• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 36
  • 22
  • 10
  • 9
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 263
  • 61
  • 61
  • 46
  • 46
  • 44
  • 30
  • 30
  • 29
  • 29
  • 29
  • 28
  • 25
  • 24
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Tailored disorder and anisotropic scattering in photonic nanostructures

Varytis, Paraschos 11 December 2019 (has links)
In dieser Arbeit untersuchen wir das optische Antwortverhalten von planaren Spektrometern basierend auf ungeordneten Streuzentren, dielektrischen Verbundnanopartikeln mit einer plasmonischer Ummantelung, sowie volldielektrischen magnetooptischen formveränderten Metaoberflächen. Dafür benutzen wir sowohl Mie und Mehrfach-Streutheorie als auch ein unstetiges Galerkin Zeitraumverfahren basierend auf finiten Elementen zur numerischen Berechnung der elektromagnetischen Felder. Wir stellen insbesondere eine theoretische Designstudie vor, um ungeordnete Spektrometer mit hoher spektraler Auflösung zu erhalten. Darüber hinaus geben wir eine alternative Strategie an, um durch Untersuchung der optischen Eigenschaften von Verbundnanopartikeln eine Erhöhung der bevorzugten Rückstreuung zu erreichen. Zum Schluss präsentieren wir eine Erhöhung der Faraday-Rotation bei gleichzeitig hoher Transmission von volldielektrischen magnetooptischen Metaoberflächen, welche aus formangepassten Nanodisks bestehen. / In this thesis, we study the optical response of planar spectrometers based on disorder scatterers, composite dielectric nanoparticles with plasmonic shell, and all-dielectric magneto-optical shape-modified metasurfaces. Therefore, we employ both Mie and multiple scattering theory as well as a discontinuous Galerkin time-domain method based on finite elements for the numerical computation of the electromagnetic fields. Specifically, we present a theoretical design study for obtaining random spectrometers with high spectral resolution. Furthermore, we provide an alternative strategy to achieve preferentially high backscattering by studying the optical properties of composite nanoparticles. Finally, we present enhanced Faraday rotation along with high transmittance in all-dielectric magneto-optical metasurfaces composed of shape-modified nanodisks.
222

Fabrication des films microstructurés et leurs caractéristiques en spectroscopie de résonance des plasmons de surface

