• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • 26
  • 21
  • 14
  • 12
  • 3
  • 2
  • 2
  • Tagged with
  • 258
  • 258
  • 62
  • 61
  • 52
  • 51
  • 48
  • 41
  • 37
  • 36
  • 36
  • 34
  • 33
  • 33
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Approche conjointe canal et amplificateur d'émission pour l'allocation dynamique de puissance dans les systèmes MIMO-OFDM / Joint channel and power amplifier for dynamic power allocation in MIMO-OFDM systems

Sohtsinda, Hermann 05 April 2017 (has links)
Cette thèse porte sur l'optimisation des performances des systèmes de transmission multimédias MIMO-OFDM prenant conjointement en compte les imperfections de l'amplificateur de puissance et les distorsions du canal. Les fluctuations d'amplitude des signaux OFDM, caractérisées par un PAPR élevé, rendent la transmission vulnérable à la non-linéarité de l'amplificateur de puissance. On propose dans un premier temps une méthode permettant d'améliorer les performances de la méthode Tone Reservation en termes de gain de réduction du PAPR et de rapidité de convergence, en associant les échantillons de l'Intervalle de Garde aux Sous-Porteuses Nulles. Les simulations en présence d'un amplificateur de puissance à effets mémoire et d'un canal radio basé sur un modèle de propagation réaliste montrent que la méthode proposée offre de bonnes performances tout en respectant les spécifications fréquentielles, dans le cadre du standard IEEE 802.11a. Dans un second temps, on propose d'étudier l'impact de la non-linéarité dans un système MIMO-OFDM précodé dédié à la transmission d'images JPWL, respectant la norme IEEE 802.11n. On montre que la non-linéarité affecte la robustesse de transmission contre les erreurs de transmission et dégrade considérablement la qualité visuelle des images reçues. Enfin, on propose une stratégie de précodage originale prenant conjointement en compte l'amplificateur de puissance, le canal de transmission et le contenu de l'image à transmettre. Cette stratégie alloue successivement la puissance sur les sous-canaux SISO issus de la décomposition du canal MIMO afin de maximiser la qualité visuelle des images reçues tout en réduisant la puissance totale d'émission. Les résultats de simulation montrent que cette nouvelle stratégie qui considère un amplificateur et un canal réalistes, permet de garantir la robustesse de transmission et d'améliorer la qualité visuelle des images reçues. / This thesis focuses on the optimization of multimedia transmissions in MIMO-OFDM systems by jointly taking into account the power amplifier non-linearity and the wireless channel distortions. The OFDM modulation generates a high peak fluctuation, measured by the PAPR, which is affected by the RF non-linearity such as the power amplifier, reducing the transmission quality. We first propose a new method to improve the Tone Reservation method performances in terms of PAPR reduction gain and convergence speed, by including the samples of the Guard Interval Signal in the optimization algorithm. Simulations results using a power amplifier model with memory effects and a radio channel based on a realistic propagation model show that the new method offers the better performances, while respecting the IEEE 802.11a spectrum mask. Secondly, we propose to study the impact of power amplifier nonlinearity on the transmission of scalable image contents over a precoded Closed-Loop MIMO-OFDM system. The simulations in a realistic context, under the standard IEEE 802.11n standard show that the RF non-linearity affects the robustness against transmission errors and highly degrades the visual quality of the received JPWL images. Finally, we propose a new precoding strategy which jointly takes into account the power amplifier, the radio channel and the image content to be transmitted. This strategy successively allocates power between the SISO sub-channels obtained from the MIMO channel decomposition in order to maximize the visual quality of the received images, while reducing the total output power. Simulations with a realistic power amplifier model, associated with a realistic channel model show that this new strategy ensures a robust transmission and improves the visual quality of the received images.
242

Analyse des mécanismes de défaillance dans les transistors de puissance radiofréquences HEMT AlGaN/GaN / Failure mechanisms analysis in radiofrequency power AlGaN/GaN HEMTs.

