• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 140
  • 14
  • 11
  • 9
  • 7
  • 7
  • 7
  • 7
  • 3
  • Tagged with
  • 177
  • 76
  • 51
  • 26
  • 24
  • 22
  • 18
  • 18
  • 18
  • 17
  • 17
  • 17
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Uniformização local: redução ao caso de valorizações de posto um / Local uniformization: reduction to the case of valuations of rank one

Moraes, Michael Willyans Borges de 16 August 2017 (has links)
Este trabalho trata da uniformização local, que é um passo do método de Zariski para provar resolução de singularidades em variedades algébricas. O método consiste numa abordagem por teoria de valorizações, e esta dissertação se baseia no artigo [NS], de Novacoski e Spivakovsky, que consiste em reduzir a prova da uniformização local para valorizações de qualquer posto, a provar apenas para os casos de posto um. / This work deals with local uniformization, which is a step in the method of Zariski to prove resolution of singularities for algebraic varieties. The method consists in an approach using valuation theory and this dissertation is based on the paper [NS], by Novacoski and Spivakovsky, which consists in reduce the proof of local uniformization for all cases to prove only the cases of rank one.
72

Invariantes do tipo Vassiliev de aplicações estáveis de 3-variedade em \'R POT. 4\' / Vassiliev type invariants of stable mappings of 3-manifold in \'R POT. 4\'

Casonatto, Catiana 28 July 2011 (has links)
Neste trabalho obtemos que o espaço dos invariantes locais do tipo Vassiliev de primeira ordem de aplicações estáveis de 3-variedade fechada orientada em \' R POT. 4\' é 4-dimensional. Damos uma interpretação geométrica para 2 dos 4 geradores deste espaço, a saber, \'I IND. Q\' o número de pontos quádruplos e \'I IND. C / P\' o número de pares de pontos do tipo crosscap/plano, da imagem de uma aplicação estável. Ao reduzir o espaço das aplicações para o das imersões esáaveis, obtemos que o espaço dos invariantes locais de imersões estáveis é 3-dimensional. Os invariantes que obtemos são: \'I IND. Q\' o número de pares de pontos quádruplos da imagem de uma imersão estável e dois índices de interseção \'I IND. I\'`+ e \'I IND. l\' introduzidos por V. Goryunov em [15]. Como início de um estudo que almejamos realizar sobre a geometria de uma m-variedade em \'R POT. m+1\' com singularidades, obtemos os tipos de contatos genéricos da suspensão do crosscap (única singularidade estavel de \'R POT. 3\' em \'R POT. 4\' ) com hiperplanos de \'R POT.4\' / In this work we obtain that the space of first order local Vassiliev type invariants of stable maps of oriented 3-manifolds in \'R POT. 4\' is 4-dimensional. We give a geometric interpretation for two of the four generators of this space, namely, \'I IND. Q\' the number of quadruple points and \'I IND. C / P\' the number of pairs of points of crosscap/plane type, of the image of a stable map. In the case of stable immersions, we obtain that the space of local invariants of stable immersions is 3-dimensional. The invariants that we obtain are: \'I IND. Q\' the number of pairs of quadruple points of the image of a stable immersion and the positive and negative linking invariants \'I IND. I`+ and I\'I IND., l\' introduced by V. Goryunov in [15]. As a beging of a study that we want to realise about the geometry of a m-manifold in \'R POT. m+1\' with singularities, we obtain the generic contacts of the suspension of crosscap (the only stable singularity from \'R POT. 3\' to \'R POT. 4\') with hyperplanes of \'R POT. 4\'
73

Números de Milnor e obstrução de Euler / Milnor numbers and Euler obstruction

Menegon Neto, Aurelio 27 June 2007 (has links)
Neste trabalho, definimos a obstrução local de Euler de um espaço analítico complexo singular (X, \'x IND.0\'), denotada por Eu(X, \'x IND.0\'), e a obstrução local de Euler de uma função holomorfa f definida neste espaço, com uma singularidade isolada em \'x IND. 0\', denotada por \'Eu IND. f\' (X, \'x IND.0\'); e apresentamos duas fórmulas para seus respectivos cálculos. Em seguida, através de uma abordagem geométrica, determinamos as relações entre \'Eu IND. f\' (X,\'x IND.0\') e algumas generalizações do número de Milnor para funções em espaços singulares / In this work we define the local Euler obstruction of a complex analytic singularity (X, \'x IND.0\'), denoted Eu(X, \'x IND.0\'), and the local Euler obstruction of a holomorphic function f defined on this space, with an isolated singularity at \'x IND. 0\', denoted \'Eu IND. f\' (X, \'x IND.0\'); and we present two formulas for their respective calculations. Next, using a geometric approach, we determine the relations between \'Eu IND.f\' (X, \'x IND.0\') and several generalizations of the Milnor number for functions on singular spaces
74

