• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 12
  • Tagged with
  • 38
  • 24
  • 22
  • 20
  • 20
  • 18
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Coherence theory of atomic de Broglie waves and electromagnetic near fields

Henkel, Carsten January 2004 (has links)
Die Arbeit untersucht theoretisch die Wechselwirkung neutraler Teilchen (Atome, Moleküle) mit Oberflächen, soweit sie durch das elektromagnetische Feld vermittelt wird. Spektrale Energiedichten und Kohärenzfunktionen werden hergeleitet und liefern eine umfassende Charakterisierung des Felds auf der sub-Wellenlängen-Skala. Die Ergebnisse finden auf zwei Teilgebieten Anwendung: in der integrierten Atomoptik, wo ultrakalte Atome an thermische Oberflächen koppeln, und in der Nahfeldoptik, wo eine Auflösung unterhalb der Beugungsbegrenzung mit einzelnen Molekülen als Sonden und Detektoren erzielt werden kann. / We theoretically discuss the interaction of neutral particles (atoms, molecules) with surfaces in the regime where it is mediated by the electromagnetic field. A thorough characterization of the field at sub-wavelength distances is worked out, including energy density spectra and coherence functions. The results are applied to typical situations in integrated atom optics, where ultracold atoms are coupled to a thermal surface, and to single molecule probes in near field optics, where sub-wavelength resolution can be achieved.
22

Models in nonlinear condensed-matter optics: From theory to experiment

Voit, Kay-Michael 12 April 2013 (has links)
Cumulative Dissertation on models in nonlinear condensed-matter optics. In chapter 2, the coupled-wave theory first introduced by Kogelnik is reviewed and extended with emphasis on out-of-phase mixed holographic gratings. This class of gratings becomes increasingly important due to novel methods of hologram recording and new classes of materials and metamaterials like holographic polymer dispersed liquid crystals. Additionally, advances in laser technology suggest a stronger spectro- scopic view on holography. The model presented in this thesis accounts for both of these demands and provides a closed analytical solution. Chapter 3 contributes to the field of space-charge waves (SCW), which provides powerful tools for material analysis, especially in semiconductor technology. Although the underlying theory is generally understood, recent improvements of the ex- perimental techniques required extensions of the model and the interpretation of new effects. In this thesis, the existing formalism is adapted to a new method of excitation, which not only simplifies the experimental setup, allowing for easier adoption into industrial environments, but also provides insight into the direction of carrier motion. Furthermore, the model is extended to describe the influence of an external magnetic field, adding the possibility to examine the Hall mobility of carriers. Eventually, chapter 4 studies the dynamics of light induced absorption in pho- tochromic [Ru(bpy)2 (OSO)]+ . Compared to other photofunctional compounds, this molecule is nontoxic and exhibits exceptional photochromic reactions. These properties make it a promising candidate for important industrial and technological applications, ranging from data storage to non-electronic computation. For a profound analysis, the models used for the description of photofunctional molecules have been completely revised to account for the pronounced absortion changes in the material. Furthermore, a setup with orthogonal pump and probe beams is modeled and exper- imentally tested. This novel geometry is introduced to resemble common industrial setups.
23

Tailoring non-classical states of light for applications in quantum information processing