Live, Ludovic Saiveng 08 1900 (has links)
Cette thèse caractérise les propriétés optiques des matériaux plasmoniques microstructurés et procède à l’évaluation des paramètres analytiques afin de les employer comme plateforme de biodétection en spectroscopie de résonance des plasmons de surface (SPR). Aux dimensions micrométriques, les matériaux plasmoniques présentent des caractéristiques optiques propres aux nano- et macromatériaux. La cartographie physicooptiques en SPR de matériaux méso- et microscopiques s’est effectuée à l’aide de films structurés de motifs périodiques triangulaires et circulaires fabriqués par une technique modifiée de lithographie par nanosphères (nanosphere lithography, NSL). À partir de cette vue d’ensemble, quelques films structurés ont été sélectionné en fonction d’aspects analytiques tels que la sensibilité et la résolution face aux variations d’indice de réfraction (RI) pour déterminer le potentiel de ces matériaux comme plateforme de biodetection. Les propriétés optiques distinctes des films microstructurés proviennent d’interactions résonantes entre les modes de plasmons de surface (SP) localisé et délocalisé identifiés par la relation de dispersion en SPR ainsi que l’imagerie Raman. Les conditions de résonance des modes SP dépendant de paramètres expérimentaux (λ, θ, η) tel qu’observés numériquement par rigorous coupled wave analysis (RCWA) et empiriquement. Ces travaux démontrent la nature plasmonique distincte des micro-matériaux et leur potentiel d’intégration aux techniques analytiques SPR existantes. Les matériaux plasmoniques micrométriques furent également étudiés pour l’implémentation de la SPR à une pointe de microscopie à force atomique (atomic force microscopy, AFM) combinant ainsi la spectroscopie à l’imagerie topographique. Des travaux préliminaires se sont concentrés sur la signature spectroscopique de leviers en silicium (Si) et en nitrure de silicium (Si3N4), l’impact d’un revêtement d’or sur les pointes et l’influence de milieu environnant. Une image d’origine plasmonique a été obtenue avec des leviers en Si3N4 revêtus d’or en transmission dans un environnement aqueux, indiquant ainsi le potentiel de ces pointes comme micro-biocapteur SPR. Ces résultats préliminaires servent de fondement pour orienter les prochaines investigations dans ce projet. / This thesis characterizes the optical properties of microstructured plasmonic materials and evaluates analytical parameters to use them as biosensing platforms in surface plasmon resonance (SPR) spectroscopy. At microscopic dimensions, plasmonic materials present optical characteristics unique to nano- and macromaterials. A SPR physico-optic mapping of meso- and microscopic materials was performed using structured films with triangular and circular periodic patterns fabricate by modified nanosphere lithography (NSL) technique. From this overview, a few structured films were selected based on analytical aspects such as sensitivity and resolution with respect to the refractive index (RI) to determine the potential of these materials as biosensing platforms. The distinct plasmonic properties of microstructured films emerge from resonant interactions between localized and propagating surface plasmons (SP) modes identified by the SPR dispersion relation and by Raman imaging. The conditions of SP modes resonant interactions depend on experimental parameters (λ, θ, η) as observed numerically in rigorous coupled wave analysis (RCWA) and empirically. These works show the distinct plasmonic nature of micromaterials and their potential integration to existing SPR techniques. Plasmonic micromaterials were also studied for the implementation of SPR to an atomic force microscopy (AFM) cantilever, hence combining spectroscopy to topographic imaging. Preliminanry works were focused on the spectroscopic response of silicon (Si) and silicon nitride (Si3N4) cantilever, the impact of gold coating on the cantilever is tip, and the influence of the adjacent environment. An image of plasmonic nature was obtained in transmission spectroscopy with gold coated Si3N4 cantilever in water environment, thus indicating the potential of these cantilevers as micro-SPR sensing probes. These preliminary results provide a basis to guide future investigations in this project.
223

Electronic and plasmonic properties of real and artificial Dirac materials

Woollacott, Claire January 2015 (has links)
Inspired by graphene, I investigate the properties of several different real and artificial Dirac materials. Firstly, I consider a two-dimensional honeycomb lattice of metallic nanoparticles, each supporting localised surface plasmons, and study the quantum properties of the collective plasmons resulting from the near field dipolar interaction between the nanoparticles. I analytically investigate the dispersion, the effective Hamiltonian and the eigenstates of the collective plasmons for an arbitrary orientation of the individual dipole moments. When the polarisation points close to normal to the plane the spectrum presents Dirac cones, similar to those present in the electronic band structure of graphene. I derive the effective Dirac Hamiltonian for the collective plasmons and show that the corresponding spinor eigenstates represent chiral Dirac-like massless bosonic excitations that present similar effects to those of electrons in graphene, such as a non-trivial Berry phase and the absence of backscattering from smooth inhomogeneities. I further discuss how one can manipulate the Dirac points in the Brillouin zone and open a gap in the collective plasmon dispersion by modifying the polarisation of the localized surface plasmons, paving the way for a fully tunable plasmonic analogue of graphene. I present a phase diagram of gapless and gapped phases in the collective plasmon dispersion depending on the dipole orientation. When the inversion symmetry of the honeycomb structure is broken, the collective plasmons become gapped chiral Dirac modes with an energy-dependent Berry phase. I show that this concept can be generalised to describe many real and artificial graphene-like systems, labeling them Dirac materials with a linear gapped spectrum. I also show that biased bilayer graphene is another Dirac material with an energy dependent Berry phase, but with a parabolic gapped spectrum. I analyse the relativistic phenomenon of Klein Tunneling in both types of system. The Klein paradox is one of the most counter-intuitive results from quantum electrodynamics but it has been seen experimentally to occur in both monolayer and bilayer graphene, due to the chiral nature of the Dirac quasiparticles in these materials. The non-trivial Berry phase of pi in monolayer graphene leads to remarkable effects in transmission through potential barriers, whereas there is always zero transmission at normal incidence in unbiased bilayer graphene in the npn regime. These, and many other 2D materials have attracted attention due to their possible usefulness for the next generation of nano-electronic devices, but some of their Klein tunneling results may be a hindrance to this application. I will highlight how breaking the inversion symmetry of the system allows for results that are not possible in these system's inversion symmetrical counterparts.
224