Flat and Round Singularity theory / A teoria da singularidade plana e redonda

Salarinoghabi, Mostafa 29 April 2016 (has links)
We propose in this thesis a way to study deformations of plane curves that take into consideration the geometry of the curves as well as their singularities. We deal in details with local phenomena that occur generically in two-parameter families of curves. We obtain information on the inflections and vertices appearing on the deformed curves. We also obtain the configurations of the evolutes of the curves and of their deformations, and apply our results to orthogonal projections of space curves. Finally, we consider the profile (outline, apparent contour) of a smooth surface in the Euclidian 3-space. This is the image of the singular set of an orthogonal projection of the surface. The profile is a plane curve and may have singularities. We study the changes in the geometry of the profile as the direction of projection changes locally in the unit sphere. / Propomos nesta tese um método para estudar deformações de curvas planas que leva em consideração a geometria delas, bem como as suas singularidades. Consideramos em detalhes os fenômenos locais que ocorrem genericamente em famílias de curvas com dois parâmetros. Obtemos informações sobre as inflexões e vértices que aparecem nas curvas deformadas. Obtemos também as configurações das evolutas das curvas e das suas deformações e aplicamos os nossos resultados nas projeções ortogonais de curvas espaciais. Finalmente, consideramos o perfil de uma superfície regular no espaço Euclidiano R3. O perfil é a imagem do conjunto singular de uma projeção ortogonal da superfície, esta é uma curva plana e pode ter singularidades. Estudamos as alterações na geometria do perfil quando a direção de projeção muda localmente na esfera unitária.
75

Singularidades de curvas na geometria afim / Singularities of curves in affine geometry

Sanchez, Luis Florial Espinoza 17 September 2010 (has links)
Neste trabalho estudamos a geometria da evoluta afim e da curva normal afim associada à uma curva plana sem inflexões a partir do tipo de singularidade das funções suporte afim. O principal resultado estabelece que se \'\\gamma\' é uma curva plana sem inflexões, satisfazendo certas condições genéricas então dois casos podem ocorrer: 1. se p é um ponto da evoluta afim de \'\\gamma\' em \'s IND. 0\' então temos dois casos: se \'\\gamma\' (\'s IND. 0\') é um ponto sextático então, localmente em p, a evoluta afim é difeomorfa a uma cúspide em \'R POT. 2\' ; se não, localmente em p, a evoluta afim é difeomorfa à uma reta em \'R POT. 2\' , 2. se p = \'\\gamma\' (\'s IND. 0\') é um ponto da normal afim de \'\\gamma\' então temos dois casos: se \'\\gamma\'(\'s IND. 0\') é um ponto parabólico de \'\\gamma\' então, localmente em p, a curva normal afim é difeomorfa a uma cúspide em \'R POT. 2\' ; em outro caso, localmente em p, a curva normal afim é difeomorfa à uma reta em \'R POT. 2\' / In this work we study the geometry of the affine evolute and the affine normal curve associated with a plane curve without inflections from the type of singularity of affine support functions. The main result is setting if \'\\gamma\' is a flat curve without inflections, satisfying certain conditions generic then, if p is a point of the affine evolute of \'\\gamma\' at \'s IND. 0\' then two cases: if \'\\gamma\' (\'s IND. 0\') is a sextactic point then locally in p the affine evolute is diffeomorphic to a cusp at \'R POT. 2\', otherwise locally in p the affine evolute is diffeomorphic to a straight in \'R POT. 2\', and second if p = \'\\gamma\' (\'s IND. 0\') is a point of the affine normal curve then two cases: if \'\\gamma\'(\'s IND. 0\') is a parabolic point of \'\\gamma\' then locally in p the affine normal curve is diffeomorphic to a cusp at \'R POT. 2\' , in otherwise locally in p the affine normal curve is diffeomorphic to a line in \'R POT. 2\'
76

Avaliação do comportamento cinemático de um mecanismo paralelo tridimensional. / Evaluation of kinematic performance of a tridimensional parallel mechanism.

