• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 21
  • 14
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 211
  • 211
  • 38
  • 28
  • 23
  • 21
  • 19
  • 19
  • 18
  • 18
  • 17
  • 17
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Rôle fonctionnel des canaux potassiques activés par le calcium au sein de progéniteurs cardiaques : implication en médecine régénérative

Vigneault, Patrick 04 1900 (has links)
L'insuffisance cardiaque (IC) est un processus progressif et inexorable menant au remodelage pathologique du cœur et à la destruction du parenchyme cardiaque. Indépendamment de l'étiologie, on observe une diminution d'environ 30% du nombre de cardiomyocytes ventriculaires au stade terminal de la maladie. Reposant sur les données précliniques convergentes dans les modèles d'IC, le concept novateur de thérapie cellulaire a suscité beaucoup d’espoir en cardiologie. Bien que leur rôle dans l'homéostasie cardiaque soit controversé, les progéniteurs cardiaques endogènes (eCPCs) qui perdurent au sein du myocarde adulte possèderaient les caractéristiques optimales en vue de la régénération myocardique. Nos données électrophysiologiques montrent que le courant potassique dépendant du Ca2+ de conductance intermédiaire (IKCa3.1) est dominant et qu'il contribue à la détermination du potentiel membranaire (Vmem). L'hyperpolarisation engendrée par l'activation du canal KCa3.1 (SK4; KCNN4) maintient le gradient électrique et favorise l'entrée capacitive de Ca2+ (ECC). D'un point de vue fonctionnel, la potentialisation de la signalisation calcique intracellulaire induite par KCa3.1 semble cruciale pour la prolifération des eCPCs c-Kit+. Puisque le statut clinique est connu pour avoir des conséquences néfastes sur la fonctionnalité des cellules souches, nous avons comparé la densité du courant IKCa3.1 dans des eCPCs c-Kit+ provenant de cœurs sains et insuffisants. En accord avec les données électrophysiologiques, nos résultats démontrent que l'insuffisance cardiaque congestive (CHF) diminue significativement l'expression de KCa3.1 ainsi que des protéines régulatrices du cycle cellulaire. Les cellules souches dérivées d'explants cardiaques (EDCs) représentent un autre produit cellulaire prometteur pour la thérapie cellulaire en cardiologie. Les EDCs se composent de sous-populations complémentaires dont la proportion varie en fonction du statut clinique. Alors que la population CD90- constitue la fraction active en termes d'efficacité thérapeutique, il a été démontré qu'une proportion élevée de cellules CD90+ réduit le potentiel régénératif des EDCs. Afin de faire la lumière sur les déterminants ioniques de la thérapie cellulaire cardiaque, les propriétés électrophysiologiques des populations CD90+ et CD90- ont été comparées. Considérant l'importance de KCa3.1 pour la fonction des eCPCs c-Kit+, la présence de canaux potassiques Ca2+-dépendants (KCa) dans les EDCs a été investiguée. Nous avons identifié 2 types de canaux KCa dans les EDCs humaines. Le canal KCa1.1 (BKCa; KCNMA1) est exprimé de façon homogène alors que KCa3.1 est présent exclusivement dans les cellules CD90-. D'un point de vue fonctionnel, l'activité du canal KCa3.1 détermine le Vmem et supporte la prolifération des EDCs. Puisque ce canal est présent uniquement dans la population cardiogénique, l'expression de KCa3.1 pourrait être un facteur déterminant de la capacité régénérative des EDCs. Nous avons investigué cette hypothèse et confirmé que la transplantation de cellules génétiquement modifiées pour exprimer le canal KCa3.1 augmente la régénération cardiaque dans un modèle murin d'IC d'origine ischémique. Pour la première fois, nous avons fait la démonstration que la modulation des propriétés ioniques de cellules souches peut améliorer leur efficacité thérapeutique. / Heart failure (HF) is a progressive disease characterized by extensive pathological remodelling of the heart and myocardial damage. Regardless of the etiology, a decrease of about 30% in the number of ventricular cardiomyocytes is observed at the terminal stage of HF. Based on converging preclinical data in HF models, the innovative concept of cell therapy has generated a great deal of enthusiasm in cardiology. Although the role of cardiac stem cells in cardiac homeostasis is highly controversial, the multipotent progenitors that persist within the adult myocardium possess the ideal characteristics for cardiac regeneration, especially because of their cardiogenic committment. Plasma membrane ion channels are involved in the fundamental processes of virtually all cells that make up the human body, including stem cells. A wide range of functional ion channels was identified in ex vivo proliferated endogenous cardiac progenitor cells (eCPCs), but their function remains poorly understood. We have completed the very first characterization of the ionic profile of freshly-isolated c-Kit+ eCPCs. We found that the intermediate conductance Ca2+-activated potassium current (IKCa3.1) is the predominant conductance and contributes to the determination of membrane potential (Vmem). The hyperpolarization generated by the activation of the KCa3.1 channel (SK4; KCNN4) maintains the electrical gradient and promotes store-operated Ca2+-entry (SOCE) that activates progenitor cell proliferation. Experimental congestive heart failure (CHF) significantly decreased the expression of KCa3.1 as well as cell cycle regulatory proteins. Taken together, these findings suggest that alterations in KCa3.1 may have pathophysiological and therapeutic significance in regenerative medicine In addition to c-Kit+ eCPCs, cardiac explants-derived cells (EDCs) represent another promising cell product for myocardial repair. EDCs are obtained as a heterogeneous mixture composed of complementary subpopulations. Interestingly, it was found that a high proportion of CD90+ cells reduce the functional benefits of EDCs therapy. Consistent with this observation, it has recently been shown that the CD90- population constitutes the active fraction in terms of therapeutic efficacy. In order to gain insight into the ionic determinants of EDCs function, the electrophysiological properties of the CD90+ and CD90- populations were studied. Considering the importance of KCa3.1 in c-Kit+ CPCs, we evaluated the presence of KCa channels in human EDCs. We have identified 2 types of KCa channels in ex vivo expanded EDCs. While KCa1.1 (BKCa; KCNMA1) channel was homogeneously expressed in both subpopulations, KCa3.1 was found exclusively in the CD90- cell fraction. Similar to our previous observations in freshly isolated c-Kit+ eCPCs, KCa3.1 was responsible for the determination of Vmem under resting conditions and during SOCE. Importantly, we demonstrated that transplantation of genetically-modified EDCs to over-express KCNN4 potentiates cardiac regeneration in a murine model of ischemic cardiomyopathy. This study provides the first evidence in the literature that modulating the activity of a single plasma membrane ion channel can truly improves the therapeutic efficacy of progenitor cells.
202