Tschernig, Konrad 26 October 2022 (has links)
In dieser Arbeit wird das Design und die Präparation von nicht-klassischen Zuständen von Licht in verschiedenen Szenarien untersucht. Zunächst wird die theoretische Beschreibung eines Interferometers entwickelt, welches für die Messung der Teilchenaustauschphase von Photonen entworfen wurde. Die Analyse der experimentellen Daten offenbart den bosonischen Charakter von Photonen, sowie die geometrische Phase, welche mit dem physischen Austausch zweier Quantenzustände assoziiert ist. Nach dieser Feststellung der Austauschsymmetrie von Zweiphotonenzuständen folgt die Ausarbeitung der Theorie über die Propagation von Mehrphotonenzuständen in Multiportsystemen. Dabei offenbaren sich hoch-dimensionale, synthetische, gekoppelte Strukturen die sich aus der Mehrphotonenanregung von diskreten Systemen ergeben. Basierend auf diesen Resultaten wird eine konkrete Anwendung der Theorie im Kontext von nicht-hermitischen Systemen formuliert. Dabei ergeben sich sogenannte “exceptional points” höherer Ordnung, welche Anwendungen im Bereich der Sensorik finden und ferner nur im Raum der Photonenanzahlzustände von diskreten Systemen realisiert werden können. Neben der Sensorik ist der Transport von Lichtzuständen ein wichtiger Aspekt in der Verarbeitung von Quanteninformationen. In dieser Hinsicht werden hier Photonische Topologische Isolatoren untersucht, welche eine rückstreuungsfreie Propagation entlang ihrer Ränder erlauben. Es wird gezeigt, dass partiell kohärentes Licht, Gaussisch und Nicht-Gaussisch verschränkte Zweiphotonenzustände einen solchen topologischen Schutz genießen können. Dies gilt unter der Vorraussetzung, dass die Anfangsanregung in einem wohldefinierten Bereich des topologischen Schutzes liegt, wodurch das “klassische” Bandlücken-kriterium erweitert und gestärkt wird. / In this work we study the design and preparation of non-classical states of light in several scenarios. We begin by developing the theoretical description of an interferometer, which is designed to measure the particle exchange phase of photons. The analysis of the experimental data reveals the bosonic nature of photons, as well as the geometric phase associated with the physical exchange of the quantum states of two photons. Having established the exchange symmetry of two-photon states, we proceed to develop the theory of multi-photon states propagating in multi-port systems. We unveil the high- dimensional synthetic coupled structures that arise via the multi-photon excitation of discrete systems. Using these results, we formulate an application of the theory in the context of non-hermitian systems. We find so-called high-order exceptional points, which find applications in sensing and can only be achieved in the photon-number space of discrete systems. Apart from sensing, an important ingredient for the processing of quantum information is the transport of light states. In this regard, we consider photonic topological insulators, which allow the back-scattering-free propagation along their edges. We show that partially coherent light, Gaussian- as well as non-Gaussian two-photon entangled states can enjoy such a topological protection, provided that the initial excitations fit inside a well defined topological window of protection, which strengthens the “classical” band-gap protection criterion.
24

Characterization and Utilization of Novel Solid-State Quantum Emitters

Sontheimer, Bernd 22 June 2020 (has links)
In dieser Arbeit werden einzelne atomare Defekte in hexagonalem Bornitrid (hBN) charakterisiert und mögliche Anwendungen aufgezeigt, welche die gefundenen herausragenden optischen Eigenschaften ausnutzen. Solche optisch aktiven Punktdefekte in Halbleitern bergen das Versprechen von skalierbaren und stabilen Einzelphotonenquellen, welche für eine Vielzahl von zukünftigen Anwendungen im Bereich der Quanteninformationstechnologie oder für Präzisionsmessungen benötigt werden. Dementsprechend groß ist das Interesse der Wissenschaftsgemeinde, was sich auch in der Anzahl der untersuchten Defektsysteme widerspiegelt. Das Besondere an dem hier vorliegenden System ist zum einen die Zweidimensonalität des Halbleiter-Wirtskristalls und zum anderen die enorme Helligkeit des Emitters, welche sich in bis zu sechs Millionen mit einem Mikroskop detektierten Photonen pro Sekunde niederschlägt. Darüber hinaus motivieren die Stabilität des Emitters bei Raumtemperatur und die schmale spektrale Linienbreite eine tiefgreifende Analyse dieses Neuzugangs zum Emitterzoo. / In this thesis, single atomic defects in hexagonal boron nitride (hBN) are characterized and possible applications are shown, which take advantage of the outstanding optical properties found. Such optically active point defects in semiconductors hold the promise of scalable and stable single-photon sources, which are needed for a variety of future applications in quantum information technology or for precision measurements. The interest of the scientific community is correspondingly high, which is also reflected in the number of defect systems investigated. The special feature of the system presented here is on the one hand the two-dimensionality of the semiconductor host crystal and on the other hand the enormous brightness of the emitter, which is reflected in up to six million photons per second detected with a microscope. In addition, the stability of the emitter at room temperature and the narrow spectral width motivate a profound analysis of this new addition to the emitter zoo.
25

