181 |
Spacetime Symmetries from Quantum ErgodicityShoy Ouseph (18086125) 16 April 2024 (has links)
<p dir="ltr">In holographic quantum field theories, a bulk geometric semiclassical spacetime emerges from strongly coupled interacting conformal field theories in one less spatial dimension. This is the celebrated AdS/CFT correspondence. The entanglement entropy of a boundary spatial subregion can be calculated as the area of a codimension two bulk surface homologous to the boundary subregion known as the RT surface. The bulk region contained within the RT surface is known as the entanglement wedge and bulk reconstruction tells us that any operator in the entanglement wedge can be reconstructed as a non-local operator on the corresponding boundary subregion. This notion that entanglement creates geometry is dubbed "ER=EPR'' and has been the driving force behind recent progress in quantum gravity research. In this thesis, we put together two results that use Tomita-Takesaki modular theory and quantum ergodic theory to make progress on contemporary problems in quantum gravity.</p><p dir="ltr">A version of the black hole information loss paradox is the inconsistency between the decay of two-point functions of probe operators in large AdS black holes and the dual boundary CFT calculation where it is an almost periodic function of time. We show that any von Neumann algebra in a faithful normal state that is quantum strong mixing (two-point functions decay) with respect to its modular flow is a type III<sub>1</sub> factor and the state has a trivial centralizer. In particular, for Generalized Free Fields (GFF) in a thermofield double (KMS) state, we show that if the two-point functions are strong mixing, then the entire algebra is strong mixing and a type III<sub>1</sub> factor settling a recent conjecture of Liu and Leutheusser.</p><p dir="ltr">The semiclassical bulk geometry that emerges in the holographic description is a pseudo-Riemannian manifold and we expect a local approximate Poincaré algebra. Near a bifurcate Killing horizon, such a local two-dimensional Poincaré algebra is generated by the Killing flow and the outward null translations along the horizon. We show the emergence of such a Poincaré algebra in any quantum system with modular future and past subalgebras in a limit analogous to the near-horizon limit. These are known as quantum K-systems and they saturate the modular chaos bound. We also prove that the existence of (modular) future/past von Neumann subalgebras also implies a second law of (modular) thermodynamics.</p>
|
182 |
Gravitational Decoherence in Macroscopic Quantum SystemsEngelhardt Önne, Niklas January 2023 (has links)
The problem of how quantum mechanics gives rise to classicality has been debated for more than a century. A commonly proposed solution is decoherence, i.e. the gradual decay of superpositions in open quantum systems due to their inevitable interaction with their environment. However, the ability of decoherence to account for all aspects of the classical world is often questioned. A recently proposed model suggests that decoherence can occur even in isolated composite systems subject to gravitational time dilation, something which has sparked a debate. In this thesis we attempt to identify the precise role of decoherence in the quantum-to-classical transition (QTCT) and then use the result to analyze the validity of the newly proposed time dilation-induced decoherence mechanism. We find that the problem of the QTCT can be divided into two parts and that decoherence solves the first of these whereas the second is unsolvable without fundamental modifications to quantum theory. Moreover, we argue that the effect is fundamentally frame-dependent and we find a general formula for the rate of decoherence of macroscopic superpositions in the case where both the system and observer use Rindler coordinates. The result suggests that the frame-dependence may be utilized to increase the strength of the effect in experimental settings. Finally, the possibilities of experimental verification are discussed and we argue that recent advances in quantum measurement techniques in gravitational-wave observatories may enable tests of gravitational decoherence in the near future, finally providing an empirical glimpse into the resolution of one of the most critical debates in all of physics. / Huruvida kvantfysiken kan ge uppkomst till den klassiska fysiken på stora skalor är ett problem som diskuterats under mer än ett århundrade. En föreslagen lösning är dekoherens, alltså det gradvisa sönderfallet av superpositioner i öppna kvantsystem på grund av den oundvikliga interaktionen med deras omgivning. Dekoherensens förmåga att förklara alla delar av den klassiska världen ifrågasätts emellertid fortfarande. De senaste åren har en ny effekt uppmärksammats som tyder på att dekoherens även kan uppstå i isolerade kompositsystem under påverkan av gravitationell tidsdilatation, något som orsakat en debatt i litteraturen. I detta arbete försöker vi identifiera dekoherensens roll i övergången från det kvantmekaniska till det klassiska, och vi använder sedan resultatet för att analysera den ovannämnda gravitationella dekoherensmekanismen. Det allmänna problemet med övergången från kvantfysik till klassisk fysik delas upp i två delar, och vi visar att dekoherens löser den första delen; den andra delen visar sig vara olösbar utan fundamentala förändringar av kvantfysikens ramverk. Vidare visas den gravitationella dekoherenseffekten vara observatörsberoende och vi härleder en allmän formel för takten med vilken makroskopiska superpositioner sönderfaller i de fall då både systemet och observatören använder Rindlerkoordinater. Resultaten tyder på att observatörsberoendet eventuellt kan utnyttjas för att öka effektens styrka i experimentalla sammanhang. Slutligen diskuteras möjligheter att experimentellt verifiera effekten; vi argumenterar för att nya genombrott inom kvantmätteknik i gravitationsvågsobservatorium kan möjliggöra tester av gravitationell dekoherens inom en snar framtid, vilket skulle ge oss en första empirisk inblick i lösningen till en av fysikens mest kritiska debatter.