Etude et développement de nano-antennes fibrées pour la microscopie en champ proche optique et la nano-photonique / Study and development of fiber nano-antennas for scanning near-field optical microscopy and nano-photonics

Mivelle, Mathieu 08 December 2011 (has links)
Dans la première partie de cette thèse, nous tirons parti du concept de nano-antenne optique afind'apporter une solution innovante au problème d'interprétation de la microscopie champ procheoptique (SNOM). En effet, il est connu que certaines nano-antennes développent des réponsesoptiques dipolaires. Dans cette thèse nous démontrons comment l’utilisation d’une nano-ouverturepapillon (nano-antenne dipolaire), à l’extrémité d’une pointe SNOM, permet de détecter et collecteruniquement une seule composante du champ proche électrique. Ce résultat est démontré d’unpoint de vue théorique par l’utilisation de simulation FDTD (Finite Difference Time Domain) et d’unpoint de vue expérimental par la caractérisation, par cette pointe innovante, d´échantillonsdiélectriques (réseaux, cristaux photoniques) et métalliques (milieux désordonnés plasmoniques).Dans une deuxième partie, nous démontrons comment la sonde développée dans la premièrepartie, peut être utilisée comme détecteur du signal émis par un nano-émetteurs (NE) unique. Il estétudié dans cette partie l’effet de couplage entre ces deux objets. Dans un premier temps, après ladescription complète des grandeurs caractéristiques d’un NE, nous démontrons théoriquementl’effet de la pointe sur la réduction du temps de vie de l’état excité et l’augmentation de lafluorescence d’un NE, en régime saturé et non saturé. Puis dans un deuxième temps nousdémontrons expérimentalement comment cette sonde réduit le temps de vie de l’état excité deboites quantiques placées à son extrémité, en comparaison de pointes SNOM plus conventionnellestelle que la pointe diélectrique et la pointe à ouverture circulaire. / In the first part of this manuscript, we use in our advantage the concept of optical nano-antennas, toget new solutions on the interpretation problems of scanning near-field optical microscope (SNOM)images. Indeed, it is known that some of the developed nano-antennas can express dipolarbehaviours. In this manuscript, we show how a bowtie nano-aperture (dipolar nano-antenna)embedded at the apex of a SNOM probe, can be used to detect and collect only one component ofthe electric near-field. This result is demonstrated as well theoretically, by the use of FDTD (FiniteDifference Time Domain) codes, as experimentally, by the characterisation with this tip, of dielectricsamples (diffraction grating and photonic crystals) and metallic ones (random plasmonic medium).In a second part, we show how the tip previously described, can be used as a detector of the signalfrom single emitter (SE). We study in this part the coupling and interactions between those twoobjects. After a full description of a two level system characteristics, we show theoretically the effectof our probe on the reduction of the excited state life time and the enhancement of thefluorescence of the SE, in both regime, saturated and non-saturated. Then we describeexperimentally how our special tip reduces the excited state life time of quantum dots placed at theapex of it, respect to more conventional SNOM probes as the dielectric and the circular apertureones.
225

Métamatériaux pour l’infrarouge et applications / Metamaterials for the infrared and applications