Malvezzi, Fernando 14 June 2006 (has links)
Este trabalho propõe uma nova estrutura cinemática paralela tridimensional com três graus de mobilidade que pode ser aplicada como robô manipulador. O volume do espaço de trabalho disponível é empregado como índice para avaliar o desempenho cinemático do mecanismo. As cinemáticas de posição e velocidade são desenvolvidas, tendo em vista o levantamento das configurações singulares e do espaço de trabalho. Os resultados obtidos com as cinemáticas direta e inversa são comparados de modo a verificar a correspondência entre eles. São levantadas diversas configurações singulares que correspondem ao alinhamento entre as barras das cadeias ativas do mecanismo e uma família de singularidades para uma das cadeias ativas é apresentada. O volume do espaço de trabalho do mecanismo é calculado pelo método da discretização, de modo a avaliar o volume do espaço de trabalho disponível, bem como a identificação da influência dos parâmetros dimensionais do mecanismo sobre este volume. O volume do espaço de trabalho com os parâmetros ótimos é expressivo, quando comparado com aqueles alcançados por manipuladores robóticos convencionais. / This dissertation proposes a novel three-degree-of-freedom parallel kinematic structure in order to be applied as a three-dimensional robot manipulator. The volume of the available workspace is employed as a performance index to evaluate the kinematic behavior of the mechanism. The position and velocity kinematics are developed for mapping singular configurations and evaluating the workspace. The results obtained by performing the direct and inverse kinematics are compared in order to verify the consistency between them. It is demonstrated that most of singular configurations is represented by the alignment of the links that belong to each active chain. In addition, a family of singularities for one of the active chains is presented. The volume of the workspace is calculated by using the discretization method not only for evaluating the feasible workspace but also for identifying the influence of dimensional parameters with respect to this volume. The achieved workspace by employing the optimal parameters is comparable to that reached by conventional robot manipulators.
77

Dinámica de las funciones racionales de una variable compleja

Sueros Zarate, Jonathan Abrahan 03 July 2015 (has links)
El objetivo principal de la presente tesis es presentar una aplicación de los teoremas de Montel sobre familia normales en los sistemas dinámicos, para así poder caracterizar los conjuntos de Julia, denotados por JR, definidos a través de una aplicación R meromorfa sobre C. Primero haremos un estudio de las propiedades de las funciones meromorfas sobre el plano complejo C y el plano complejo extendido C, además estableceremos algunas métricas para poder estudiar la convergencia de las aplicaciones meromorfas. Lo anterior nos permite introducirnos a las familias normales para funciones holomorfas y para funciones meromorfas la cual posee muchas propiedades que son usadas en la caracterización del conjunto de Julia. Para facilitar algunos resultados es preciso usar la conjugada de funciones meromorfas sobre C a través de las transformaciones de Möbius definidas en el plano complejo extendido. También es necesario el estudio de los puntos periódicos de las funciones meromorfas sobre C obteniéndose una serie de propiedades que serán importantes en el estudio del conjunto Julia. Finalmente es vital el estudio del conjunto de puntos excepcionales la cual nos dan una serie de propiedades, para así poder dar una caracterización al conjunto de Julia. Dichas caracterizaciones son tales como, la invariancia del conjunto de Julia, JR, por la aplicación R y por su respectiva inversa; que el conjunto JR es igual a su conjunto de puntos de acumulación; que el conjunto JR coincide con C, siempre que JR posea algún punto interior; que JR coincide con la frontera de la cuenca atractora generada por un punto atractor α ; y el más importante que el conjunto de julia JR, coincide con el cierre de los puntos repulsores fijos de todos los órdenes . / Tesis
78

O problema do centro-foco para singularidades nilpotentes no plano / The center focus problem for planar nilpotent singularities

