS-, SEPL- und SEIRA-Daten mit einer Sensitivität weit über der von konventionellen Methoden. Daher wurden in dieser Arbeit SERS- und SEPL-Experimente an CdSe/CdS Nanoplättchen, die auf Gold Nanoscheiben abgeschieden wurden, durchgeführt. Resonantes und nichtresonantes SERS sowie der Einfluss von Energietransfer und Purcell-Effekt in SEPL-Experimenten werden hier gezeigt. Mittels numerischer Simulation wurde die Struktur der Mikro- und Nanoantennen optimiert, um die Übereinstimmung ihrer LSPR- und der Phononenenergien der Halbleiternanokristall-Monolagen in SEIRA-Experimenten zu erreichen. Damit wurden die phononischen Eigenschaften dieser Halbleiternanokristall-Monolagen untersucht, was vorher mit konventioneller IR-Spektroskopie nicht möglich war. Ebenso wurde gezeigt, dass die Plasmonen der Nanoantennen effektiv mit darunterliegenden Materialien, z.B. SiO2, gekoppelt werden können. Die Eindringtiefe dieser Kopplung wurde durch Messung an Nanoantennen auf verschieden dicken SiO2-Lagen bestimmt und die Plasmon-Phonon-Wechselwirkung, die zur Renormalisierung von Phononen- und Plasmonenspektren führt, gefunden. Teile der Arbeit sind in J. Chem. Phys., 153, 16, 2020, Beilstein J. Nanotechnol., 9, 2646–2656, 2018, J. Phys. Chem. C, 121, 10, 5779–5786, 2017, und Beilstein J. Nanotechnol. 7, 1519–1526, 2016 veröffentlicht. Es ist zu beachten, dass die Grenze des Auflösungsvermögens für Optik auch für die oberflächenverstärkte Spektroskopie gilt. Um diese Grenze zu umgehen wurde spitzenverstärkte Ramanspektroskopie (TERS, Tip Enhanced Raman Spectroscopy) verwendet. TERS kombiniert die hohe räumliche Auflösung von AFM (Rasterkraftmikroskopie, Atomic Force Microscopy) mit den analytischen Fähigkeiten der Ramanspektroskopie. Eine Möglichkeit, das lokale elektromagnetische Feld und damit auch das gemessene TERS-Signal zu verstärken, besteht darin, plasmonische Substrate zu verwenden, wobei das zu untersuchende Objekt zwischen diesem Substrat und der Spitze des TERS-Spektrometers platziert wird, da dort die Verstärkung des elektromagnetischen Feldes am größten ist (sogenanntes gap-mode TERS). Daher haben wir in dieser Arbeit den Einfluss eines solchen plasmonischen Substrates auf die TERS-Messungen von phononischen Eigenschaften extrem dünner Lagen (Submonolage) von Nanokristallen untersucht. Vorteile verschiedener TERS-Methoden werden demonstriert: konventionelles TERS, gap-mode TERS und resonantes gap-mode TERS. TERS-Mapping wurde auf den gleichen Nanoscheiben mit CdSe-Nanokristallen durchgeführt und der Unterschied dieser Mappings für zwei verschiedene, für die Ramanspektroskopie genutzte Wellenlängen mit elektrodynamischer Modellierung erklärt. Mit gap-mode TERS war es möglich, einzelne CdSe/CdS Nanoplättchen sichtbar zu machen und ihre Phononenmoden zu erforschen. Teile dieser Arbeit sind in Nanoscale Adv., 2, 11, 5441–5449, 2020 veröffentlicht. Eine weitere neue und intensiv vorangetriebene Methode zur Nanoanalyse ist die nano-FTIR (Fourier Transformed Infrared Spectroscopy, Fouriertransformierte Infrarotspektroskopie) genannte Kombination von IR-Spektroskopie mit Rasterkraftmikrokopie. Im Gegensatz zu TERS, bei dem Licht von einer einzelnen, schmalen Laserlinie inelastisch gestreut wird, verwendet nano-FTIR eine breitbandige Infrarotquelle. Daher wird in nano-FTIR das gesuchte Nahfeld-Signal durch Demodulation des Detektorsignals extrahiert. Durch nano-FTIR-Spektroskopie wurde in dieser Arbeit der Oxidgehalt x in SiOx-Nanodrähten auf der Nanometerskala bestimmt. Weiterhin wurden Plasmon-Phonon-Wechselwirkungen einer einzelnen Nanoantenne auf Si/SiO2 Substrat ebenfalls auf der Nanometerskala untersucht. Teile dieser Arbeit sind in Appl. Surf. Sci., 152583, 2022 veröffentlicht. Zuletzt demonstriert diese Arbeit auch die Kombination von polarisiertem TERS und nano-FTIR für die Untersuchung von hexagonalen AlN-Nanoclustern. Es wird gezeigt, dass die polarisierten TERS-Experimente sensitiv sind für Oberflächenplasmonenmoden mit unterschiedlichen Symmetrien, wie sie charakteristisch für AlN-Nanocluster sind. Der Einfluss der Polarisierung auf die TERS-Mappings eines einzelnen AlN-Clusters und Nanodrahts wird experimentell gezeigt und erklärt. Weiterhin konnte festgestellt werden, dass die nano-FTIR-Spektren, ähnlich den TERS-Daten, eine Sensitivität für Oberflächenmoden zeigen und neue Informationen über die Winkelverteilung dieser AlN-Oberflächenphononen im Nanokristall auf der Nanometerskala liefern.:Table of Contents 1. Elementary excitations in hybrid semiconductor/metal