Strukturelle und funktionelle Untersuchungen von Domänen des spannungsabhängigen Kaliumkanals Tsha3 aus der Regenbogenforelle Onchorhynchus Mykiss / Structural and functional analyses of domains of the Kv Tsha3

Herrling, Regina 20 June 2014 (has links)
Voltage gated potassium channels (Kv) play a key role in the nervous system- not only due to their involvement in the action potential. Vertebrates express four subtypes, which are termed Kv1, Kv2, Kv3 and Kv4, respectively. Tsha3 is a Kv1 channel which was originally isolated from brain tissue of rainbow trout (Oncorhynchus mykiss). This channel possesses an unique amino terminus and a characteristic amino acid sequence in the T1 domain, which is engaged in the oligomerization of Kv α-subunits and is thus involved into the segregation of subfamilies. The two major goals of this thesis were the structural and functional characterization of the N-terminal cytosolic domain of Tsha3 as well as the invention of a system to gain data about the functional dynamics of full length Kv channels. Molecular biological techniques were used to isolate mRNA from trout brains, to transcribe it into cDNA and clone it into vectors. DNA from such plasmids was ligated into expression vectors for heterologous expression in E. coli, P. pastoris and Sf21 cells, with concomitant fusion of marker proteins (GFP or DsRed) or tags (6 x HisTag or StrepTagII) due to the individual experiment. Protein was overexpressed in E. coli and affinity purified to analyze separated domains with biochemical (SDS-PAGE and Western Blot, Pull-Down-Assay or Dot-Blot-Assay) or biophysical (CD-spectroscopy, EPR spectroscopy) efforts. The P. pastoris system to express Tsha1 was established, to generate a system for future EPR-measurements of whole Kv channels. Heterologous expression of Kv1α (Tsha3 and Tsha1) and the core domain of Kvβ in Sf21 cells was performed to analyze the subcellular distribution of the respective subunits via fluorescence microscope and via subcellular fractionation of cell lysates with downstream biochemical analyses (SDS-PAGE and Western Blot). Furthermore the gating of diverse fusion constructs of Tsha3 in co-expressions and the gating of diverse cystein substitution mutants of Tsha1 were measured via path-clamp recordings in whole cell modus. The structural analyses of the N-terminal cytosolic domain (NCD) of Tsha3 revealed that the 128 amino acid containing part before the T1-domain (Tsha3-NT) can be structurally divided into three parts of different structure and mobility. The most outward part possesses a very high mobility and is putatively unfolded as random coil. This section is expected to express no tertiary contacts. The middle part of Tsha3-NT is structured in α-helices and β-sheets and thus slightly immobile. This folded part is also assumed to build no tertiary structure and to be exposed into the cytosol. The third, which is directly neighboring the T1 domain, has the most restricted mobility of Tsha3-NT. It consists predominantly of α-helices and exhibits a tertiary structure, putatively with the T1 domain. Tsha3-NCD self-tetramerizes and oligomerizes with Tsha1, although mutations exist in Tsha3 in conserved amino acids, which were reported to function in subfamily specific hetero-tetramerization. Thus it is proven, that Tsha3 takes part in the segregation into the Kv1 subfamily. Furthermore, Tsha3 interacts with the core domain of Kvβ2 although there are also mutations in the reported consensus sequence for interaction. Association of Kvβ2 in co-expression studies directs Tsha3-DsRed fusion constructs from internal vesicular structures into the cell membrane. But the fusion with DsRed is leading to a loss of function of Tsha3 which cannot be rescued by co-expression of the chaperone Kvβ2. But- without fusion of marker proteins- Tsha3 was identified as an outward rectifier in a cooperative Bachelor Thesis. These structural data lead to the assumption, that Tsha3-NT exhibits lateral interactions and especially the helical but mobile middle part of the N-terminus can play such a role. Due to the localization next to the membrane, interactions with membrane proteins- putatively with protein cascades are possible. Although Tsha3-NT contains no reported interaction domains for protein-protein interactions, follow-up experiments should be performed to shed light on this interesting question. Tsha1 C30S C31S C180S C224A C239S C389S C424S C476S is a complete cysteine free mutant, which was identified as a functional voltage-gated potassium channel. It was expressed in and purified from eukaryotic cells (P. pastoris) and therefore it can be assumed to be properly folded and modified. After a slight optimization of the features of expression, this system can be used to reconstitute Tsha1 channels into liposomes and use them for Freeze Quench EPR to gain structural information about a Kv1 channel in the open as well as in the closed state. This is the first report of the establishment of a full length Kv for studies of structure and functional dynamics experiments.
203

