• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 9
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular imprinting of small, poorly functionalised organic compounds

Kueh, Alona Swee Hua January 2008 (has links)
Molecularly imprinted polymers (MIPs) have been compared to natural antibodies in that they can specifically bind target compounds in a similar way that antibodies specifically bind to an antigen. The attraction of the MIPs technology is the ease of creating binding elements which are relatively cheap compared with the process of isolating natural antibodies. In this research monoterpenes, such as α-terpineol, were chosen to be the model compounds for investigating the molecular imprinting of small, poorly functionalised organic compounds. The conventional non-covalent approach was mainly used to synthesise these MIPs, but the sacrificial-spacer semi-covalent approach was also investigated. A less widely used method, porogen-imprinting - a variant of non-covalent imprinting - was adapted for α-terpineol. The latter novel terpene MIP appeared to specifically bind α-terpineol, by hydrogen bonding, so the polymer was characterised in detail. The main parameters which were altered for preparing non-covalent MIPs included the template (α-terpineol, (-)-menthol or trans-terpin); the functional monomer (methacrylic acid, 2-hydroxyethyl methacrylate, bilirubin and phenol [for the semi-covalent MIP]); the cross-linking monomer (ethylene glycol dimethacrylate, divinylbenzene and trimethylolpropane trimethacrylate); and also the polymerisation method (block or precipitation polymerisation). The binding specificity and cross-reactivity for all the polymers were tested using a liquid batch-binding setup. The batch-binding setup required the detection of analyte that was not bound in order to calculate by difference the fraction of analyte bound to the polymer. Initially the terpenes were to be detected by a colorimetric method; however attempts to make the method sensitive and reliable were not successful. In comparison, gas chromatography was more reliable for the detection of terpenes and was used for the experiments presented in this thesis. 1H-NMR studies of the interaction between α-terpineol and acetic acid (as a non-polymerisable analogue of methacrylic acid) were investigated as a basis for understanding the binding to the carboxyl functional group moiety employed in many of the non-covalent MIPs that were made. The interaction between (-)-menthol and phenol was also investigated because the phenol moiety was employed in the semi-covalent MIP. Only selected MIPs, which appeared to specifically bind the template, were physically characterised. This included optimising the batch-binding parameters, scanning electron microscopy imaging, surface area and pore radius analysis and in some cases Fourier transform-infrared spectroscopy of the polymers.
2

Fabrication and research of 3D complex scaffolds for bone tissue engineering based on extrusion-deposition technique

Chen, Zhichao January 2017 (has links)
Fabrication of scaffold is the key for bone tissue engineering, which is commonly regarded as the most potential route for repairing bone defects. Previously, porous ceramic scaffolds were fabricated through a variety of traditional methods, like moulding and casting, but most of them cannot produce customised tissue-engineered scaffolds. Therefore, 3D printing methods are gaining more attention and are currently being explored and developed to make scaffolds with acceptable biocompatibility. With the considerable development of bone tissue engineering, the bioactivity of scaffolds is becoming increasingly demanded, which leads to new methods and techniques to produce highly biomimetic bone scaffolds. In this study, a new fabrication process to optimise the structures of scaffolds was developed, and intensive researches were performed on the porous scaffolds to confirm their advantages in biological performance. Specifically, by combination of motor assisted extrusion deposition and gas-foaming (graphite as the porogen) technique, hierarchically porous scaffolds with improved microstructures, i.e. multi-scaled pores from nanometre to millimetre (nm-μm-mm), was successfully developed. In this thesis, the optimal content of porogen for scaffolds was studied in terms of compressive strength and in-rod porosities. The most concerned physicochemical properties of scaffolds were carefully examined and the results revealed that such scaffolds exhibit excellent physicochemical properties owing to hierarchically porous structures. Due to additional in-rod micropores and increased specific surface area, along with better hydrophilicity, hierarchically porous scaffolds exerted complete superiority in biological activity, including promoting cellular proliferation of osteoblasts, adhesion and spreading status, as well as the ability to induce cellular differentiation.
3