Long-time Correlations in Nonequilibrium Dispersion Forces

Reiche, Daniel 16 February 2021 (has links)
Wir untersuchen die Dynamik von offenen Quantensystemen sowohl im Gleichgewicht als auch im Nichtgleichgewicht. Unser Fokus liegt dabei auf der quantenoptischen Dispersionswechselwirkung zwischen einem mikroskopischen Teilchen und einer komplexen elektromagnetischen Umgebung. Wir sind der Meinung, dass Langzeitkorrelationen in dem System essenziell zum Verständnis der Dynamik des Teilchens beitragen können. Unter Langzeitkorrelationen verstehen wir die Beiträge zur Autokorrelationsfunktion von Quantenoperatoren, die als ein inverses Potenzgesetz in der Verzögerungszeit skalieren. Das Einbeziehen von Langzeitkorrelationen in unser theoretisches Modell sichert die Selbstkonsistenz unserer Beschreibung und ermöglicht es uns, die Rückkopplung der Umgebung auf das Teilchen vollständig zu berücksichtigen. Darüber hinaus erlaubt es uns die Vorhersage von bisher übersehenen Effekten und Mechanismen, die das Verhalten von Dispersionskräften im Gleichgewicht und Nichtgleichgewicht bestimmen. Unsere Beispiele reichen von der Wechselwirkungsentropie des magnetischen Casimir-Polder-Effekts, über den Einfluss von Materialeigenschaften und geometrischen Überlegungen auf experimentelle Aufbauten, bis hin zur Thermodynamik von Quantenreibung. Wir geben den Leser_innen außerdem eine Orientierungshilfe, wann und wie Langzeitkorrelationen in theoretische Modellbildungen einbezogen werden müssten und welche Auswirkungen im Zusammenhang mit quantenoptischen Dispersionskräften zu erwarten sind. / We explore the dynamics of open quantum systems in both equilibrium and nonequilibrium situations. Our focus lies on the quantum-optical dispersion interaction between a microscopic particle and a complex electromagnetic environment. We argue that long-time correlations in the system can be essential for understanding the dynamics of the particle. We define long-time correlations as those contributions to the autocorrelation function of quantum operators which scale as an inverse power law in the time delay. Incorporating long-time correlations into our theoretical model safeguards the self-consistency of our description and allows us to consider the full back-action of the environment on the particle. Moreover, it leads us to the prediction of previously overlooked effects and mechanisms determining dispersion forces in equilibrium and nonequilibrium. Our examples range from the interaction entropy of the magnetic Casimir-Polder effect, over the impact of material properties and geometric considerations for experimental setups, all the way down to the thermodynamics of quantum friction. We further provide the reader with a guideline when and how to include long-time correlations into theoretical models and what effects can be expected to emerge in the context of quantum-optical dispersion forces.
26

Photon pairs for fundamental tests of physics and applications in quantum networks