Fonder, Jean-Baptiste 22 October 2012 (has links)
Les HEMT AlGaN/GaN sont en passe de devenir incontournables dans le monde de l'amplification de puissance radiofréquence, grâce à leurs performances exceptionnelles. Cependant,en raison de la relative jeunesse de cette technologie, des études de fiabilité dans plusieurs modes de fonctionnement sont toujours nécessaires pour comprendre les mécanismes de défaillance propres à ces composants et responsables de leur vieillissement. Cette étude porte sur l'analyse des défaillances dans les transistors HEMT AlGaN/GaN de puissance,en régime de fonctionnement de type RADAR (pulsé et saturé). Elle s'appuie sur la conception d'amplificateurs de test, leur caractérisation et leur épreuve sur bancs de vieillissement. La mise en place d'une méthodologie visant à discriminer les mécanismes de dégradation prépondérants, conjointement à une analyse micro-structurale des composants vieillis, permet d'établir le lien entre l'évolution des performances électriques et l'origine physique de ces défauts. / AlGaN/GaN HEMTs are on the way to lead the radiofrequency power amplificationfield according to their outstanding performances. However, due to the relative youth of this technology, reliability studies in several types of operating conditions are still necessaryto understand failure mechanisms peculiar to these devices and responsible for their wearingout. This study deals with the failure analysis of power AlGaN/GaN HEMTs in RADARoperating mode (pulsed and saturated). This is based on the design of test amplifiers, theircharacterization and their stress on ageing benches. The setting up of a methodology aimingat discriminating predominant degradation modes, jointly with a micro-structural analysisof aged devices, permits to link the evolution of electrical performances with the physicalroots of these defects.
243

Digitálně řízený audio zesilovač ve třídě D s dálkovým ovládáním / D class audio-amplifier with digital and remote control

Petrgál, Filip January 2014 (has links)
The contents of this thesis is design of audio power amplifier in Class D with fully digital control and remote control and is divided into two parts . The first part is devoted to the basic principles and theory of key elements of the entire amplifier. The second part consists of a complete description of the design and construction of a power amplifier, digital control with remote control, a spectrum analyzer, equalizer, preamp VU meters and complete power supply. Each proposal contains a detailed analysis of the solutions supported by simulations and software. For individual parts have been completely measured p arameters.
244

Výkonové zesilovače v pevné fázi pro pásmo L / Solid State Power Amplifier for the L-Band

Pecen, Vojtěch January 2017 (has links)
The goal of this diploma's thesis is to create a design of a two stages amplifier working in a band reserved for the secondary surveillance radar at the frequency of 1090 MHz. Output power of the amplifier should be 20 W and efficiency should be as high as possible. Because of this the second stage is designed in class C. Contents of this diploma's thesis include a theoretical analysis, simulations of the amplifier parameters, comparison of the Ansys Designer and AWR Microwave Office simulation programs and design of both stages of the amplifier, followed by a comparison of the measured parameters with the simulations.
245

Design and Heterogeneous Integration of Single and Dual Band Pulse Modulated Class E RF Power Amplifiers

Rashid, S M Shahriar January 2018 (has links)
No description available.
246

Linear Power-Efficient RF Amplifier with Partial Positive Feedback

King, Matthew E. 01 June 2012 (has links) (PDF)
Over the last decade, the number of mobile wireless devices on the market has increased substantially. New “multi-carrier” modulation schemes, such as OFDM, WCDMA, and WiMAX, have been developed to accommodate the increasing number of wireless subscribers and the demand for faster data rates within the limited commercial frequency spectrum. These complex modulation schemes create signals with high peak-to-average power ratios (PAPR), exhibiting rapid changes in the signal magnitude. To accommodate these high-PAPR signals, RF power amplifiers in mobile devices must operate under backed-off gain conditions, resulting in poor power efficiency. Various efficiency-enhancement solutions have been realized for backed-off devices to combat this issue. A brief overview of one of the more extensively researched solutions, the Doherty amplifier, is given, and its inherent limitations are discussed. A recently proposed amplifier topology that provides the efficiency benefits of the Doherty amplifier, while overcoming some of the fundamental problems that plague the standard Doherty architecture, is investigated. A step-by-step design methodology is presented and confirmed by extensive simulation in Agilent ADS. A design example, tuned for maximum efficiency at peak output power, is implemented on a PCB and tested to verify the validity of the proposed circuit configuration.
247

Analysis & Design of Radio Frequency Wireless Communication Integrated Circuits with Nanoscale Double Gate MOSFETs

Laha, Soumyasanta 25 August 2015 (has links)
No description available.
248

Efficient radio frequency power amplifiers for wireless communications

Cui, Xian 10 December 2007 (has links)
No description available.
249

Energy Efficient RF for UDNs

Abdulkhaleq, Ahmed M., Sajedin, M., Al-Yasir, Yasir I.A., Mejillones, S.C., Ojaroudi Parchin, Naser, Rayit, A., Elfergani, Issa T., Rodriguez, J., Abd-Alhameed, Raed, Oldoni, M., D’Amico, M. 12 November 2021 (has links)
Multi-standard RF front-end is a critical part of legacy and future emerging mobile architectures, where the size, the efficiency, and the integration of the elements in the RF front-end will affect the network key performance indicators (KPIs). This chapter discusses power amplifier design for both handset and base station applications for 5G and beyond. Also, this chapter deals with filter-antenna design for 5G applications that include a synthesis-based approach, differentially driven reconfigurable planar filter-antenna, and an insensitive phased array antenna with air-filled slot-loop resonators.
250