Ghasemi, Rasta 12 November 2012 (has links)
Les métamatériaux sont des composites artificiels présentant des propriétés électromagnétiques qu’on ne trouve pas dans la nature. Malgré des développements spectaculaires durant la dernière décennie, le potentiel de ces structures aux longueurs d’ondes optique n’est pas encore clairement défini en raison de problèmes technologiques et de contraintes physiques telles que les pertes dans les métaux entrant dans la composition des métamatériaux. Dans notre thèse, nous montrons que les métamatériaux ont des propriétés très favorables dans le contexte de l’optique intégrée dans le proche infrarouge. Nous avons développé une stratégie pour incorporer des métamatériaux dans des circuits photoniques qui n’absorbent que très peu d’énergie. Pour cela, nous ne faisons pas directement agir l’ensemble du mode guidé avec les métamatériaux, mais seulement une composante évanescente à l’extérieur du guide. Pour réaliser un tel adaptateur ou d’autres fonctionnalités, il importe de déterminer quelle géométrie de métamatériaux est la plus favorable aux applications infrarouges. Nous proposons d’utiliser des structures à base de fils d’or empilés couche sur couche. A l’aide de simulations numériques et d’expériences en espace libre, nous montrons qu’il est possible d’obtenir toute une gamme de réponses optiques en contrôlant le couplage entre les différents niveaux de fils, c'est-à-dire en ajustant la distance entre les fils ainsi que leur alignement. En particulier, nous avons réussi à contrôler séparément la réponse électrique et magnétique de nos structures, ce qui offre une flexibilité de conception qui ne se rencontre pas dans les métamatériaux proposés jusqu’à présent. / Metamaterials are artificial composites with electromagnetic properties not found in nature. Although the development of metamaterials has experienced a tremendous growth over the past few years, their potential at optical wavelengths is not clearly established due to technological and physical constraints such as high material losses in this spectral range. Here we show that metamaterials have a great potential in the context of integrated optics in the near infrared. We developed a strategy to incorporate metamaterials in photonic circuits with minimal absorption losses. Our approach relies on making the guided modes interact with the metamaterials only through the evanescent tail outside the waveguide. To achieve such an adaptor and other functionalities, it is important to know what is the best geometry for near-infrared applications. We propose to use metamaterials based on multi-layers of Au cut wires. With numerical simulations and experiments, we show that it is possible to create a wide range of optical properties by controlling the interaction between the wires, i.e. by adjusting the distance between the wires and their alignment. In particular we were able to demonstrate
226

Investigation, manipulation, and coupling of single nanoscopic and quantum emitters

Schietinger, Stefan 16 November 2012 (has links)
Die hier vorgelegte Dissertation beschäftigt sich mit Untersuchungen an nanoskopischen Emittern und den Möglichkeiten, deren Fluoreszenzverhalten durch kontrollierte Ankopplung an photonische und plasmonische Strukturen zu beeinflussen. Zum einen werden mit Ytterbium- und Erbium-Ionen kodotierte NaYF4 -Nanokristalle untersucht, die hervorragende Eigenschaften bei der Umwandlung von niederenergetischen Photonen in solche höherer Energie besitzen. Das so entstehende Fluoreszenzlicht einer Ansammlung von Nanokristallen wird auf seine Abhängigkeit von der Anregungsintensität untersucht. Mit der Hilfe eines Rasterkraftmikroskops (AFM) wird eine Abhängigkeit der spektralen Zusammensetzung des Fluoreszenzlichts einzelner Nanokristalle von deren Größe im Bereich von wenigen bis 50 nm aufgezeigt. Durch gezielte Manipulation mit dem AFM werden ebenfalls einzelne Nanokristalle an Goldnanokügelchen gekoppelt und die Mechanismen der beobachteten plasmonischen Verstärkung der Emission durch zeitaufgelöste Messungen analysiert. Einzelne Stickstoff-Fehlstellen-Zentren in Nanodiamanten werden in einem zweiten Themenkomplex als Einzelphotonenquellen eigesetzt. Diese werden durch den Einsatz einer Nahfeld-Sonde auf Mikrokugel-Resonatoren aufgebracht, wodurch die Emission aufgrund der Ankopplung an die Flüstergalerie-Moden der Kugeln die typischen, scharfen Überhöhungen im Spektrum aufweist. Diese Methode lässt sich nicht nur verwenden, um zwei oder mehr Emitter an die selben Resonanzen einer Kugel zu koppeln. Es ist auch möglich, die Kugeln in einem Vorbereitungsschritt zu charakterisieren, und so kann insbesondere eine spektrale Übereinstimmung zwischen einer der Resonanzen und dem Emitter erreicht werden. Desweiterne wird demonstriert, wie durch die Kopplung an eine plasmonische Antenne aus Goldnanokugeln mittels AFM auch die Effizienz der Einzelphotonenquelle gesteigert werden kann. / The topic of the dissertation presented here is the investigation of nanoscopic emitters and the possibilities to influence their fluorescence behavior by controlled coupling to photonic and plasmonic structures. NaYF4 nanocrystals codoped with ytterbium and erbium are investigated since they provide excellent properties in upconverting of low-energetic photons to photons with higher energy. The fluorescence light that is generated in this process of a small cluster of nanocrystals is investigated on its dependence on the excitation intensity. With the help of an atomic force microscope (AFM) a dependence of the spectral composition of the fluorescence light from single nanocrystals on their size ranging between a few to 50 nm is demonstrated. By selective manipulation with the AFM, individual nanocrystals are coupled to gold nanospheres and the mechanisms of the observed plasmonic amplification of the emission is analyzed with time-resolved measurements. Single nitrogen–vacancy centers in nanodiamonds are employed as single-photon sources in a second subject area. A near-field probe is employed to attach these single quantum systems to microspherical resonators, by which their emission features the typical peaks in the spectrum due to the coupling to the whispering gallery modes of the spheres. This method can not only be applied to couple two or more single-photon emitters to the very same modes of a microsphere, but the resonators themselves can be pre-characterized to match one of the modes with the emitter. Furthermore, it will be demonstrated how the efficiency of a single-photon source can be enhanced by coupling the nitrogen-vacancy center to a plasmonic antenna made of gold nanospheres.
227