nanostructures 10 1.1. Phonons and excitons in semiconductor nanocrystals: Raman, IR and PL spectroscopies 11 1.2. Raman scattering 15 1.3. Plasmons in metal nanoclusters 17 1.4. Photoluminescence 20 1.5. Surface-enhanced Raman spectroscopy (SERS), IR absorption (SEIRA), and Photoluminescence (SEPL) in hybrid semiconductor/metal nanostructures: Principles and enhancement mechanisms 22 1.6. Tip-enhanced Raman spectroscopy (TERS) and Photoluminescence (TEPL) of semiconductor nanostructures 24 1.7. From conventional Fourier transform infrared (FTIR) to nano-FTIR spectroscopy 26 1.8. Summary 27 2. Experimental Methods 28 2.1. Fabrication of metal nanostructures 28 2.1.1. Metal evaporation 28 2.1.2. Fabrication of TERS cantilevers 28 2.1.3. Photo- and Nanolithography of metal micro-and nanostructures 28 2.2. Fabrication of semiconductor nanocrystals by Langmuir-Blodgett technology and their TEM characterization 32 2.3. Fabrication and TEM characterization of CdSe/CdS nanoplatelets 35 2.4. Fabrication of SiOx lines by local anodic oxidation 36 2.5. Molecule beam epitaxy (MBE) of AlN nanoclucters on Si(111) 37 2.6. Microscopy and spectroscopy characterization methods of semiconductor and metal nanostructures at micro- and nanoscale 38 2.6.1. Micro- and nano-Raman, and Photoluminescence spectroscopies 38 2.6.2. Fourier transform infrared (FTIR) spectroscopy 39 2.6.3. Atomic Force Microscopy (AFM) 41 2.6.4. NeaSNOM platform for Nano-FTIR spectroscopy 43 2.7. Summary 45 3. Surface- enhanced Raman, PL and IR spectroscopies of hybrid semiconductor/metal nanostructures 46 3.1. SERS and SEPL of CdSe/CdS nanoplatelets on Au nanodisks 46 3.2. IR spectroscopy of hybrid semiconductor/metal nanostructures 52 3.2.1. Plasmon modes in gold nanoantennas on Si/SiO2 52 3.2.1.1. Plasmon modes in micro- and nanoantennas of various morphologies 57 3.2.1.2. Activation of even modes of localized surface plasmon in antennas 61 3.2.2. SEIRA of optical phonons in CdS, CdSe, PbS nanocrystals on Au micro- and nanoantennas 64 3.3. Summary 67 4. Nanoscopy of hybrid semiconductor/metal nanostructures 69 4.1. TERS of CdSe NCs on different plasmonic substrates 69 4.2. Gap-mode TERS imaging of CdSe NCs for different excitation energies 76 4.3. Gap-mode TERS imaging of CdSe/CdS nanoplatelets 79 4.4. Nano-FTIR Spectroscopy of SiOx nanowires 81 4.5. Plasmon-phonon nanoscale interaction in an Au nanoantenna on a thin SiO2 layer 85 4.6. Summary 87 5. Comparative nanoscale analysis of surface optical modes in AlN nanostructures 89 5.1. TERS mapping of a single AlN hexagonal nanocluster 89 5.2. Hyperspectral Nano-FTIR imaging of a single AlN hexagonal nanocluster 91 5.3. Polarized TERS mapping and Hyperspectral Nano-FTIR imaging of a single AlN nanowire 95 5.4. Summary 98 6. Summary 99 7. Appendix 101 8. Acknowledgements 104 9. Lebenslauf 105 10. Publications 106 11. Erklärung 108 12. Bibliography 109 13. List of Figures 125
248

Detection of methotrexate using surface plasmon resonance biosensors for chemotherapy monitoring

Zhao, Sandy Shuo 10 1900 (has links)
Le méthotrexate (MTX), un agent anti-cancéreux fréquemment utilisé en chimiothérapie, requiert généralement un suivi thérapeutique de la médication (Therapeutic Drug Monitoring, TDM) pour surveiller son niveau sanguin chez le patient afin de maximiser son efficacité tout en limitant ses effets secondaires. Malgré la fenêtre thérapeutique étroite entre l’efficacité et la toxicité, le MTX reste, à ce jour, un des agents anti-cancéreux les plus utilisés au monde. Les techniques analytiques existantes pour le TDM du MTX sont coûteuses, requièrent temps et efforts, sans nécessairement fournir promptement les résultats dans le délai requis. Afin d’accélérer le processus de dosage du MTX en TDM, une stratégie a été proposée basée sur un essai compétitif caractérisé principalement par le couplage plasmonique d’une surface métallique et de nanoparticules d’or. Plus précisément, l’essai quantitatif exploite la réaction de compétition entre le MTX et une nanoparticule d’or fonctionnalisée avec l’acide folique (FA-AuNP) ayant une affinité pour un récepteur moléculaire, la réductase humaine de dihydrofolate (hDHFR), une enzyme associée aux maladies prolifératives. Le MTX libre mixé avec les FA-AuNP, entre en compétition pour les sites de liaison de hDHFR immobilisés sur une surface active en SPR ou libres en solution. Par la suite, les FA-AuNP liées au hDHFR fournissent une amplification du signal qui est inversement proportionnelle à la concentration de MTX. La résonance des