A novel preparation method for porous hemi-spherical bio-polymeric microparticles

Naidoo, Kersch 11 July 2011 (has links)
A modified oil-in-water emulsion process was developed to produce novel microporous hemi-spherical polycaprolactone (PCL) microparticles called “hemi-shells”. Through the addition of a porogen such as sodium bicarbonate into the PCL-dichloromethane oil phase and emulsification in an acidic polyvinyl alcohol aqueous phase, microporous hemi-shells formed as dichloromethane evaporated. Carbon dioxide gas evolution from the porogen reaction with the acidic aqueous phase created particles with an externally microporous shell and a large internal cavity. The hemi-shells were characterized by various methods, including scanning electron microscopy and optical microscopy which were specifically used to quantify the hemi-shell yield. The final number-average particle yield of the optimised manufacturing method for particle manufacture in the 50-200 micron size range was 84%. The number-average hemi-shell yield in the same size range was 41%. These novel microparticles have potential applications in tissue engineering and drug delivery / Dissertation (MEng)--University of Pretoria, 2011. / Chemical Engineering / unrestricted
4

High-Performance Polymer Monoliths for Capillary Liquid Chromatography

Aggarwal, Pankaj 29 July 2014 (has links) (PDF)
This dissertation focuses on improving the chromatographic efficiency of polymeric organic monoliths by characterizing and optimizing the bed morphology. In-situ characterization techniques such as capillary flow porometry (CFP), 3-dimensional scanning electron microscopy (3D SEM) and conductivity measurements were developed and implemented to quantitatively characterize the morphology of poly(ethylene glycol) diacrylate (PEGDA) monoliths. The CFP measurements for monoliths prepared by the same procedure in capillaries with different diameters (i.e., 75, 150, and 250 μm) clearly showed a change in average through-pore size with capillary diameter, thus, certifying the need for in-situ measurement techniques. Serial sectioning and imaging of PEGDA monoliths using 3D SEM gave quantitative information about the average pore size, porosity, radial heterogeneity and tortuosity of the monolith. Chromatographic efficiency was better for a monolith with smaller average pore size (i.e., 5.23 μm), porosity (i.e., 0.49), radial heterogeneity (i.e., 0.20) and tortuosity (i.e., 1.50) compared to another monolith with values of 5.90 μm, 0.59, 0.50 and 2.34, respectively. Other than providing information about monolith morphology, these techniques also aided in identifying factors governing morphological changes, such as capillary diameter, polymerization method, physical/chemical properties of the pre-polymer constituents and weight proportion of the same. A statistical model was developed for optimizing the weight proportion of pre-polymer constituents from their physical/chemical properties for improved chromatographic efficiency. Fabricated PEGDA columns were used for liquid chromatography of small molecules such as phenols, hydroxyl benzoic acids, and alkyl parabens. The chromatographic retention mechanism was determined to be principally reversed-phase (RP) with additional hydrogen bonding between the polar groups of the analytes and the ethylene oxide groups embedded in the monolith structure. The chromatographic efficiency measured for a non-retained compound (uracil) was 186,000 plates/m when corrected for injector dead volume. High resolution gradient separations of selected pharmaceutical compounds and phenylurea herbicides were achieved in less than 18 min. Column preparation was highly reproducible, with relative standard deviation (RSD) values less than 2.1%, based on retention times of the phenol standards (3 different columns). A further improvement in chromatographic performance was achieved for monoliths fabricated using a different polymerization method, i.e., living free-radical polymerization (LFRP). The columns gave an unprecedented column performance of 238, 000 plates/m for a non-retained compound under RP conditions.
5