Design of Minimal Ion Channels

Yuchi, Zhiguang January 2009 (has links)
<p> We developed some universal platforms to overexpress the minimal functional entities of ion channels. The modular property of ion channels have been demonstrated from many aspects, such as crystal structures, chimeric channel experiments and discovery of similar modules in distantly related protein families. Thus it should be feasible to express each module independent of other channel modules. The pore-forming module of ion channels has multiple important properties as selectivity, conductivity and drug-binding. If it can be overexpressed, it will provide valuable information about channel selectivity to different ions and structural bases for drug binding as well as important application in drug screening and rational drug design. </p> <p> To test this, we first used the model channel KcsA to identify the minimal requirements for a pore-forming domain to functionally exist independently. Chapter 2 of this thesis explains in detail how the wild type C-terminal cytoplasmic domain of KcsA functions. We found that this domain has dual function as pH-sensor and tetramerization domain, and it is essential for the expression of the pore-forming domain of KcsA. Once we knew the physiological role of the cytoplasmic domain, the scenario was set to answer the question of how to make it better for the application of structural and functional studies. </p> <p> In chapter 3 and chapter 4, we replaced the wild type C-terminal domain with non-native tetramerization domains. We identified the direct correlation between protein expression level and overall thermostability of pore-forming domains. The C-terminal tetramerization domains stabilize channels in a cooperative way and play a critical way in in vivo channel assembly. The selection of the linker between pore-forming domain and tetramerization domain, the splicing motif, and the handedness of C-terminal tetrameric coiled coils all affect channel expression level and stability. </p> <p> We applied our finding in KcsA to a wide range of ion channels in chapter 5, including voltage-gated potassium channels, Ca2+-gated potassium channels, inwardrectifying potassium channels, cyclic nucleotide-gated potassium channels and voltagegated sodium channels. We managed to express similar minimal structural modules from these more structurally complicated channels with the assistance of different cytoplasmic tetramerization domains. Several minimal channels expressed well and showed similar biophysical and functional property as the wild type channels. </p> <p> These studies demonstrate that the pore-forming modules of ion channels can be expressed independently while retaining the proper structure and drug-binding properties as their wild type predecessors when using our universal expression platform. The potential application in structural studies and drug-screening is promising. </p> / Thesis / Doctor of Philosophy (PhD)
204

Human hair follicles contain two forms of ATP-sensitive potassium channels, only one of which is sensitive to minoxidil

Shorter, K., Farjo, N.P., Picksley, Stephen M., Randall, Valerie A. January 2008 (has links)
No / Hair disorders cause psychological distress but are generally poorly controlled; more effective treatments are required. Despite the long-standing use of minoxidil for balding, its mechanism is unclear; suggestions include action on vasculature or follicle cells. Similar drugs also stimulate hair, implicating ATP-sensitive potassium (K(ATP)) channels. To investigate whether K(ATP) channels are present in human follicles, we used organ culture, molecular biological, and immunohistological approaches. Minoxidil and tolbutamide, a K(ATP) channel blocker, opposed each other's effects on the growing phase (anagen) of scalp follicles cultured in media with and without insulin. Reverse transcriptase-polymerase chain reaction identified K(ATP) channel component gene expression including regulatory sulfonylurea receptors (SUR) SUR1 and SUR2B but not SUR2A and pore-forming subunits (Kir) Kir6.1 and Kir6.2. When hair bulb tissues were examined separately, epithelial matrix expressed SUR1 and Kir6.2, whereas both dermal papilla and sheath exhibited SUR2B and Kir6.1. Immunohistochemistry demonstrated similar protein distributions. Thus, human follicles respond biologically to K(ATP) channel regulators in culture and express genes and proteins for two K(ATP) channels, Kir6.2/SUR1 and Kir6.1/SUR2B; minoxidil only stimulates SUR2 channels. These findings indicate that human follicular dermal papillae contain K(ATP) channels that can respond to minoxidil and that tolbutamide may suppress hair growth clinically; novel drugs designed specifically for these channels could treat hair disorders.
205