plasmons de surface (SPR) est généralement utilisée comme une technique spectroscopique pour l’interrogation des interactions biomoléculaires. Les instruments SPR commerciaux sont généralement retrouvés dans les grands laboratoires d’analyse. Ils sont également encombrants, coûteux et manquent de sélectivité dans les analyses en matrice complexe. De plus, ceux-ci n’ont pas encore démontré de l’adaptabilité en milieu clinique. Par ailleurs, les analyses SPR des petites molécules comme les médicaments n’ont pas été explorés de manière intensive dû au défi posé par le manque de la sensibilité de la technique pour cette classe de molécules. Les développements récents en science des matériaux et chimie de surfaces exploitant l’intégration des nanoparticules d’or pour l’amplification de la réponse SPR et la chimie de surface peptidique ont démontré le potentiel de franchir les limites posées par le manque de sensibilité et l’adsorption non-spécifique pour les analyses directes dans les milieux biologiques. Ces nouveaux concepts de la technologie SPR seront incorporés à un système SPR miniaturisé et compact pour exécuter des analyses rapides, fiables et sensibles pour le suivi du niveau du MTX dans le sérum de patients durant les traitements de chimiothérapie. L’objectif de cette thèse est d’explorer différentes stratégies pour améliorer l’analyse des médicaments dans les milieux complexes par les biocapteurs SPR et de mettre en perspective le potentiel des biocapteurs SPR comme un outil utile pour le TDM dans le laboratoire clinique ou au chevet du patient. Pour atteindre ces objectifs, un essai compétitif colorimétrique basé sur la résonance des plasmons de surface localisée (LSPR) pour le MTX fut établi avec des nanoparticules d’or marquées avec du FA. Ensuite, cet essai compétitif colorimétrique en solution fut adapté à une plateforme SPR. Pour les deux essais développés, la sensibilité, sélectivité, limite de détection, l’optimisation de la gamme dynamique et l’analyse du MTX dans les milieux complexes ont été inspectés. De plus, le prototype de la plateforme SPR miniaturisée fut validé par sa performance équivalente aux systèmes SPR existants ainsi que son utilité pour analyser les échantillons cliniques des patients sous chimiothérapie du MTX. Les concentrations de MTX obtenues par le prototype furent comparées avec des techniques standards, soit un essai immunologique basé sur la polarisation en fluorescence (FPIA) et la chromatographie liquide couplée avec de la spectrométrie de masse en tandem (LC-MS/MS) pour valider l’utilité du prototype comme un outil clinique pour les tests rapides de quantification du MTX. En dernier lieu, le déploiement du prototype à un laboratoire de biochimie dans un hôpital démontre l’énorme potentiel des biocapteurs SPR pour utilisation en milieux clinique. / Methotrexate (MTX) cancer therapy requires therapeutic drug monitoring (TDM) for following its levels in a patient during the course of treatment in order to maximize efficacy while minimizing side effects. Despite its narrow therapeutic window, MTX remains until this date, one of the most employed chemotherapy agents. Existing TDM analytical techniques for MTX are costly, time-consuming and labor intensive which are not suitable to promptly generate results within the therapy timeframe. To provide rapid MTX quantification for TDM, a strategy is proposed based on a competitive assay featuring gold nanoparticles and surface plasmonic coupling. More specifically, the inhibition of MTX with its molecular receptor, human dihydrofolate reductase (hDHFR), an enzyme associated with proliferative diseases, is explored. Free MTX mixed with folic acid-functionalized gold nanoparticles (FA-AuNP) are in competition for hDHFR binding sites immobilized on a SPR active surface or free in solution. FA-AuNP binding to hDHFR provides signal amplification which is inversely proportional to the concentration of MTX. Surface plasmon resonance (SPR) is commonly used as a spectroscopic technique for the interrogation of biomolecular interactions. Current commercial SPR instruments are laboratory-based, bulky, expensive, lack sensitivity in complex matrix and have not shown adaptability in clinical settings. In addition, SPR analysis of small molecules such as drugs has not been extensively explored due to lack of sensitivity. The recent advances in materials science and surface chemistry exploiting gold nanoparticle integration for SPR response enhancement and peptide surface chemistry have shown potential in