Müller, Chris 15 March 2024 (has links)
Im ersten Teil dieser Arbeit wird die zeitliche Korrelation von Photonen untersucht, welche durch parametrischer Fluoreszenz in einem nichtlinearen Medium innerhalb eines Resonators erzeugt werden. Dafür wird eine komplette theoretische Beschreibung hergeleitet, welche die zeitlichen Korrelationen zwischen signal-idler, signal-signal und signal-signal-idler Photonen mittels spektraler Eigenschaften der Photonenquelle beschreibt. Damit lässt sich der Einfluss des Resonators auf die zeitlichen Korrelationen bestimmen. Passende experimentelle Messungen werden präzise durch diese Theorie beschrieben, wodurch diese bestätigt werden konnte. Im zweiten Teil dieser Arbeit wird erstmalig die Austauschphase von Photonen direkt gemessen. Um die Austauschphase in einer direkten Messung zu bestimmen, muss der ursprüngliche Zwei-Photonen-Zustand mit seinem permutierten Zustand interferieren. Für die experimentelle Umsetzung wird ein neues spezielles Interferometer benötigt, welches hier vorgestellt und charakterisiert wird. Mithilfe der durchgeführten Experimente konnten die bosonischen Eigenschaften von Photonen nachgewiesen und eine untere Grenze für eine direkt gemessen Austauschphase festgelegt werden. Der letzte Teil dieser Arbeit untersucht Frequenzkonversion in nichtlinearen Medien. Durch die Verwendung mehrere Kornversionsschritte ist es z.B. möglich die Erzeugung von Rauschphotonen bei bestimmten Zielwellenlänge zu verhindern. Hier wird eine Möglichkeit vorgestellt bei der mehrere Kornversionsschritte innerhalb eines nichtlinearen Kristalls realisiert werden, indem der Kristall lokal verschieden temperiert wird. Die Durchführbarkeit dieser Technik wurde theoretisch untersucht und experimentell bestätigt. Weitere Anwendungsmöglichkeiten werden ausführlich diskutiert. / The first part of this thesis investigates the temporal correlation of photons, generated in a spontaneous parametric down-conversion process inside of a nonlinear crystal, which is placed in a resonator to enhance specific emission lines. However, the cavity influences the temporal correlation of the photons, which is crucial for most applications. This thesis derives a complete theory to describe the temporal correlations of signal-idler, signal-signal and signal-signal-idler photons using the spectral properties of the photon source. The derived theoretical description precisely predicts the experimental measurements, which were performed to verify the theory. In the second part the exchange phase of photon is measured directly for the first time. Directly, this can only be verified experimentally by interference between the two-photon state and its permuted form. Here a new interferometer technique is introduced to directly determine the photon exchange phase. The experimental results provide evidence of the bosonic nature of photons and state a lower bound for a directly measured exchange phase of photons. The last part deals with frequency conversion in nonlinear materials. Depending on the wavelengths involved, the conversion processes introduce noise at the target wavelength, which is critical at the single photon level. Then multiple conversion steps are required for a low noise frequency conversion. We present an approach to realize multiple conversion steps with a single nonlinear crystal by applying different local temperatures to that nonlinear crystal. The feasibility of that approach is confirmed experimentally and further possible applications are considered.
27

Der optische Start-Effekt mit quantisiertemStrahlungsfeld

Altevogt, Torsten 28 January 2000 (has links)
Bei der theoretischen Beschreibung von spektroskopischen Experimenten wird in der Regel das Materiesystem quantenmechanisch beschrieben, während das Strahlungsfeld klassisch behandelt wird. Diese semiklassische Näherung ist zur Beschreibung von Experimenten, bei denen eine starke Kopplung zwischen dem Matriesystem und einzelnen Photonen besteht, nicht mehr gültig. Dies kann beispielsweise innerhalb eines optischen Resonators der Fall sein. In dieser Arbeit wird am Beispiel eines Pump-Test- Experiments zum Nachweis des optischen Stark-Effekts untersucht, welche zusätzlichen Effekte sich bei einer quantisierten Beschreibung des Strahlungsfeldes ergeben. Ein signifikanter Effekt ist, dass die Photonenstatistik des Pumpfeldes sich in der Linienform der verschobenen Resonanzlinie widerspiegelt. Weiter wurde in dieser Arbeit bei kleiner Pumpverstimmung ein Verstärkungseffekt gefunden, der ebenfalls auf der quantisierten Behandlung des Strahlungsfeldes beruht (nichtklassische Verstärkung). Es treten ferner bei grosseren Ensemblen von Zwei-Niveau -Systemen zusätzliche Unterstrukturen und Resonanzen auf. Auch kann der Nachweis des optischen Stark-Effekts Aufschluss über die Nichtdiagonalelemente bezüglich der Photonenzahl des quantisierten Pumpfeldes geben.Im Hinblick auf die Beschreibung komplexer Materiesystemen wurde in dieser Arbeit auch eine näherungsweise Berechnung der Testabsorption mit quantisiertem Strahlungsfeld im Rahmen einer Dichtematrixtheorie untersucht. Insbesondere war hier für die quantitative Beschreibung der nichtklassischen Verstärkung eine Berücksichtigung hoherer Korrelationen zwingend erforderlich. Auch wurden näherungsweise Entkopp- lungen unter Berücksichtigung der Erhaltungsgrossen durch- geführt. Die Dichtematrixtheorie wurde auf die Untersuchung des optischen Stark-Effektes an storstellengebundenen Exzitonen in Halbleitern angewandt. Da diese Resonanzen vergleichsweise kleine homogene und inhomogene Linienbreiten aufweisen,ist hier experimentell zu erwarten, dass sich feine Effekte des quantisierten Pumpfeldes bemerkbar machen konnen. / The theoretical description of spectroscopic experiments usu ally relies on a semiclassical approach where the matter system is described in terms of quantum mechanics while the radiation field is treated classically. This approach does n ot work well for systems with a strong coupling between the matter system and photons of the radiation field. The latter can be the case within an optical resonator.In this thesis, additional effects of a quantized radiation field are inves tigated on a pump-probe experiment for detecting the optical Stark effect. One significant effect is that the lineshape of the shifted resonance displays the photon statistics of the pump field. For small pump detuning probe gain results in a frequency regime where the semiclassical treatment predicts absorption. This effect is refered to nonclassical gain. For larger ensembles of two-level systems, additional substructures and resonances appear within the probe absorption spectrum. Also non- diagonal elements of the field density matrix can be detected in such an experiment. In order to describe a more complex matter systems, the optical Stark effect has been treated in terms of a density matrix approach with quantized radiation fields. For a quantitative description of nonclassical gain, higher correlation terms had to be treated properly. Moreover, conserved quantities were taken into account in approximate decouplings. The density matrix approach was applied to the description of the optical Stark effect on impurity-bound excitons in semiconductors. These systems are of high interest as their narrow resonances might allow the demonstration of fine effects of the quantized radiation field.
28