Décontamination et dépollution par photocatalyse : réalisation d'un dispositif d'élimination d'agents chimiques toxiques et de polluants dans l'air et dans l'eau / Decontamination and depollution by photocatalysis : realization of a device that eliminates chemical warfare agents and pollutants in air and water

Sengele, Armelle 08 December 2015 (has links)
Ce travail de thèse consiste à synthétiser des nanoparticules de dioxyde de titane pour la décontamination d’agents chimiques par photocatalyse. L’objectif principal est d’optimiser le photocatalyseur pour la dégradation du sulfure de diéthyle (DES), simulant de l’ypérite. L’oxydation du DES produit des sulfates qui empoisonne le TiO2. Le but est donc de limiter cette désactivation ainsi que le rejet de molécules toxiques. Une solution est d’augmenter la surface spécifique par deux méthodes : le dopage du TiO2 au tantale ou à l’étain et l’ajout d’un porogène lors de la synthèse par voie sol-gel. Les catalyseurs optimisés présentent des taux de conversion élevés pour l’élimination du DES en phase gazeuse sous flux continu grâce à leur surface spécifique importante et leurs propriétés d’adsorption. Les matériaux les plus performants sont ensuite immobilisés sur des mousses tridimensionnelles de β-SiC. Ces média photocatalytiques se désactivent mois rapidement que les matériaux pulvérulents. Une régénération par une solution de soude permet de retrouver leur activité initiale. Ce qui permet une utilisation industrielle possible des catalyseurs. Cette thèse ouvre la voie à la réalisation d’un prototype de décontamination de l’air pour l’élimination d’agents chimiques de guerre. / This work consists in the synthesis of titanium dioxide nanoparticles for the decontamination of chemical warfare agents by photocatalysis. The main goal is to optimize the photocatalyst to eliminate diethylsulfide (DES), simulating yperite. The oxidation of DES generates sulfates that lead to the poisoning of TiO2. Thus, the aim is to limit this deactivation and to avoid a release of harmful products. A solution is to increase the specific suface area by two methods: doping TiO2 with tantalum or tin and adding a porogen during the sol-gel synthesis. These optimized catalysts exhibit high conversion rates for DES elimination in the gas phase under a continuous flow thanks to their high specific surface area and their adsorption properties. The best catalysts are immobilized on tridimensional β-SiC foams. These photocatalytic foams deactivates slower than the TiO2 powders. A regeneration by an NaOH solution can restore their initial activity. It allows a possible industrial application for these catalysts. This thesis opens the way to realize a decontamination prototype for air to eliminate chemical warfare agents.
6

Matériaux polymères fonctionnalisés à double porosité : conception et modélisation / Functionalized doubly porous polymeric materials : design and modeling