overcoming the poor sensitivity and surface-fouling limitations for crude biofluids analysis. These novel concepts of SPR technology are incorporated with a miniaturized fully integrated SPR prototype to conduct fast, reliable and sensitive analysis to monitor MTX levels of a patient undergoing chemotherapy. The objective of the thesis is to explore different strategies in improving drug analysis in a complex matrix using SPR biosensors and to put in perspective of the potential of SPR biosensors as a useful TDM tool in clinical laboratories or at a point-of-care situation. To achieve these objectives, a colorimetric solution-based MTX competitive assay is first established with FA-AuNP. Then, the solution-based MTX competitive assay is translated onto a SPR platform. For both developed assays, sensitivity, selectivity, detection limit, dynamic range optimization as well as analysis of methotrexate in complex matrix are inspected. Furthermore, the SPR prototype is validated by its equivalent performance to existing SPR systems and by its utility in executing MTX analysis in actual serum samples from patients undergoing chemotherapy. The concentrations of MTX obtained by SPR biosensing are compared to standard techniques: fluorescence polarization immunoassay (FPIA) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in order to confirm the feasibility of SPR biosensors as a useful clinical tool for performing rapid MTX concentration evaluation. Finally, the successful deployment of the prototype to a hospital laboratory demonstrates enormous prospective of SPR biosensors in clinical use.
249

Controlled and localized synthesis of molecularly imprinted polymers for chemical sensors / Synthèse localisée et contrôlée de polymères à empreintes moléculaires pour capteurs chimiques

Kaya, Zeynep 05 November 2015 (has links)
Les polymères à empreintes moléculaires (MIP), également appelés "anticorps en plastique", sont des récepteurs biomimétiques synthétiques qui sont capables de reconnaître et lier une molécule cible avec une affinité et une spécificité comparables à celles des récepteurs naturels tels que des enzymes ou des anticorps. En effet, les MIP sont utilisés comme éléments de reconnaissance synthétiques dans les biocapteurs et biopuces pour la détection de petits analytes et les protéines. La technique d'impression moléculaire est basée sur la formation de cavités de reconnaissance spécifiques dans des matrices polymères par un procédé de moulage à l'échelle moléculaire. Pour la conception de capteurs et biopuces, une cinétique d'adsorption et une réponse du capteur rapide, l'intégration des polymères avec des transducteurs, et une haute sensibilité de détection sont parmi les principaux défis. Dans cette thèse, ces problèmes ont été abordés par le développement de nanocomposites MIP / d'or via le greffage du MIP sur les surfaces en utilisant des techniques de polymérisation dédiées comme l'ATRP qui est une technique de polymérisation radicalaire contrôlée (CRP). Ces techniques CRP sophistiquées sont en mesure d'améliorer considérablement les matériaux polymères. L'utilisation de l'ATRP dans le domaine de MIP a été limitée jusqu'à présent en raison de son incompatibilité inhérente avec des monomères acides comme l'acide méthacrylique (MAA), qui est de loin le monomère fonctionnel le plus largement utilisé dans les MIP. Ici, un nouveau procédé est décrit pour la synthèse de MIP par ATRP photo-initiée utilisant fac-[Ir(Ppy)3] comme catalyseur. La synthèse est possible à température ambiante et est compatible avec des monomères acides. Cette étude élargit considérablement la gamme de monomères fonctionnels et de molécules empreintes qui peuvent être utilisés lors de la synthèse de MIP par ATRP. La méthode proposée a été utilisée pour la fabrication de nanocomposites hiérarchiquement organisés sur des surfaces métalliques nanostructurés avec des nano-trous et nano-ilots, présentant des effets plasmoniques pour l'amplification du signal. La synthèse de films de MIP à l'échelle du nanomètre localisés sur la surface d'or a été démontrée. Des méthodes de transduction optiques, à savoir la résonance de plasmons de surface localisée (LSPR) et la spectroscopie Raman exaltée par effet de surface (SERS) ont été exploitées. Ces techniques se sont montrées prometteuses pour l'amélioration de la limite de détection dans la détection d'analytes biologiquement pertinents, y compris les protéines et le médicament propranolol. / Molecularly imprinted polymers (MIPs), also referred to