A theoretical framework for waveguide quantum electrodynamics and its application in disordered systems

Schneider, Michael Peter 18 January 2016 (has links)
Wellenleiter Quantenelektrodynamik (Wellenleiter QED) ist ein wichtiger Baustein in vielen zukünftigen, auf Quantenmechanik basierenden Technologien wie z.B. Quantencomputer. Ein typisches Modellsystem besteht aus einem Zwei-Niveau-System (two level system, TLS), das an einen eindimensionalen Wellenleiter gekoppelt wurde. Der Wellenleiter ist dabei durch eine Dispersionsrelation charakterisiert und kann unter anderem Bandkanten enthalten. Wir haben in der Dissertation einen neuartigen Zugang zur Wellenleiter QED präsentiert. Dieser Zugang basiert auf der Quantenfeldtheorie und ermöglicht die Berechnung Greenscher Funktionen im ein- und zwei-Anregungs Unterraum. Diese Greenschen Funktionen wurden benutzt um die Streumatrix und die spektrale Dichte in beiden Unterräumen zu berechnen. Desweiteren konnten wir mit Hilfe von Feynman-Diagrammen die physikalischen Prozesse in der Störungsreihe der Greenschen Funktionen identifizieren. Dies war besonders im zwei-Anregungs-Unterraum von Nutzen. In diesem Fall verhält sich das System nichtlinear, da das TLS nur eine Anregung absorbieren kann. Dadurch werden Effekte induziert wie photon bunching und die effiziente Anregung eines gebundenen Atom-Photon Zustandes. Es war uns möglich diese Effekte in der Störungsreihe der Greenschen Funktion wieder zu finden. Desweiteren haben wir die Greenschen Funktionen im Orts-Zeit-Raum benutzt um ein- und zwei-Photon-Wellenpakete zu propagieren. Es hat sich herausgestellt dass das Verhältnis von Pulsbreite zur spontanten Emissions-zeit sowohl das Streuverhalten als auch die maximale Anregung des TLS bestimmt. Letztendlich haben wir den Einfluss von Unordnung im Wellenleiter auf das Zerfallsverhalten des TLS untersucht. Wir haben entdeckt dass der gebundene Atom-Photon Zustand instabil wird sobald die Unordnung einen kritischen Wert erreicht. Darüberhinaus haben wir eine spezielle Klasse Feynman Diagramme identifiziert, die dem Zerfall eine nichtmarkovsche Dynamik verleihen. / Waveguide quantum electrodynamics (waveguide QED) can be considered as a building block for many prospective technologies like quantum computing. A prototypical system consists of a two-level system (TLS) coupled to a one-dimensional waveguide. The waveguide is characterized by its dispersion relation and can also feature a band edge/slow-light regime. In this thesis we have presented a new theoretical framework for waveguide QED, based on quantum field theory. The framework provides the Green''s functions of the system in the single- and two-excitation sectors for an arbitrary dispersion relation. We have calculated the scattering matrix and the spectral density in both sectors. Furthermore, we have also represented the Green''s functions in the form of Feynman diagrams, from which we can identify the underlying physical processes. A special property of the system is that it behaves nonlinear in the case of two or more photons. This is rooted in the structure of the TLS, which can at most absorb one excitation. The nonlinearity leads to two effects: photon bunching and the efficient excitation of an atom-photon bound state. We have found both effects within our framework and we were able to assign them individual terms in the perturbation series of the Green''s function. Furthermore, we have used the Green''s function in space-time domain to propagate Gaussian one- and two-photon wavepackets. Here, we have identified the ratio of the pulsewidth and the spontaneous emission time as the parameter which governs both the scattering behavior of the photons and the maximal TLS excitation. Eventually, we have investigated the effects of disorder in the waveguide on the decay properties of the TLS. We have found here that the atom-photon bound state is stable for small disorder, but breaks down at sufficiently strong disorder. Furthermore, we have identified a special class of diagrams which render the system non-Markovian even for energies far away from the band edge.
29