|
183 |
Entanglement Entropy in Cosmology and Emergent GravityAkhil Jaisingh Sheoran (15348844) 25 April 2023 (has links)
<p>Entanglement entropy (EE) is a quantum information theoretic measure that quantifies the correlations between a region and its surroundings. We study this quantity in the following two setups : </p>
<ul>
<li>We look at the dynamics of a free minimally coupled, massless scalar field in a deSitter expansion, where the expansion stops after some time (i.e. we quench the expansion) and transitions to flat spacetime. We study the evolution of entanglement entropy (EE) and the Rényi entropy of a spatial region during the expansion and, more interestingly, after the expansion stops, calculating its time evolution numerically. The EE increases during the expansion but the growth is much more rapid after the expansion ends, finally saturating at late times, with saturation values obeying a volume law. The final state of the subregion is a partially thermalized state, reminiscent of a Gibbs ensemble. We comment on application of our results to the question of when and how cosmological perturbations decohere.</li>
<li>We study the EE in a theory that is holographically dual to a BTZ black hole geometry in the presence of a scalar field, using the Ryu-Takayangi (RT) formula. Gaberdiel and Gopakumar had conjectured that the theory of N free fermions in 1+1 dimensions, for large N, is dual to a higher spin gravity theory with two scalar fields in 2+1 dimensions. So, we choose our boundary theory to be the theory of N free Dirac fermions with a uniformly winding mass, m e<sup>iqx</sup>, in two spacetime dimensions (which describes for instance a superconducting current in an N-channel wire). However, to O(m<sup>2</sup>), thermodynamic quantities can be computed using Einstein gravity. We aim to check if the same holds true for entanglement entropy (EE). Doing calculations on both sides of the duality, we find that general relativity does indeed correctly account for EE of single intervals to O(m<sup>2</sup>).</li>
</ul>
|
184 |
Renormalization of Gauge Theories and GravityPrinz, David Nicolas 22 November 2022 (has links)
Wir studieren die perturbative Quantisierung von Eichtheorien und Gravitation. Unsere Untersuchungen beginnen mit der Geometrie von Raumzeiten und Teilchenfeldern. Danach diskutieren wir die verschiedenen Lagrangedichten in der Kopplung der (effektiven) Quanten-Allgemeinen-Relativitätstheorie zum Standardmodell. Desweiteren studieren wir den zugehörigen BRST-Doppelkomplex von Diffeomorphismen und Eichtransformationen. Danach wenden wir Connes--Kreimer-Renormierungstheorie auf die perturbative Feynmangraph-Entwicklung an: In dieser Formulierung werden Subdivergenzen mittels des Koprodukts einer Hopfalgebra strukturiert und die Renormierungsoperation mittels einer algebraischen Birkhoff-Zerlegung beschrieben. Dafür verallgemeinern und verbessern wir bekannte Koprodukt-Identitäten und ein Theorem von van Suijlekom (2007), das (verallgemeinerte) Eichsymmetrien mit Hopfidealen verbindet. Insbesondere lässt sich unsere Verallgemeinerung auf Gravitation anwenden, wie von Kreimer (2008) vorgeschlagen. Darüberhinaus sind unsere Resultate anwendbar auf Theorien mit mehreren Vertexresuiden, Kopplungskonstanten und ebensolchen mit einer transversalen Struktur. Zusätzlich zeigen wir Kriterien für die Kompatibilität dieser Hopfideale mit Feynmanregeln und dem gewählten Renormierungsschema. Als nächsten Schritt berechnen wir die entsprechenden Gravitations-Materie Feynmanregeln für alle Vertexvalenzen und mit einem allgemeinen Eichparameter. Danach listen wir alle Propagator- und dreivalenten Vertex-Feynmanregeln auf und berechnen die entsprechenden Kürzungsidentitäten. Abschließend stellen wir geplante Folgeprojekte vor: Diese schließen eine Verallgemeinerung von Wigners Klassifikation von Elementarteilchen für linearisierte Gravitation ein, ebenso wie die Darstellung von Kürzungsidentitäten mittels Feynmangraph-Kohomologie