Ly, Hai Bang 02 October 2015 (has links)
Les matériaux polymères poreux font l'objet d'intenses recherches depuis de nombreuses années et présentent certains avantages importants par rapport à leurs homologues inorganiques, comme des propriétés mécaniques modulables, une fonctionnalisation aisée et surtout un coût de production plus faible. Au cours de la dernière décennie, les matériaux à double porosité ont attiré une attention particulière de la communauté scientifique car ces matériaux offrent de nouvelles perspectives intéressantes pour l'élaboration de matériaux durables. Le rôle de chaque niveau de porosité est différent et associé à des processus de transfert de masse distincts. Les macropores (~ 100 µm) permettraient l'écoulement de macromolécules ou de cellules à travers le matériau, tandis qu'un réseau nanoporeux (10-100 nm) serait dédié au passage de molécules plus petites, agissant ainsi comme un deuxième mécanisme de transport, en particulier lorsque des macropores sont totalement obstrués. La première partie de ce travail porte sur le développement d'approches polyvalentes et efficaces pour la préparation de matériaux à double porosité biocompatibles à base de poly(méthacrylate de 2-hydroxyéthyle) (PHEMA). La première approche a reposé sur l'utilisation de deux types distincts de gabarits porogènes, à savoir un macroporogène et un nanoporogène. Pour générer la macroporosité, soit des particules de NaCl ou des billes de PMMA, pouvant être fusionnées ou non, ont été utilisées afin de contrôler la morphologie l'interconnectivité des pores. Le nanoporosité a été obtenue en utilisant diverses quantités de différents solvants porogènes, générant ainsi une large gamme de distributions de tailles de pores pour ce second niveau de porosité. La seconde méthodologie a été fondée sur le procédé de séparation de phases induite thermiquement. Un mélange de co-solvants constitué de dioxane et d'eau a été utilisé pour solubiliser le PHEMA linéaire préalablement préparé, suivi par un processus de solidification par congélation du mélange de co-solvants / PHEMA, et sublimation consécutive des co-solvants pour produire les matériaux de PHEMA biporeux correspondants. Enfin, les matériaux à double porosité ont été valorisés à travers différentes réactions de fonctionnalisation en utilisant la chimie du carbonyldiimidazole, et l'immobilisation postérieure de nanoparticules d'or générées in-situ. De tels matériaux hybrides à double porosité se sont avérés être des supports catalytiques efficaces.Dans la deuxième partie, nous avons déterminé numériquement la perméabilité des matériaux à double porosité. La méthodologie a été fondée sur une approche à double changement d'échelle dans le cadre des théories d'homogénéisation périodique et sur des calculs de cellules élémentaires. Le premier changement d'échelle a consisté à déterminer une première perméabilité associée au réseau de nanopores. A cette échelle, les pores ont été saturés par un fluide visqueux obéissant aux équations de Stokes et le problème a été résolu par une approche classiques d'éléments finis ou en utilisant des techniques plus récentes à base de la transformée de Fourier rapide. À l'échelle mésoscopique, l'écoulement du fluide a obéi aux équations de Stokes dans les macropores et aux équations de Darcy dans le solide perméable. Le problème de cellules élémentaires couplant les équations de Darcy et Stokes a été résolu par la méthode des éléments finis afin de calculer la perméabilité macroscopique finale. Dans cette optique, nous avons développé une méthode fondée sur une formulation variationnelle mixte qui a été mise en œuvre en prenant différents éléments dans les domaines de solide et fluide. Divers exemples 2D et 3D sont fournis pour illustrer la précision et la capacité des méthodes numériques proposées pour calculer la perméabilité macroscopique des matériaux biporeux / Polymer-based porous materials have been the subject of intense research for many years and present some important advantages over their inorganic counterparts, such as tunable mechanical properties, ease to be functionalized, and especially lower production cost. Over the last decade, materials with dual porosity have attracted a particular attention from the scientific community, as these peculiar materials offer new interesting perspectives for engineering sustainable materials. The role of each porosity level is different and associated with distinct mass transfer processes. Macropores (~100 µm) would allow macromolecules and cells flow through the material, while a nanoporous network (10-100 nm) would be dedicated to the passage of smaller molecules, thus acting as a second transport mechanism, especially when macropores are totally clogged. The first part of this work addresses the development of versatile and effective approaches to biocompatible doubly porous poly(2-hydroxyethyl methacrylate) (PHEMA)-based materials. The first approach relied on the use of two distinct types of porogen templates, i.e. a macroporogen and a nanoporogen. To generate the macroporosity, either NaCl particles or PMMA beads that could be fused or not, were used in order to control the pore morphology and interconnectivity of the materials. The nanoporosity was obtained by using various amounts of different porogenic solvents, thus generating a wide range of pore size distributions for this second porosity level. The second methodology was based on the thermally-induced phase separation process. A co-solvent mixture constituted of dioxane and water was used to solubilize previously prepared linear PHEMA, followed by a solidification process by freezing the co-solvents/PHEMA mixture, and subsequent sublimation of the co-solvents to generate the corresponding biporous PHEMA materials. Finally, advantage of doubly porous materials was taken through different functionalization reactions using carbonyldiimidazole chemistry, and further immobilization of in-situ generated gold nanoparticles. Such hybrid doubly porous materials proved to act as efficient catalytic supports. In the second part, we numerically determined the permeability of doubly porous materials. The methodology was based on a double upscaling approach in the field of periodic homogenization theories and on unit cell calculations. The first upscaling consisted in the determination of a first permeability associated with the array of nanoscopic pores. At this scale, the pores were saturated by a viscous fluid obeying the Stokes equations and the problem was solved by means of standard Finite-Element approaches or using more recent techniques based on Fast Fourier Transform. At the mesoscopic scale, the fluid flow obeyed the Stokes equations in the macropores and the Darcy equations in the permeable solid. The unit cell problem coupling Darcy and Stokes equations was solved by the Finite Element method in order to compute the final macroscopic permeability. To this purpose, we developed a method based on a mixed variational formulation which was implemented by taking different elements in the solid and fluid regions. Various 2D and 3D examples were provided to illustrate the accuracy and the capacity of the proposed numerical methods to compute the macroscopic permeability of biporous materials
7