Implication de l'aldostérone dans les changements hémodynamiques de la grossesse

Provencher, Mylène 03 1900 (has links)
La grossesse s’accompagne d’importantes modifications hormonales et hémodynamiques. Parmi celles-ci, le système rénine-angiotensine-aldostérone (SRAA) est activé très tôt durant la grossesse. De plus, cette augmentation du SRAA est accompagnée d’élévations du débit cardiaque et du volume plasmatique ainsi que des baisses paradoxales de la pression artérielle et de la résistance vasculaire périphérique. Ceci suggère que la grossesse induit un remaniement des réponses physiologiques normales au SRAA. Une résistance vasculaire à l’action des vasopresseurs est également observée durant la gestation. Ce phénomène serait causé par la modification de la fonction des canaux calciques et potassiques. De plus, il serait possiblement dû à la participation de la Na+/K+-ATPase, par son influence sur le potentiel membranaire des cellules des muscles lisses vasculaires (VSMC). La présence des récepteurs minéralocorticoïdes (MR) dans les VSMC laisse croire que l’aldostérone peut influencer le tonus vasculaire par des effets génomiques et non-génomiques. Compte tenu des connaissances actuelles, nous avons émis l’hypothèse que l’augmentation des taux sériques d’aldostérone durant la grossesse est responsable des changements hémodynamiques observés et que ces effets sont causés par l’activation des MR. Des rates gestantes ont été traitées avec du canrénoate de potassium (20 mg/kg•jr), un antagoniste des MR, durant la dernière semaine de gestation (sur 3). Sur des anneaux aortiques dénudés de leur endothélium, nous avons mesuré les réponses contractiles à la phényléphrine (PhE) et au KCl en présence d’un bloqueur des canaux calciques dépendants du voltage (VDCC), la nifédipine, et d’activateurs des canaux potassiques à large conductance (BKCa) et ceux dépendants de l’ATP (KATP), respectivement le NS-1619 et la cromakalim. Les réponses à la PhE et au KCl sont réduites à partir du 17e jour de gestation et le traitement au canrénoate augmente ces réponses dans tous les groupes. Les modulateurs de canaux ioniques atténuent les réponses à la PhE et au KCl. Cependant, le canrénoate modifie aussi les effets des modulateurs sur les aortes. Aucun effet ou une baisse des réponses est observable chez les rates non gestantes, tandis qu’une hausse de leur effet inhibiteur est notée chez les rates gestantes. Ces effets du canrénoate font croire que l’aldostérone participe à l’adaptation de la réactivité vasculaire durant la grossesse. Par ailleurs, le potentiel membranaire des VSMC pourrait être affecté dans la gestation. Pour vérifier cette hypothèse, nous avons évalué l’activité de la Na+/K+-ATPase, impliquée dans le contrôle du potentiel membranaire. Nos résultats démontrent que l’activité de la pompe est inhibée à partir du 19e jour de gestation. Cet effet est renversé par le canrénoate. Toutefois, comme le renversement de l’inhibition de la pompe est également présent chez les rates gestantes traitées avec du PST 2238, un antagoniste de l’ouabaïne sur la Na+/K+-ATPase, et que le canrénoate agit également comme agoniste partiel de la pompe, nous croyons que la diminution d’activité associée à la gestation est liée à une inhibition de la Na+/K+-ATPase par des stéroïdes cardiotoniques plutôt qu’à un effet des minéralocorticoïdes. L’augmention d’activité de la pompe liée au canrénoate s’accompagne d’une diminution de l’expression de la sous-unité α1, suggérant que la sous-unité α2 est responsable des variations de contractilité de l’aorte, puisque son expression n’est pas modifiée par le canrénoate. Les effets de la diminution de l’expression de la sous-unité α1, influencée par la signalisation du MR, restent à être déterminés. Néanmoins, nos résultats montrent que les modifications d’activité de la Na+/K+-ATPase influencent l’activité des canaux potassiques et que la pompe pourraient être un des éléments primordiaux dans le contrôle de la réactivité vasculaire durant la grossesse. Comme le canrénoate modifie la réactivité vasculaire, nous voulions déterminer ses impacts sur la pression artérielle. Des rates gestantes ont été traitées avec du canrénoate (20 ou 60 mg/kg•jr) et les paramètres hémodynamiques ont été évalués par radiotélémétrie. Aucune modification de la pression artérielle, du rythme cardiaque et de la pression pulsée ne sont mesurées chez les rates recevant le traitement. Toutefois, des augmentations de l’osmolalité, des taux sériques d’aldostérone et de corticostérone ainsi que de l’activité rénine plasmatique sont observées chez les animaux recevant 60 mg/kg•jr. Le canrénoate bloque donc le rétrocontrôle du SRAA. Par contre, les MR ne sont pas les principaux responsables du contrôle de la pression artérielle durant la grossesse. En conclusion, nous avons démontré que le traitement des rates au canrénoate influence la réactivité vasculaire de l’aorte durant la gestation. Cet effet est causé par la modification de l’activité de certains canaux ioniques (VDCC, BKCa et KATP). De plus, le canrénoate renverse l’inhibition de la Na+/K+-ATPase observée durant la gestation. Finalement, les actions locales de cet antagoniste des MR sur les vaisseaux sanguins ne se répercutent pas sur l’effet systémique global et aucune modification de la pression artérielle n’est observée. D’autres études seront toutefois nécessaires pour déterminer les voies de signalisation par lesquelles l’aldostérone module les réponses des canaux ioniques dans les VSMC. / Pregnancy is accompanied by important hormonal and hemodynamic modifications. Among them, the renin-angiotensin-aldosterone system (RAAS) is activated early during pregnancy. Furthermore, this increase of RAAS is accompanied by raises of cardiac output and blood volume as well as paradoxal decreases in blood pressure and peripheral vascular resistance. These suggest that pregnancy induces reorganization of the normal physiological responses to RAAS. In addition, a decreased vascular reactivity to vasoconstrictive agents is observed during pregnancy. Modifications of calcium and potassium channels function would be implicated in this phenomenon. Furthermore, an implication of the Na+/K+-ATPase is suspected, through its influence on the membrane potential of vascular smooth muscle cells (VSMC). Aldosterone, through the presence of mineralocorticoid receptors (MR) in VSMC, could control vascular tone by its genomic and non-genomic effects. With our knowledge at this time, we submit the hypothesis that the increased serum aldosterone levels of pregnancy are responsible for the hemodynamic changes associated with pregnancy and that these effects are caused by the activation of MR. Pregnant rats were treated with potassium canrenoate (20 mg/kg•d), a MR antagonist, during the last week of pregnancy (out of 3 weeks). Vascular reactivity of endothelium-denuded aortic rings was measured. Contractile responses to phenylephrine (PhE) and KCl were studied in the presence of a voltage-dependent calcium channel (VDCC) blocker, nifedipine, as well as calcium-actived (BKCa) and ATP-dependent (KATP) potassium channels activators, NS-1619 and cromakalim respectively. Vascular responses to PhE and KCl were reduced as of the 17th day of gestation. Canrenoate increased the responses to both agonists in the aortas of all the groups. Ionic channel modulators reduced the contractile responses to PhE and KCl. However, canrenoate also modified the responses to the modulators. In the aortas of non pregnant rats, no effect or a decrease of their inhibitory effect were observed while with the pregnant rats we noticed an increased effect. These results suggest that aldosterone could be implicated in the adaptation of vascular responses to pregnancy. On the other hand, VSMC membrane potential could be affected during pregnancy. To verify this hypothesis, Na+/K+-ATPase activity was evaluated since it is implicated in its control. Our results demonstrated that the pump is inhibited as of the 19th day of pregnancy. This effect was reversed by canrenoate. However, since the reversal of the inhibition of the pump was also present in pregnant rats treated with PST 2238, an ouabain antagonist on the Na+/K+-ATPase, and because canrenoate can also act as a partial agonist of the pump, we believe that the decreased activity associated with pregnancy is linked to the inhibition of the Na+/K+-ATPase by cardiotonic steroids rather than the effect of mineralocorticoids. The increased activity of the pump by canrenoate is linked with a decreased of the α1 subunit expression. This suggests that the α2 subunit of the pump would be responsible for the variations of aortic contractility since its expression is not modified by canrénoate. The effects of the diminished expression of the α1 subunit, influenced by the MR signalization, still need to be determined. Nevertheless, our results showed that modifications of Na+/K+-ATPase activity had an impact on the activity of potassium channels and that the pump could be one of the principal elements implicated in the control of vascular reactivity during pregnancy. Since canrenoate modified vascular reactivity, we wanted to determine its impact on blood pressure. Pregnant rats were treated with canrenoate (20 or 60 mg/kg•d) and hemodynamic functions were determined by radiotelemetry. No modification was observed in blood pressure, cardiac output and pulse pressure among the treated rats. However, increases in osmolality, aldosterone and corticosterone levels as well as plasma renin activity were observed in the animal receiving the 60 mg/kg•d canrénoate. Thus, canrenoate blocks the negative feedback of the RAAS. However, MR are not the principal element responsible for the control of blood pressure during pregnancy. In conclusion, we have demonstrated that canrenoate affects aortic vascular reactivity during pregnancy. This effect is perpetuated by modifying the activity of certain ionic channels (VDCC, BKCa and KATP). Furthermore, canrenoate is able to reverse the inhibition of the Na+/K+-ATPase observed during pregnancy. Finally, the local actions of this MR antagonist on blood vessels are not reflected by the global systemic effect and no modification of the blood pressure was observed. Other studies will be necessary to determine the signaling pathways by which aldosterone modulate ionic channel responses in VSMC.
206