Itikawa, Jackson 22 March 2012 (has links)
O estudo dos pontos singulares em campos vetoriais analíticos é um problema quase completamente resolvido. O único caso que ainda permanece insolúvel é o caso monodrômico, em que as órbitas circundam a singularidade. Em sistemas diferenciais analíticos, se p é singularidade monodrômica, então p ou é um centro, ou é um foco. O problema do centro-foco consiste em determinar condições que diferenciem os casos em que p é um foco, daqueles em que p é um centro. O tema central desta dissertação é a investigação do problema do centro-foco em sistemas diferenciais analíticos com singularidade nilpotente. Este problema é bastante estudado, uma vez que ainda não existe um algoritmo eficiente para este caso, tal como ocorre em sistemas com singularidades não degeneradas. Estudamos duas técnicas bastante distintas. A primeira faz uso da teoria das formas normais e aborda o problema da maneira clássica, dividindo-o na investigação da monodromia e no estudo da estabilidade. O outro método investiga os sistemas diferenciais com singularidades nilpotentes como limite de sistemas com singularidades não degeneradas. A fim de avaliarmos sua eficiência e compreendermos as possíveis obstruções envolvidas, aplicamos os métodos a famílias concretas de sistemas diferenciais / The study of singular points in planar analytic vector fields is a problem almost completely solved. The only case that remains open is the monodromic one, in which the orbits turn around the singularity. In analytic differential systems, if p is a monodromic singular point, then p is either a center or a focus. The center-focus problem consists in determining conditions for distinguishing between a center and a focus. The main purpose of this work is the investigation of the center-focus problem in analytic differential systems with nilpotent singular points. This problem is still widely studied, since there is no algorithm for such case, comparable to the Lyapunov method for the case of non-degenerate singularities. We studied two different methods. The first makes use of the normal form theory and deals with the problem in the classic way, splitting it up in two parts: the investigation of the monodromy and the study of the stability. The latter investigates the differential analytic systems with nilpotent singular points as limit of differential systems with nondegenerate singularities. In order to evaluate the efficiency and understand possible obstructions, we applied the two techniques to concrete families of differential systems
79

Topologia e singularidades das superfícies regradas em \' R POT.3\" / Singularity and topology of ruled surface in \'R POT.3\'

Martins, Rodrigo 26 March 2007 (has links)
Neste trabalho estudamos a topologia local, trivialidade topolóogica e as singularidades de superfícies regradas em \'R POT.3\'. O objetivo do trabalho é comparar as singularidades que ocorrem no conjunto das superfícies regradas com as singularidades de germes de aplicações de \'R POT.2\' em \'R POT.3\', fazer a classificação topológica local e estudar a trivialidade topológica de famílias de superfícies regradas. Finalmente, discutimos possíveis generalizações de superfícies regradas para altas dimensões / We study the local topology, topological triviality and singularities of ruled surfaces in \'R POT.3\'. In this work we compare the singularities of germs from \'R POT.2\' to \'R POT.3\' with the singularities appearing in the set of ruled surfaces, doing a local topology classification of the ruled surface and study the topological triviality of families of ruled surfaces. Finally we will try to give possible generalizations of ruled surfaces for higher dimensions.
80

Teoria de singularidades e classificação de problemas de bifurcação Z2-equivariantes de Corank 2 /

Pereira, Miriam da Silva. January 2006 (has links)
Orientador: Angela Maria Sitta / Banca: Maria Aparecida Soares Ruas / Banca: Claudio Aguinaldo Buzzi / Resumo: Neste trabalho classificamos problemas de bifurcação Z2-equivariantes de corank 2 até co- dimensão 3 via técnicas da Teoria de Singularidades. A abordagem para classificar tais problemas é baseada no processo de redução à forma normal de Birkhoff para estudar a interação de modos Hopf-Pontos de Equilíbrio. O comportamento geométrico das soluções dos desdobramentos das formas normais obtidas é descrito pelos diagramas de bifurcação e estudamos a estabilidade assintótica desses ramos. / Abstract: In this work we classify the Z2-equivariant corank 2 bifurcation problems up to codimension 3 via Singularity Theory techniques. The approach to classify such problems is based on the Birkhoff normal form to study Hopf-Steady- State mode interaction. The geometrical behavior of the solutions of the unfolding of the normal forms is described by the bifurcation diagrams and we study the asymptotic stability of such branches. / Mestre

Page generated in 0.0435 seconds