Silicon-Based PALNA Transmit/Receive Circuits for Integrated Millimeter Wave Phased Arrays

Abdomerovic, Iskren 08 January 2020 (has links)
Phased array element RF front ends typically use single pole double throw (SPDT) switches or circulators with high isolation to prevent leakage of transmit energy into the receiver circuits. However, as phased-array designs scale to the millimeter-wave range, with high degrees of integration, the physical size and performance degradations associated with switches and circulators can present challenges in meeting system performance and size/weight/power (SWAP) requirements. This work demonstrates a loss-aware methodology for analysis and design of switchless transmit/receive (T/R) circuits. The methodology provides design insights and a practical, generally applicable approach for solving the multi-variable optimization problem of switchless power amplifier/low-noise amplifier (PALNA) matching networks, which present optimal matching impedances to both the power amplifier (PA) and the low noise amplifier (LNA) while maximizing power transfer efficiency and minimizing dissipative losses in each (transmit or receive) mode of operation. Three PALNA example designs at W-band are presented in this dissertation, each following a distinct design methodology. The first example design in 32SOI CMOS leverages PA and LNA circuits that already include 50 Ω matching networks at both input and output. The second example design in 8XP SiGe develops the PA and LNA circuits and integrates the PA output and LNA input matching networks into the PALNA matching network that connects the PA and the LNA. The third design in 32SOI CMOS leverages the loss-aware PALNA design methodology to develop a PALNA that achieves simulated maximum power added efficiency of 18 % in transmit and noise figure of 7.5 dB in receive at 94 GHz, which is beyond the published state-of-art for T/R circuits. In addition, for comparison purposes, this dissertation also presents an efficient, switch-based T/R circuit design in 32SOI CMOS technology, which achieves a simulated maximum power added efficiency of 15 % in transmit and noise figure of 6.5 dB in receive at 94 GHz, which is also beyond the published state-of-art for T/R circuits. / Doctor of Philosophy / In military and commercial applications, phased arrays are devices primarily used to achieve focusing and steering of transmitted or received electromagnetic energy. Phased arrays consist of many elements, each with an ability to both transmit and receive radio frequency (RF) signals. Each element incorporates a power amplifier (PA) for transmit and a low noise amplifier (LNA) for receive, which are typically connected using a single pole double throw (SPDT) switch or a circulator with high isolation to prevent leakage of transmit energy into the receiver circuits. However, as phased arrays exploit the latest technological advances in circuit integration and their frequencies of operation increase, physical size and performance degradations associated with switches and circulators can present challenges in meeting system performance and size/weight/power (SWAP) requirements. This dissertation provides a loss-aware methodology for analysis and design of switchless transmit/receive (T/R) circuits where the switches and circulators are replaced by carefully designed power amplifier/low-noise amplifier (PALNA) impedance matching networks. In the switchless T/R circuits, the design goals of maximum power efficiency and minimum noise in transmit and receive, respectively, are achieved through impedance matching that is optimal and low-loss in both modes of operation simultaneously. Three distinct PALNA example designs at W-band are presented in this dissertation, each following a distinct design methodology. With each new design, lessons learned are leveraged and design methodologies are enhanced. The first example design leverages already available PA and LNA circuits and connects them using 50 Ω transmission lines whose lengths are designed to guarantee optimum impedance match in receive and transmit mode of operation. The second example design develops new PA and LNA circuits and connects them using 50 Ω transmission lines whose lengths are designed to simultaneously achieve optimum impedance matching for maximum power efficiency in transmit mode of operation and lowest noise in receive mode of operation. The third design leverages a loss-aware PALNA design methodology, a multi-variable optimization procedure, to develop a PALNA that achieves simulated maximum power added efficiency of 18 % in transmit and noise figure of 7.5 dB in receive at 94 GHz, which is beyond the published state-of-art for T/R circuits. In addition, for comparison purposes with the third PALNA design, this dissertation also presents an efficient, switch-based T/R circuit design, which achieves a simulated maximum power added efficiency of 15 % in transmit and noise figure of 6.5 dB in receive at 94 GHz, which is also beyond the published state-of-art for T/R circuits.

Page generated in 0.0581 seconds