Implication de l'aldostérone dans les changements hémodynamiques de la grossesse

Provencher, Mylène 03 1900 (has links)
La grossesse s’accompagne d’importantes modifications hormonales et hémodynamiques. Parmi celles-ci, le système rénine-angiotensine-aldostérone (SRAA) est activé très tôt durant la grossesse. De plus, cette augmentation du SRAA est accompagnée d’élévations du débit cardiaque et du volume plasmatique ainsi que des baisses paradoxales de la pression artérielle et de la résistance vasculaire périphérique. Ceci suggère que la grossesse induit un remaniement des réponses physiologiques normales au SRAA. Une résistance vasculaire à l’action des vasopresseurs est également observée durant la gestation. Ce phénomène serait causé par la modification de la fonction des canaux calciques et potassiques. De plus, il serait possiblement dû à la participation de la Na+/K+-ATPase, par son influence sur le potentiel membranaire des cellules des muscles lisses vasculaires (VSMC). La présence des récepteurs minéralocorticoïdes (MR) dans les VSMC laisse croire que l’aldostérone peut influencer le tonus vasculaire par des effets génomiques et non-génomiques. Compte tenu des connaissances actuelles, nous avons émis l’hypothèse que l’augmentation des taux sériques d’aldostérone durant la grossesse est responsable des changements hémodynamiques observés et que ces effets sont causés par l’activation des MR. Des rates gestantes ont été traitées avec du canrénoate de potassium (20 mg/kg•jr), un antagoniste des MR, durant la dernière semaine de gestation (sur 3). Sur des anneaux aortiques dénudés de leur endothélium, nous avons mesuré les réponses contractiles à la phényléphrine (PhE) et au KCl en présence d’un bloqueur des canaux calciques dépendants du voltage (VDCC), la nifédipine, et d’activateurs des canaux potassiques à large conductance (BKCa) et ceux dépendants de l’ATP (KATP), respectivement le NS-1619 et la cromakalim. Les réponses à la PhE et au KCl sont réduites à partir du 17e jour de gestation et le traitement au canrénoate augmente ces réponses dans tous les groupes. Les modulateurs de canaux ioniques atténuent les réponses à la PhE et au KCl. Cependant, le canrénoate modifie aussi les effets des modulateurs sur les aortes. Aucun effet ou une baisse des réponses est observable chez les rates non gestantes, tandis qu’une hausse de leur effet inhibiteur est notée chez les rates gestantes. Ces effets du canrénoate font croire que l’aldostérone participe à l’adaptation de la réactivité vasculaire durant la grossesse. Par ailleurs, le potentiel membranaire des VSMC pourrait être affecté dans la gestation. Pour vérifier cette hypothèse, nous avons évalué l’activité de la Na+/K+-ATPase, impliquée dans le contrôle du potentiel membranaire. Nos résultats démontrent que l’activité de la pompe est inhibée à partir du 19e jour de gestation. Cet effet est renversé par le canrénoate. Toutefois, comme le renversement de l’inhibition de la pompe est également présent chez les rates gestantes traitées avec du PST 2238, un antagoniste de l’ouabaïne sur la Na+/K+-ATPase, et que le canrénoate agit également comme agoniste partiel de la pompe, nous croyons que la diminution d’activité associée à la gestation est liée à une inhibition de la Na+/K+-ATPase par des stéroïdes cardiotoniques plutôt qu’à un effet des minéralocorticoïdes. L’augmention d’activité de la pompe liée au canrénoate s’accompagne d’une diminution de l’expression de la sous-unité α1, suggérant que la sous-unité α2 est responsable des variations de contractilité de l’aorte, puisque son expression n’est pas modifiée par le canrénoate. Les effets de la diminution de l’expression de la sous-unité α1, influencée par la signalisation du MR, restent à être déterminés. Néanmoins, nos résultats montrent que les modifications d’activité de la Na+/K+-ATPase influencent l’activité des canaux potassiques et que la pompe pourraient être un des éléments primordiaux dans le contrôle de la réactivité vasculaire durant la grossesse. Comme le canrénoate modifie la réactivité vasculaire, nous voulions déterminer ses impacts sur la pression artérielle. Des rates gestantes ont été traitées avec du canrénoate (20 ou 60 mg/kg•jr) et les paramètres hémodynamiques ont été évalués par radiotélémétrie. Aucune modification de la pression artérielle, du rythme cardiaque et de la pression pulsée ne sont mesurées chez les rates recevant le traitement. Toutefois, des augmentations de l’osmolalité, des taux sériques d’aldostérone et de corticostérone ainsi que de l’activité rénine plasmatique sont observées chez les animaux recevant 60 mg/kg•jr. Le canrénoate bloque donc le rétrocontrôle du SRAA. Par contre, les MR ne sont pas les principaux responsables du contrôle de la pression artérielle durant la grossesse. En conclusion, nous avons démontré que le traitement des rates au canrénoate influence la réactivité vasculaire de l’aorte durant la gestation. Cet effet est causé par la modification de l’activité de certains canaux ioniques (VDCC, BKCa et KATP). De plus, le canrénoate renverse l’inhibition de la Na+/K+-ATPase observée durant la gestation. Finalement, les actions locales de cet antagoniste des MR