as plastic antibodies, are synthetic biomimetic receptors that are able to bind target molecules with similar affinity and specificity as natural receptors such as enzymes or antibodies. Indeed, MIPs are used as synthetic recognition elements in biosensors and biochips for the detection of small analytes and proteins. The molecular imprinting technique is based on the formation of specific recognition cavities in polymer matrices by a templating process at the molecular level. For sensor and biochip development, fast binding kinetics of the MIP for a rapid sensor response, the integration of the polymers with transducers, and a high sensitivity of detection are among the main challenges. In this thesis, the above issues are addressed by developing MIP/gold nanocomposites by grafting MIPs on surfaces, using dedicated techniques like atom transfer radical polymerization (ATRP) which is a versatile controlled radical polymerization (CRP) technique. Theses ophisticated CRP techniques, are able to greatly improve the polymeric materials. The use of ATRP in the MIP field has been limited so far due to its inherent incompatibility with acidic monomers like methacrylic acid (MAA), which is by far the most widely used functional monomer. Herein, a new method is described for the MIP synthesis through photo-initiated ATRP using fac-[Ir(ppy)3] as ATRP catalyst. The synthesis is possible at room temperature and is compatible with acidic monomers. This study considerably widens the range of functional monomers and thus molecular templates that can be used when MIPs are synthesized by ATRP. The proposed method was used for fabrication of hierarchically organised nanocomposites based on MIPs and nanostructured metal surfaces containing nanoholes or nanoislands, exhibiting plasmonic effects for signal amplification. The fabrication of nanometer scale MIP coatings localized on gold surface was demonstrated. Optical transduction methods, namely Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) were exploited and shown that they hold great promise for enhancing the limit of detection in sensing of biologically relevant analytes including proteins and the drug propranolol.
250

Fabrication and Optimization of a Nanoplasmonic Chip for Diagnostics

Segervald, Jonas January 2019 (has links)
To increase the survival rate from infectious- and noncommunicable diseases, reliable diagnostic during the preliminary stages of a disease onset is of vital importance. This is not trivial to achieve, a highly sensitive and selective detection system is needed for measuring the low concentrations of biomarkers available. One possible route to achieve this is through biosensing based on plasmonic nanostructures, which during the last decade have demonstrated impressive diagnostic capabilities. These nanoplasmonic surfaces have the ability to significantly enhance fluorescence- and Raman signals through localized hotspots, where a stronger then normal electric field is present. By further utilizing a periodic sub-wavelength nanohole array the extraordinary optical transmission phenomena is supported, which open up new ways for miniaturization. In this study a nanoplasmonic chip (NPC) composed of a nanohole array —with lateral size on the order of hundreds of nanometer— covered in a thin layer of gold is created. The nanohole array is fabricated using soft nanoimprint lithography on two resists, hydroxypropyl cellulose (HPC) and polymethyl methacrylate (PMMA). An in depth analysis of the effect of thickness is done, where the transmittance and Raman scattering (using rhodamine 6G) are measured for varying gold layers from 5 to 21 nm. The thickness was proved to be of great importance for optimizing the Raman enhancement, where a maximum was found at 13 nm. The nanohole array were also in general found beneficial for additionally enhancing the Raman signal. A transmittance minima and maxima were found in the region 200-1000 nm for the NPCs, where the minima redshifted as the thickness increased. The extraordinary transmission phenomena was however not observed at these thin gold layers. Oxygen plasma treatment further proved an effective treatment method to reduce the hydrophobic properties of the NPCs. Care needs be taken when using thin layers of gold with a PMMA base, as the PMMA structure could get severely damaged by the plasma. HPC also proved inadequate for this projects purpose, as water-based fluids easily damaged the surface despite a deposited gold layer on top.

Page generated in 0.0973 seconds