Polymeric Monolithic Stationary Phases for Capillary Hydrophobic Interaction Chromatography

Li, Yuanyuan 06 October 2010 (has links) (PDF)
Rigid poly[hydroxyethyl acrylate-co-poly(ethylene glycol) diacrylate] (Poly(HEA-co-PEGDA) monoliths were synthesized inside 75-µm i.d. capillaries by one-step UV-initiated copolymerization using methanol and ethyl ether as porogens. The optimized monolithic column was evaluated for hydrophobic interaction chromatography (HIC) of standard proteins. Six proteins were separated within 20 min with high resolution using a 20 min elution gradient, resulting in a peak capacity of 54. The performance of this monolithic column for HIC was comparable or superior to the performance of columns packed with small particles. Monoliths synthesized solely from PEGDA were also found to show excellent performance in HIC of proteins. Continuing efforts showed that rigid monoliths could be synthesized from PEGDA or poly(ethylene glycol) dimethacrylates (PEGDMA) containing different ethylene glycol chain lengths for HIC of proteins. Effects of PEG chain length, bi-porogen ratio and reaction temperature on monolith morphology and back pressure were investigated. Monoliths prepared from PEGDA 258 were found to provide the best chromatographic performance with respect to peak capacity and resolution. An optimized PEGDA 258 monolithic column was able to separate proteins using a 20-min elution gradient with a peak capacity of 62. The preparation of these in situ polymerized single-monomer monolithic columns was highly reproducible. The single-monomer synthesis approach clearly improves column-to-column reproducibility.The highly crosslinked monolith networks resulting from single crosslinking monomers were found to enhance the surface area of the monolith and concentrations of mesopores. Thus, monolithic columns were developed from four additional crosslinking monomers, i.e., bisphenol A dimethacrylate (BADMA), bisphenol A ethoxylate diacrylate (BAEDA, EO/phenol = 2 or 4) and pentaerythritol diacrylate monostearate (PDAM) for RPLC of small molecules. Gradient elution of alkyl benzenes and alkyl parabens was achieved with high resolution using all monolithic columns. Porogen selection for the BADMA and PDAM was investigated in detail with the intention of obtaining data that could possiblly lead to a rational method for porogen selection.
8

Entwicklung von Monolithen auf Basis polyfunktioneller Glycidylether für die Anwendung in der Affinitätschromatographie