sur les vaisseaux sanguins ne se répercutent pas sur l’effet systémique global et aucune modification de la pression artérielle n’est observée. D’autres études seront toutefois nécessaires pour déterminer les voies de signalisation par lesquelles l’aldostérone module les réponses des canaux ioniques dans les VSMC. / Pregnancy is accompanied by important hormonal and hemodynamic modifications. Among them, the renin-angiotensin-aldosterone system (RAAS) is activated early during pregnancy. Furthermore, this increase of RAAS is accompanied by raises of cardiac output and blood volume as well as paradoxal decreases in blood pressure and peripheral vascular resistance. These suggest that pregnancy induces reorganization of the normal physiological responses to RAAS. In addition, a decreased vascular reactivity to vasoconstrictive agents is observed during pregnancy. Modifications of calcium and potassium channels function would be implicated in this phenomenon. Furthermore, an implication of the Na+/K+-ATPase is suspected, through its influence on the membrane potential of vascular smooth muscle cells (VSMC). Aldosterone, through the presence of mineralocorticoid receptors (MR) in VSMC, could control vascular tone by its genomic and non-genomic effects. With our knowledge at this time, we submit the hypothesis that the increased serum aldosterone levels of pregnancy are responsible for the hemodynamic changes associated with pregnancy and that these effects are caused by the activation of MR. Pregnant rats were treated with potassium canrenoate (20 mg/kg•d), a MR antagonist, during the last week of pregnancy (out of 3 weeks). Vascular reactivity of endothelium-denuded aortic rings was measured. Contractile responses to phenylephrine (PhE) and KCl were studied in the presence of a voltage-dependent calcium channel (VDCC) blocker, nifedipine, as well as calcium-actived (BKCa) and ATP-dependent (KATP) potassium channels activators, NS-1619 and cromakalim respectively. Vascular responses to PhE and KCl were reduced as of the 17th day of gestation. Canrenoate increased the responses to both agonists in the aortas of all the groups. Ionic channel modulators reduced the contractile responses to PhE and KCl. However, canrenoate also modified the responses to the modulators. In the aortas of non pregnant rats, no effect or a decrease of their inhibitory effect were observed while with the pregnant rats we noticed an increased effect. These results suggest that aldosterone could be implicated in the adaptation of vascular responses to pregnancy. On the other hand, VSMC membrane potential could be affected during pregnancy. To verify this hypothesis, Na+/K+-ATPase activity was evaluated since it is implicated in its control. Our results demonstrated that the pump is inhibited as of the 19th day of pregnancy. This effect was reversed by canrenoate. However, since the reversal of the inhibition of the pump was also present in pregnant rats treated with PST 2238, an ouabain antagonist on the Na+/K+-ATPase, and because canrenoate can also act as a partial agonist of the pump, we believe that the decreased activity associated with pregnancy is linked to the inhibition of the Na+/K+-ATPase by cardiotonic steroids rather than the effect of mineralocorticoids. The increased activity of the pump by canrenoate is linked with a decreased of the α1 subunit expression. This suggests that the α2 subunit of the pump would be responsible for the variations of aortic contractility since its expression is not modified by canrénoate. The effects of the diminished expression of the α1 subunit, influenced by the MR signalization, still need to be determined. Nevertheless, our results showed that modifications of Na+/K+-ATPase activity had an impact on the activity of potassium channels and that the pump could be one of the principal elements implicated in the control of vascular reactivity during pregnancy. Since canrenoate modified vascular reactivity, we wanted to determine its impact on blood pressure. Pregnant rats were treated with canrenoate (20 or 60 mg/kg•d) and hemodynamic functions were determined by radiotelemetry. No modification was observed in blood pressure, cardiac output and pulse pressure among the treated rats. However, increases in osmolality, aldosterone and corticosterone levels as well as plasma renin activity were observed in the animal receiving the 60 mg/kg•d canrénoate. Thus, canrenoate blocks the negative feedback of the RAAS. However, MR are not the principal element responsible for the control of blood pressure during pregnancy. In conclusion, we have demonstrated that canrenoate affects aortic vascular reactivity during pregnancy. This effect is perpetuated by modifying the activity of certain ionic channels (VDCC, BKCa and KATP). Furthermore, canrenoate is able to reverse the inhibition of the Na+/K+-ATPase observed during pregnancy. Finally, the local actions of this MR antagonist on blood vessels are not reflected by the global systemic effect and no modification of the blood pressure was observed. Other studies will be necessary to determine the signaling pathways by which aldosterone modulate ionic channel responses in VSMC.
207