und eine Untersuchung der Äquivalenz verschiedener Definitionen des Gravitonfeldes. Insbesondere argumentieren wir, dass das richtige Setup um perturbative BRST-Kohomologie zu studieren eine differentialgraduierte Hopfalgebra ist. / We study the perturbative quantization of gauge theories and gravity. Our investigations start with the geometry of spacetimes and particle fields. Then we discuss the various Lagrange densities of (effective) Quantum General Relativity coupled to the Standard Model. In addition, we study the corresponding BRST double complex of diffeomorphisms and gauge transformations. Next we apply Connes--Kreimer renormalization theory to the perturbative Feynman graph expansion: In this framework subdivergences are organized via the coproduct of a Hopf algebra and the renormalization operation is described as an algebraic Birkhoff decomposition. To this end, we generalize and improve known coproduct identities and a theorem of van Suijlekom (2007) that relates (generalized) gauge symmetries to Hopf ideals. In particular, our generalization applies to gravity, as was suggested by Kreimer (2008). In addition, our results are applicable to theories with multiple vertex residues, coupling constants and such with a transversal structure. Additionally, we also provide criteria for the compatibility of these Hopf ideals with Feynman rules and the chosen renormalization scheme. We proceed by calculating the corresponding gravity-matter Feynman rules for any valence and with a general gauge parameter. Then we display all propagator and three-valent vertex Feynman rules and calculate the respective cancellation identities. Finally, we propose planned follow-up projects: This includes a generalization of Wigner's classification of elementary particles to linearized gravity, the representation of cancellation identities via Feynman graph cohomology and an investigation on the equivalence of different definitions for the graviton field. In particular, we argue that the appropriate setup to study perturbative BRST cohomology is a differential-graded Hopf algebra.
|
185 |
Quantum gravity in two- and three-dimensional dS spacesChernichenko, Alexsey January 2024 (has links)
This thesis is a study of certain aspects of quantum gravity in two- and three-dimensional de Sitter spaces. The model used in dS2 is the Jackiw- Tetitelboim gravity which involves a scalar coupling. At low-energy limit this model becomes Schwarzian theory for which one can compute one-loop partition function. Along the way, the model is recasted into the first order formalism which helps to find an appropriate measure for the partition function. The layout for quantum gravity in dS3 is practically the same and many results appear to be quite similar. Although, there are as many dissimilarities. Ultimately, the goal is different, namely to determine one-loop correction to the central charge of the theory dual to dS3 . Additionally, a putative genus expansion for Jackiw-Teitelboim gravity is investigated along with some concrete computations being done. / Detta examensarbete ̈ar en studie av vissa aspekter av kvantgravita-tion i två och tredimensionella de Sitter-rummen. Den behandlar Jackiw-Teitelboim gravitation i dS2 , en model med en skalär koppling. Vid lågenergigränns blir modellen till Schwarzian teorin som används för att beräkna första ordningskorrektionen till partitionsfunktion. På vägen dit skrivs om modelen till första ordningens formalism som sedan hjälper att hitta ett lämpligt mått för partitionsfunktionen. Plannen för dS3 ser ut i princip likadant och en stor del av resultater är liknande. Emellertid finns det lika många olikheter. I slut änden, målet är annorludna, nämligen att beräkna första ordningens korrektion till centrala laddningen av teorin som dual till dS3 . Dessutom, en förmodad genus expansion för Jackiw-Teitelboim gravitation är undersökt och vissa konkreta beräkningar är gjorda.
|
Page generated in 0.0184 seconds