Pecher, Heike Susanne 28 March 2014 (has links)
Monolithische Phasen werden seit ca. 20 Jahren entwickelt und sind in den letzten Jahren eine attraktive Alternative zu etablierten mit Partikeln gefüllten Säulen geworden. Sie werden in anorganische Phasen und organische Polymermonolithe unterteilt. Monolithe bestehen aus einem einzigen, durchgehenden Stück. Charakteristisch ist das sie durchziehende Porennetzwerk, durch das der Eluent mit geringerem hydraulischen Widerstand fließen kann und das somit schnellere Flussraten ermöglicht. Polymermonolithe werden vorwiegend für die Separation großer Biomoleküle aufgrund eines durch Konvektion beschleunigten Massentransfers eingesetzt. Zudem sind sie über einen breiten pH-Wert-Bereich stabil und können direkt (in situ) im gewünschten Format polymerisiert werden. In der vorliegenden Arbeit gelang die Herstellung neuartiger epoxidbasierter Phasen nach einem von Weller et al. entwickelten Konzept, die im Affinitätsexperiment angewendet wurden. Die Herstellung erfolgte durch Autopolymerisation polyfunktioneller Glycidylether. Für die Funktionalisierung wurden nicht polymerisierte Epoxide genutzt. Als Monomere dienten TEPIC, GE 100 sowie GE 500. Die Arbeiten konzentrierten sich vor allem auf die bei Raumtemperatur durchführbaren Synthesen mit dem höher funktionellen GE 500. Die Polymerisationsbedingungen wurden hinsichtlich Porogenmischung und -anteil optimiert. Eine mit 75 Vol.-% Porogen (Dioxan/ MTBE (2:3)) hergestellte und mit rProtein A funktionalisierte Kapillarsäule (66 %, 12 µm, 7m2/g) ergab im Affinitätsexperiment eine Kapazität von 0,44 mg/mL aus Kaninchenserum isolierbarem IgG. Durch Beimischung von 60 % BDE konnte der Epoxidgehalt vervierfacht und die Porengröße auf 400 nm bei 59 % Porosität reduziert werden. Die spezifische Oberfläche wurde verdreifacht und die Kapazität präparierter Disks auf 0,90 mg/mL etwa verdoppelt. Die in dieser Arbeit entwickelten Disks können zur Isolierung von IgG aus einer komplexen Probe, wie beispielsweise Blutserum, eingesetzt werden. / Monolithic supports have been developed since 20 years and have become an attractive alternative to well-established columns packed with particles over the past years. They are classified into inorganic media and organic polymer monoliths. Monoliths consist of a single, continuous piece with an integrated characteristic porous network through which the eluent can flow with lower hydraulic resistance and which consequently offers higher flow rates. Due to an accelerated mass transfer caused by convection polymer monoliths are mainly used for separation of large biomolecules. In addition, they are stable over a wide pH range and can be polymerized directly (in situ) in the desired format. In the present work the successful preparation of new epoxide-based supports according to a concept introduced by Weller et al. as well as their application in affinity chromatography are reported. Their preparation was carried out by self-polymerization of polyfunctional glycidyl ethers and for functionalization non-polymerized epoxide groups were used. As monomers TEPIC, GE 100 and GE 500 were utilized. The work has focused especially on the polymerization of the higher functional GE 500, which can be perfomed at room temperature and was optimized in terms of both composition and amount of porogen. The extraction of IgG from rabbit serum with a capillary column (66 %, 12 µm, 7m2/g) prepared by 75 vol.-% porogen (dioxane/ MTBE (2:3)) and functionalized with rprotein A resulted in a capacity of 0,44 mg/mL. By addition of 60 % BDE the epoxide content was quadrupled and the pore size reduced to 400 nm while maintaining consistently high porosity of 59 %. The specific surface area was tripled and the capacity of prepared disks approximately doubled to 0,90 mg/mL. The disks developed in this work can be applied for the isolation of IgG from complex samples such as serum.
9

Biocompatible Electrospun Vehicles To Enhance the Effectiveness Of Anti-Fertility Strategies And Their Biomimetic Properties As Blood Vessel Scaffolds

Chaparro, Francisco Javier 01 June 2018 (has links)
No description available.

Page generated in 0.0509 seconds