Modification of ion channel auxiliary subunits in cardiac disease

Al Katat, Aya 10 1900 (has links)
L’infarctus du myocarde (IM) survenant après l’obstruction de l’artère coronaire est la cause principale des décès cardiovasculaires. Après l’IM, le coeur endommagé répond à l’augmentation du stress hémodynamique avec une cicatrice et une hypertrophie dans la région non-infarcie du myocarde. Dans la région infarcie, la cicatrice se forme grâce au dépôt du collagène. Pendant formation de la cicatrice, les cardiomyocytes ventriculaires résidant dans la région non-infarcie subissent une réponse hypertrophique après l’activation chronique due au système sympathique et à l’angiotensine II. La cicatrisation préserve l’intégrité structurale du coeur et l'hypertrophie des cardiomyocytes apporte un support ionotropique. Le canal CaV1.2 joue un rôle dans la réponse hypertrophique après l’IM. L’activation du CaV1.2 déclenche la signalisation dépendante de Ca2+ induisant l’hypertrophie. Cependant, il est rapporté que l’ouverture des canaux potassiques (KATP) ATP sensitifs joue un rôle sélectif dans l’expansion de la cicatrice après IM. Malgré leur expression dans les coeurs mâles, les KATP fournissent une cardioprotection sexe dépendante limitant l’expansion de la cicatrice chez les femelles. L’administration de rapamycine aux rates ayant subi un infarctus produit l’expansion de la cicatrice, soutenant la relation possible entre la cible de rapamycine, mTORC1 et les KATP dans la cardioprotection sexe spécifique. Effectivement, dans les cellules pancréatiques α, la signalisation mTORC1 était couplée à l'activation du KATP. Cependant, le lien entre mTORC1 et les canaux KATP dans le coeur reste inconnu. L'objectif de la thèse est d’examiner le rôle des canaux ioniques dans le remodelage cardiaque post-IM, surtout des canaux calciques dans l'hypertrophie et d'élucider la relation entre les KATP et mTORC1. L’hypothèse première teste que l’hypertrophie médiée par le système sympathique des cardiomyocytes ventriculaires des rats néonataux (NRCM) produit une augmentation de l’influx calcique après une augmentation des sous-unités du CaV1.2. Le traitement de norépinéphrine (NE) quadruple l’amplitude du courant calcique type L et double l’expression protéique des sous unités de CaVα2δ1 et CaVβ3. L’hypertrophie des NRCM au NE s’associe à une augmentation de la phosphorylation de la Kinase ERK 1/2. Le β1-bloqueur metoprolol et l’inhibiteur ii de ERK1/2 diminuent l’effet de NE sur CaVα2δ1. Cependant, l’augmentation de CaVβ3 et de la réponse hypertrophique persiste. Ainsi, le signal β1-adrenergique à travers ERK augmente les sous-unités CaVα2δ1 outre l’hypertrophie. L’autre hypothèse examine la spécificité du sexe sur l’expansion cicatricielle médiée par rapamycine et l’influence de mTOR sur l’expression de KATP. Rapamycin augmente la surface de la cicatrice et inhibe la phosphorylation de mTOR chez les coeurs de femelles. Dans les coeurs des deux sexes, la phosphorylation de mTOR et l’expression de KATP, Kir6.2 et SUR2A sont similaires. Cependant, une grande inactivation de la tubérine et une faible expression de raptor sont détectées chez les femelles. Le traitement à l’ester de phorbol des NRCM induit l’hypertrophie, augmente la phosphorylation de p70S6K et l’expression SUR2A. Le prétraitement par Rapamycine atténue chacune des réponses. Rapamycin démontre un patron d’expansion cicatriciel sexe spécifique et une régulation de phosphorylation de mTOR dans IM. Aussi, l’augmentation de SUR2A dans les NRCM traités par PDBu révèle une interaction entre mTOR et KATP. / Myocardial infarction (MI) secondary to the obstruction of the coronary artery is the main cause of cardiovascular death. Following MI, the damaged heart adapts to the increased hemodynamic stress via formation of a scar and a hypertrophic response of ventricular cardiomyocytes in the non-infarcted myocardium. In the infarcted region, a scar is formed via the rapid deposition of collagen. With ongoing scar formation, ventricular cardiomyocytes in the non-infarcted myocardium undergo a hypertrophic response secondary to the chronic activation by the sympathetic system and angiotensin II. Collectively, scar formation and cardiomyocyte hypertrophy preserve the structural integrity of the heart and provide inotropic support, respectively. CaV1.2 channels play a significant role in the hypertrophic response post-MI. Notably, the activation of CaV1.2 channel triggers Ca2+-dependent signaling that induces hypertrophy. By contrast, the opening of ATP-sensitive potassium (KATP) channels was shown to partake in selective scar expansion following MI. Notwithstanding its expression in male hearts, KATP channels endow a sex-dependent cardioprotection limiting scar expansion selectively in females. Moreover, administration of the macrolide rapamycin to the infarcted female rat heart led to scar expansion, supporting the possible relationship between the target of rapamycin, mTORC1 and KATP channels in providing sex-specific cardioprotection. Indeed, in pancreatic-α cells, mTORC1 signaling was coupled to KATP channel activation. However, whether mTORC1 targets KATP channels in the heart remains unknown. Thus, the AIM of the thesis was to explore the role of ion channels in cardiac remodeling post-MI by specifically addressing the role of Ca channels in cardiomyocyte hypertrophy and elucidate the potential relationship between KATP channels and mTORC1 signaling. The first study tested the hypothesis that hypertrophied neonatal rat ventricular cardiomyocytes (NRVMs) following sympathetic stimulation translated to an increase in calcium influx secondary to the augmentation of CaV1.2 channel subunits. NE treatment led to a 4-fold increase of L-type Ca2+ peak current associated with a 2-fold upregulation of CaVα2δ1 and CaVβ3 protein subunits in hypertrophied NRVMs. The hypertrophic response of NNVMs to NE was associated with the increased phosphorylation of extracellular regulated kinase (ERK1/2). The β1-blocker metoprolol and the ERK1/2 inhibitor suppressed NE-mediated protein upregulation of CaVα2δ1 whereas CaVβ3 upregulation and the hypertrophic response persisted. Therefore, sympathetic mediated β1-adrenergic signaling via ERK selectively upregulated the CaVα2δ1 subunit independent of NRVM hypertrophy. The second study tested the hypothesis that rapamycin-mediated scar expansion was sexspecific and mTOR influenced KATP channel subunit expression. Rapamycin administration translated to scar expansion and inhibited mTOR phosphorylation exclusively in females. In normal adult male and female rat hearts, mTOR phosphorylation and protein levels of KATP channel subunits Kir6.2 and SUR2A were similar. However, greater tuberin inactivation and reduced raptor protein levels were detected in females. NRVMs treated with a phorbol ester induced hypertrophy, increased p70S6K phosphorylation and SUR2A protein levels and rapamycin pretreatment attenuated each response. Thus, rapamycin administration to MI rats unmasked a sex-specific pattern of scar expansion and highlighted the disparate regulation of mTOR phosphorylation. Moreover, rapamycin-dependent upregulation of SUR2A in PDButreated NRVMs revealed a novel interaction between mTOR and KATP channel subunit expression
208

Étude de stratégies thérapeutiques complémentaires visant à favoriser la résolution des paramètres du syndrome de détresse respiratoire aiguë dans des modèles in vivo