Nanoscale light-matter interactions in the near-field of high-Q microresonators

Eftekhar, Ali Asghar 10 November 2011 (has links)
The light-matter interaction in the near-field of high-Q resonators in SOI and SiN platforms is studied. The interactions of high-Q traveling-wave resonators with both resonant and non-resonant nanoparticles are studied and different applications based on this enhanced interactions in near-field such as high-resolution imaging of mode profile of high-Q resonators, label-free sensing, optical trapping, and SERS sensing are investigated. A near-field imaging system for the investigation of the near-field phenomena in the near-field of high-Q resonators is realized. A new technique for high-resolution imaging of the optical modes in high-Q resonators based on the near-field perturbation is developed that enables to achieve a very high resolution (< 10 nm) near-field image. The prospect of the high Q resonators on SOI platform for highly multiplexed label-free sensing and the effect of different phenomena such as the analyte drift and diffusion and the binding kinetics are studied. Also, the possibility of enhancing nanoparticle binding to the sensor surface using optical trapping is investigated and the dynamic of a nanoparticle in the high-Q resonator optical trap is studied. Furthermore, the interaction between a resonant nanoparticle with a high-Q microdisk resonator and its application for SERS sensing is studied. A model for interaction of resonant nanoparticles with high-Q resonators is developed and the optimal parameters for the design of coupled microdisk resonator and a plasmonic nanoparticle are calculated. The possible of resonant plasmonic nanoparticle trapping and alignment in an SiN microdisk resonator optical trap is also shown.
228

Propagation des plasmons de surface dans des nanofils métalliques

Song, Mingxia 13 November 2012 (has links) (PDF)
Plasmonic circuitry is considered as a promising solution-effectivetechnology for miniaturizing and integrating the next generation ofoptical nano-devices. The realization of a practical plasmonic circuitry strongly depends on the complete understanding of the propagation properties of two key elements: surface plasmons and electrons. The critical part constituting the plasmonic circuitry is a waveguide which can sustain the two information-carriers simultaneously. Therefore, we present in this thesis the investigations on the propagation of surface plasmons and the co-propagation of surface plasmons and electrons in single crystalline metal nanowires. This thesis is therefore divided into two parts. In the first part, we investigate surface plasmons propagating in individual thick penta-twinned crystalline silver nanowires using dual-plane leakage radiation microscopy. The effective index and the losses of the mode are determined by measuring the wave vector content of the light emitted in the substrate. Surface plasmon mode is determined by numerical simulations and an analogy is drawn with molecular orbitals compound with similar symmetry. Leaky and bound modes selected by polarization inhomogeneity are demonstrated. We further investigate the effect of wire geometry (length, diameter) on the effective index and propagation losses. On the basis of the results obtained during the first part, we further investigate the effect of an electron flow on surface plasmon properties. We investigate to what extend surface plasmons and current-carrying electrons interfere in such a shared circuitry. By synchronously recording surface plasmons and electrical output characteristics of single crystalline silver and gold nanowires, we determine the limiting factors hindering the co-propagation of electrical current and surface plasmons in these nanoscale circuits. Analysis of wave vector distributions in Fourier images indicates that the effect of current flow on surface plasmons propagation is reflected by the morphological change during the electromigration process. We further investigate the possible crosstalk between co-propagating electrons and surface plasmons by applying alternating current bias
229