Photonic applications and hybrid integration of single nitrogen vacancy centres in nanodiamond

Schell, Andreas Wolfgang 30 January 2015 (has links)
In dieser Arbeit wird das Stickstoff-Fehlstellenzentrum (NV Zentrum) in Diamant als ein solcher Einzelphotonenemitter untersucht. Durch Benutzung eines hybriden Ansatzes werden hier NV Zentren in Diamantnanopartikeln in photonische Strukturen integriert. Zuerst wird eine aufnehmen-und-ablegen-Nanomanipulationstechnik mittels eines Rasterkraftmikroskops verwendet um einzelne NV Zentren an eine photonische Kristallkavität und eine optische Faser zu koppeln. Durch Kopplung an die photonische Kristallkavität wird die Emission der Nullphononenlinie des NV Zentrums um den Faktor 12.1 erhöht und durch Kopplung an die optische Faser entsteht eine direkt gekoppelte Einzelphotonenquelle hoher effektiver numerischer Apertur. Durch Kopplung an plamonische Wellenleiter können einzelne Oberflächenplasmon-Polaritonen nachgewiesen werden. Zweitens wird ein anderer Ansatz, die Entwicklung eines hybriden Materials, verfolgt. Hier sind die Nanodiamanten, anstatt sie auf die Strukturen von Interesse zu legen, von Anfang in dem Material enthalten, aus dem die Strukturen hergestellt werden. Mittels direktem Zweiphotonen-Laserschreiben ist es dann möglich, Kombinationen aus chipintegrierten Wellenleitern, Resonatoren und Einzelphotonenemittern zu zeigen. Um mehr über die Dynamik von NV Zentren in Nanodiamant zu erfahren und Wege zu ihrer Verbesserung zu finden, wird die Dynamik der Nullphononenlinie des NV Zentrums mittels eines Photonenkorrelationsinterferometers untersucht. Zusätzlich zu Techniken zur Herstellung photonischer und plasmonischer Strukturen werden auch Methoden zu ihrer Charakterisierung benötigt. Hier für kann es ausgenutzt werden, dass das NV Zentrum weiter nicht nur ein Einzelphotonenemitters ist, sondern es ebenso als Sensor verwendet werden kann. Das NV Zentrum wird hier verwendet, um die lokale optische Zustandsdichte in einem Rastersondenverfahren zu messen, was die Technik der dreidimensionalen Quantenemitter Fluoreszenzlebensdauermikroskopie einführt. / In this thesis, one of such single photon emitters, the nitrogen vacancy centre (NV centre) in diamond, will be examined. By using different hybrid approaches, NV centres in diamond nanoparticles are integrated into photonic structures. Firstly, using a pick-and-place nanomanipulation technique with an atomic force microscope, a single NV centre is coupled to a photonic crystal cavity and an optical fibre. Coupling to the photonic crystal cavity results in an enhancement of the NV centre''s zero phonon line by a factor of 12.1 and coupling to the fibre yields a directly coupled single photon source with an effective numerical aperture of 0.82. By coupling to plasmonic waveguides, the signature of single surface plasmon polaritons is found. Secondly, instead of placing the nanodiamonds on the structures of interest, a hybrid material where the emitters are incorporated is used. With two-photon direct laser writing, on-chip integration and combination of waveguides, resonators, and single photon emitters is demonstrated. In order to learn more on the dynamics of NV centre in nanodiamonds and find ways for improvements, the dynamics of the ultra-fast spectral diffusion of the NV centre''s zero phonon line are investigated using a photon correlation interferometer. In addition to techniques for the fabrication of photonic and plasmonic structures, also methods for their characterisation are needed.For this, it can be exploited that the NV centre also is not only a single photon emitter, but can also be employed as a sensor. Here, the NV centre is used to measure the local density of optical states in a scanning probe experiment, establishing the technique of three-dimensional quantum emitter fluorescence lifetime imaging.
30