Aubin Vega, Mélissa 04 1900 (has links)
Le syndrome de détresse respiratoire aiguë (SDRA) est une forme de défaillance respiratoire sévère, cause majeure de mortalité (~30-45%) chez les adultes et enfants dans les unités de soins intensifs. En dépit des progrès dans la prise en charge du patient, il n’existe à ce jour aucun traitement curatif pharmacologique efficace. Le SDRA peut se développer à la suite d’une atteinte pulmonaire directe (ex. pneumonie) ou indirecte (ex. septicémie) dont les principales caractéristiques sont des lésions épithéliales alvéolaires et endothéliales vasculaires, le développement d’un oedème pulmonaire et une réponse inflammatoire exacerbée durant la phase aiguë exsudative. La résolution de ces paramètres est critique afin d’éviter l’établissement irréversible de fibrose, entraînant une défaillance respiratoire. Le caractère hétérogène du SDRA et l’implication d’une multitude de mécanismes lésionnels rendent le développement de nouvelles thérapies plus difficile. Nous avons posé l’hypothèse que la restauration de l’intégrité épithéliale, en parallèle de la résolution de l’inflammation et la résorption de l’oedème, est critique pour la résolution de la phase exsudative du SDRA. Nous avons donc postulé que des stratégies combinant des effets bénéfiques sur la clairance liquidienne et proréparatrice constitueraient une voie intéressante pour la restauration de l’intégrité fonctionnelle de l’épithélium alvéolaire. L’objectif général de mon projet de doctorat était donc d’évaluer différentes stratégies, ciblant 1) l’inflammation, 2) le canal sodique ENaC impliqué dans la clairance liquidienne et 3) les canaux potassiques ayant un rôle pro-réparateur, avec des modèles complémentaires in vivo de lésions aiguës induites, mimant des paramètres de SDRA. Nous pensons que cette étude aura apporté de nouvelles connaissances sur la physiopathologie du SDRA et les mécanismes de résolution des paramètres caractéristiques de ce syndrome. Mon projet met particulièrement en lumière que de cibler une seule composante telle que l’inflammation ou la clairance liquidienne n’est pas suffisante et que des composés permettant de restaurer l’intégrité fonctionnelle alvéolaire sont nécessaires. / Acute respiratory distress syndrome (ARDS) is a severe form of respiratory failure, a leading cause of death (~30-45%) among adults and children in intensive care units. Despite advances in the management and care of ARDS patients, there is currently no effective curative pharmacological treatment. The ARDS can develop following a direct (e.g. pneumonia) or indirect (e.g. sepsis) lung injury, the main features of which are alveolar epithelial and endothelial vascular injury, the development of pulmonary edema, and an exacerbated inflammatory response during the exsudative acute phase. The resolution of these parameters is critical to avoid the irreversible establishment of fibrosis leading to respiratory failure. The heterogeneous nature of ARDS and the involvement of various lesional mechanisms complicate the development of new therapeutic strategies. We hypothesized that the epithelial restoration, in parallel with inflammatory resolution and edema resorption, is critical for the resolution of the acute exsudative phase of ARDS. Therefore, we postulated that strategies combining beneficial effects on fluid clearance and pro repair may be an interesting way to restore the functional integrity of the alveolar epithelium. The general objective of my PhD project was to evaluate different strategies targeting 1) the inflammation, 2) the sodium channel ENaC involved in fluid clearance, and 3) potassium channels playing pro repair role, using complementary in vivo models of acute lung injury mimicking ARDS parameters. We believe that these studies have provided new insight on the pathophysiology of ARDS and the mechanisms of resolution of the characteristic parameters of this syndrome. In particular, my project highlights that focusing on a single component such as inflammation or fluid clearance is not sufficient and that compounds will restore functional alveolar integrity are needed.
209

Analysis of mouse models of insulin secretion disorders

Kaizik, Stephan Martin January 2010 (has links)
No description available.
210

Etude de l'implication des cellules microgliales et de l'α-synucleine dans la maladie neurodégénérative de Parkinson / Microglia and α-synuclein implication in Parkinson's disease

Moussaud, Simon 25 February 2011 (has links)
Les maladies neurodégénératives liées à l’âge, telle celle de Parkinson, sont un problème majeur de santé publique. Cependant, la maladie de Parkinson reste incurable et les traitements sont très limités. En effet, les causes de la maladie restent encore mal comprises et la recherche se concentre sur ses mécanismes moléculaires. Dans cette étude, nous nous sommes intéressés à deux phénomènes anormaux se produisant dans la maladie de Parkinson : l’agrégation de l’α-synucléine et l’activation des cellules microgliales. Pour étudier la polymérisation de l’α-synucléine, nous avons établi de nouvelles méthodes permettant la production in vitro de différents types d’oligomères d’α-synucléine. Grâce à des méthodes biophysiques de pointe, nous avons caractérisé ces différents oligomères à l’échelle moléculaire. Puis nous avons étudié leurs effets toxiques sur les neurones. Ensuite, nous nous sommes intéressés à l’activation des microglies et en particulier à leurs canaux potassiques et aux changements liés au vieillissement. Nous avons identifié les canaux Kv1.3 et Kir2.1 et montré qu’ils étaient impliqués dans l’activation des microglies. En parallèle, nous avons établi une méthode originale qui permet l’isolation et la culture de microglies primaires issues de cerveaux adultes. En comparaison à celles de nouveaux-nés, les microglies adultes montrent des différences subtiles mais cruciales qui soutiennent l’hypothèse de changements liés au vieillissement. Globalement, nos résultats suggèrent qu’il est possible de développer de nouvelles approches thérapeutiques contre la maladie de Parkinson en modulant l’action des microglies ou en bloquant l’oligomérisation de l’ α-synucléine. / Age-related neurodegenerative disorders like Parkinson’s disease take an enormous toll on individuals and on society. Despite extensive efforts, Parkinson’s disease remains incurable and only very limited treatments exist. Indeed, Parkinson’s pathogenesis is still not clear and research on its molecular mechanisms is ongoing. In this study, we focused our interest on two abnormal events occurring in Parkinson’s patients, namely α-synuclein aggregation and microglial activation. We first investigated α-synuclein and its abnormal polymerisation. For this purpose, we developed novel methods, which allowed the in vitro production of different types of α-synuclein oligomers. Using highly sensitive biophysical methods, we characterised these different oligomers at a single-particle level. Then, we tested their biological effects on neurons. Afterwards, we studied microglial activation. We concentrated our efforts on two axes, namely age-related changes in microglial function and K+ channels in microglia. We showed that Kv1.3 and Kir2.1 K+ channels are involved in microglial activation. In parallel, we developed a new approach, which allows the effective isolation and culture of primary microglia from adult mouse brains. Adult primary microglia presented subtle but crucial differences in comparison to microglia from neo-natal mice, confirming the hypothesis of age-related changes of microglia. Taken together, our results support the hypotheses that microglial modulation or inhibition of α-synuclein oligomerisation are possible therapeutic strategies against Parkinson's disease.

Page generated in 0.0799 seconds