Giant Plasmonic Energy and Momentum Transfer on the Nanoscale

Durach, Maxim 16 October 2009 (has links)
We have developed a general theory of the plasmonic enhancement of many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. It is shown that this interaction has a resonant nature. We have also demonstrated that renormalized interaction is a long-ranged interaction whose intensity is considerably increased compared to bare Coulomb interaction over the entire region near the plasmonic nanostructure. We illustrate this theory by re-deriving the mirror charge potential near a metal sphere as well as the quasistatic potential behind the so-called perfect lens at the surface plasmon (SP) frequency. The dressed interaction for an important example of a metal–dielectric nanoshell is also explicitly calculated and analyzed. The renormalization and plasmonic enhancement of the Coulomb interaction is a universal effect, which affects a wide range of many-body phenomena in the vicinity of metal nanostructures: chemical reactions, scattering between charge carriers, exciton formation, Auger recombination, carrier multiplication, etc. We have described the nanoplasmonic-enhanced Förster resonant energy transfer (FRET) between quantum dots near a metal nanoshell. It is shown that this process is very efficient near high-aspect-ratio nanoshells. We have also obtained a general expression for the force exerted by an electromagnetic field on an extended polarizable object. This expression is applicable to a wide range of situations important for nanotechnology. Most importantly, this result is of fundamental importance for processes involving interaction of nanoplasmonic fields with metal electrons. Using the obtained expression for the force, we have described a giant surface-plasmoninduced drag-effect rectification (SPIDER), which exists under conditions of the extreme nanoplasmonic confinement. Under realistic conditions in nanowires, this giant SPIDER generates rectified THz potential differences up to 10 V and extremely strong electric fields up to 10^5-10^6 V/cm. It can serve as a powerful nanoscale source of THz radiation. The giant SPIDER opens up a new field of ultraintense THz nanooptics with wide potential applications in nanotechnology and nanoscience, including microelectronics, nanoplasmonics, and biomedicine. Additionally, the SPIDER is an ultrafast effect whose bandwidth for nanometric wires is 20 THz, which allows for detection of femtosecond pulses on the nanoscale.
230

Fabrication and characterization of thermo-plasmonic routers for telecom applications

Hassan, Karim 12 July 2013 (has links) (PDF)
The Dielectric Loaded Surface Plasmon Polariton Waveguides (DLSPPWs) have recently emerged as a possible solution to carry both optical and electrical signals on- chip. However, in the particular context of optical interconnects, advanced functionalities such as filtering, switching, and routing are required in order to replace in the future the equivalent electronic components which are too much power consumer and also to reduce their footprints. After presenting the interest and limitation of the leakage radiation microscopy method used all along this work, we show several active devices using thermo-sensitive polymers as the dielectric load driven electrically by Joule heating. Then we demonstrate the feasibility of all-optical systems by either doping the dielectric with metallic nanoparticles or by plasmo-thermal eect of a second plasmonic mode providing a localized heating of controlled shape. The dynamic activation of our thermo- optical devices is performed using a homemade fiber-to-fiber setup which allows us to investigate the response time of a plasmo-thermal heating as well as true datacom transmission. Some improvements of the original DLSPPWs performances are proposed by adding a metallic wall on one side of the polymer ridge. This system can act as a compact and athermal polarization converter

Page generated in 0.0494 seconds