Semiconductor-generated entangled photons for hybrid quantum networks

Zopf, Hartmut Michael 01 October 2020 (has links)
The deterministic generation and manipulation of quantum states has attracted much interest ever since the rise of quantum mechanics. Large-scale, distributed quantum states are the basis for novel applications such as quantum communication, quantum remote sensing, distributed quantum computing or quantum voting protocols. The necessary infrastructure will be provided by distributed quantum networks, allowing for quantum bit processing and storage at single nodes. Quantum states of light then allow for inter-node transmission of quantum information. Transmission losses in optical fibers may be overcome by quantum repeaters, the quantum equivalent of classical signal amplifiers. The fragility of quantum superposition states makes building such networks very challenging. Hybrid solutions combine the strengths of different physical systems: Efficient quantum memories can be realized using alkali atoms such as rubidium. Leading in the deterministic generation of single photons and polarization entangled photon pairs are semiconductor InAs/GaAs quantum dots grown by the Stranski-Krastanov method. Despite remarkable progress in the last twenty years, complex quantum optical protocols could not be realized due to low degree of entanglement, low brightness and broad wavelength distribution. In this work, an emerging family of epitaxially grown GaAs/AlGaAs quantum dots obtained by droplet etching and nanohole infilling is studied. Under pulsed resonant two-photon excitation, they emit single pairs of entangled photons with high purity and unprecedented degree of entanglement. Entanglement fidelities up to f = 0.94 are observed, which are only limited by the optical setup or a residual exciton fine structure. The samples exhibit a very narrow wavelength distribution at rubidium memory transitions. Strain tuning is applied via piezoelectric actuators to allow for reversible fine-tuning of the emission frequency. In a next step, active feedback is employed to stabilize the frequency of single photons emitted by two separate quantum dots to an atomic rubidium standard. The transmission of a rubidium-based Faraday filter serves as the error signal for frequency stabilization. A residual frequency deviation of < 30MHz is achieved, which is less than 1.5% of the quantum dot linewidth. Long-term stability is demonstrated by Hong-Ou-Mandel interference between photons from the two quantum dots. Their internal dephasing limits the expected visibility to V = 40%. For frequency-stabilized dots, V = (41 ± 5)% is observed as opposed to V = (31 ± 7)% for free-running emission. This technique reaches the maximally expected visibility for the given system and therefore facilitates quantum networks with indistinguishable photons from distributed sources. Based on the presented techniques and improved emission quality, pivotal quantum communication protocols can now be implemented with quantum dots, such as transferring entanglement between photon pairs. Embedding quantum dots in a dielectric antenna ensures a bright emission. For the first time, entanglement swapping between two pairs of photons emitted by a single quantum dot is realized. A joint Bell measurement heralds the successful generation of the Bell state Ψ+ with a fidelity of up to (0.81 ± 0.04). The state's nonlocal nature is confirmed by violating the CHSH-Bell inequality with S = (2.28 ± 0.13). The photon source is tuned into resonance with rubidium transitions, facilitating implementation of hybrid quantum repeaters. This work thus represents a major step forward for the application of semiconductor based entangled photon sources in real-world scenarios.

Page generated in 0.059 seconds