261 |
Trace au bord de solutions d'équations de hamilton-Jacobi elliptiques et trace initiale de solutions d'équations de la chaleur avec absorption sur-linéaire / Boundary trace of solutions to elliptic hamilton-Jacobi equations and initial trace of solutions to heat equations with super linear absorptionNguyen, Phuoc Tai 02 February 2012 (has links)
Cette thèse est constituée de trois parties. Dans la première partie, on s’intéresse au problème de trace au bord d’une solution positive de l’équation (E1) - Δu + g(∇u) = 0 dans un domaine borné Ω. Si g(r) ≥ rq avec q > 1, on prouve que toute solution positive de (E1)admet une trace au bord considérée comme une mesure de Borel régulière. Si g(r) = rq avec1 < q < qc = N+1/N , on montre l’existence d’une solution positive dont la trace au bord est une mesure de Borel régulière. Si g(r) = rq avec qc ≤ q < 2, on établit une condition nécessaire de résolution en terme de capacité de Bessel C2-q/q ,q’ . On étudie aussi des ensembles éliminables au bord pour des solutions modérées et sigma-modérées. La deuxième partie est consacrée à étudier la limite, lorsque k → ∞, de solutions d’équation ∂tu - Δu + f(u) = 0 dans ℝN × (0,∞) avec donnée initiale kδ0. On prouve qu’il existe essentiellement trois types de comportement possible et démontre un résultat général d’existence de trace initiale et quelques résultats d’unicité et de non-unicité de solutions dont la donnée initiale n’est pas bornée. Dans la troisième partie, on considère l’équation ∂tu - Δu + f(u) = 0 dans ℝN × (0,∞) où p > 1. Si p > 2N/N+1, on fournit une condition suffisante portant sur f pour l’existence et l’unicité des solutions fondamentales et on étudie la limite lorsque k → ∞. On donne aussi de nouveaux résultats de non-unicité de solutions avec donnée initiale non bornée. Si p ≥ 2, on prouve que toute solution positive admet une trace initiale dans la classe des mesures de Borel régulières positives. Finalement on applique les résultats ci-dessus au cas f(u) = uα lnβ(u + 1) avec α,β > 0. / This thesis is divided into three parts. In the first part, we study the boundary trace of positive solutions of the equation (E1) - Δu + g(∇u) = 0 in a bounded domain . When g(r) ≥ rq with q > 1, we prove that any positive function of (E1) admits a boundary trace which is an outer regular Borel measure. When g(r) ≥ rq with 1 < q < qc = N+1/N, we prove the existence of a positive solution with a general outer regular Borel measure as boundary trace.When g(r) ≥ rq with qc ≤ q < 2, we establish a necessary condition for solvability in term of the Bessel capacity C2-q/q ,q’ . We also study boundary removable sets for moderate and sigma-moderate solutions. The second part is devoted to investigate the limit, when k → ∞, of the solutions of ∂tu - Δu + f(u) = 0 in ℝN × (0,∞) with initial data kδ0. We prove that there exist essentially three types of possible behaviour and provide a new and more general construction of the initial trace and some uniqueness and non-uniqueness results for solutions with unbounded initial data. In the third part, we consider the equation ∂tu - Δu + f(u) = 0 in ℝN × (0,∞) where p > 1. If p > 2N/N+1we provide a sufficient condition on f for existence and uniqueness of the fundamental solutions and we study their limit when k → ∞. We also give new results dealing with non uniqueness for the initial value problem with unbounded initial data. If p ≥ 2, we prove that any positive solution admits an initial trace in the class of positive Borel measures. Finally we apply the above results to the case f(u) = uα lnβ(u + 1) with α,β > 0.
|
262 |
Superfícies em R4 do ponto de vista da teoria das singularidadesSilva, Paulo do Nascimento 28 May 2013 (has links)
Made available in DSpace on 2015-05-15T11:46:22Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1908357 bytes, checksum: 3762912e093a6400855708f530b6cd4d (MD5)
Previous issue date: 2013-05-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / We study the geometry of surfaces immersed in R4 through the singularities of
their families of height functions. Inflection points on the surfaces are shown to
be umbilic points from their families of height functions. Furthermore, we see that
inflection points of imaginary type are isolated points of the curve --1(0). As a
consequence we prove that any dive generic convexly embedded S2 in R4 has inflexion
points. / Neste trabalho estudamos a geometria das superfícies em R4 através da variedade
canal e das singularidades das famílias de funções altura das superfícies. Provaremos
que os pontos de inflexão das superfície são os pontos umbílicos das famílias de funções
altura. Além disso, veremos que pontos de inflexão do tipo imaginário serão pontos
isolados da curva --1(0). Como uma consequência deste estudo provaremos que
qualquer mergulho genérico convexo de S2 em R4 tem pelo menos um ponto de
inflexão.
|
263 |
Lightlike string-localized free quantum fields for massive bosonsFigueiredo, Francisco del-Gaudio Oliveira 02 March 2017 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-10T14:58:33Z
No. of bitstreams: 1
franciscodelgaudiooliveirafigeuiredo.pdf: 778762 bytes, checksum: 462fd065a0a2a277102c64e0a2ecf79c (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-01-23T11:51:06Z (GMT) No. of bitstreams: 1
franciscodelgaudiooliveirafigeuiredo.pdf: 778762 bytes, checksum: 462fd065a0a2a277102c64e0a2ecf79c (MD5) / Made available in DSpace on 2018-01-23T11:51:06Z (GMT). No. of bitstreams: 1
franciscodelgaudiooliveirafigeuiredo.pdf: 778762 bytes, checksum: 462fd065a0a2a277102c64e0a2ecf79c (MD5)
Previous issue date: 2017-03-02 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / As exigências de localidade, positividade dos estados e positividade da energia dão origem
a comportamentos ruins dos campos quânticos em distâncias pequenas (singularidadesUV). Quando tenta-se construir campos quânticos para partículas de spin s ≥ 1 que
satisfazem esse princípios fundamentais, acaba-se ganhando interações não-renormalizaveis.
Para spins um e dois, existem campos, no contexto de teorias de calibre, com o mesmo
bom comportamento UV que o campo escalar para spin zero. Entretanto, é necessária a
introdução de um espaço de estados não-físico, assim como campos não-físicos (ghosts).
Motivado por trabalhos anteriores, nós investigamos campos quânticos, para bósons
massivos de spin arbitrário, possuindo o mesmo comportamento UV que o campo escalar
(s = 0), porém que agem num espaço de Hilbert sem ghosts e são covariantes por
transformações de Poincaré. Esses campos, entretanto, não possuem mais localização
pontual, estando localizados, ao invés, em semi-retas no espaço de Minkowski que se
extendem em direções tipo-luz (strings tipo-luz). / The combined requirements of locality, positivity of states and positivity of energy lead to
bad short distance behaviour of quantum fields (UV singularities). When one tries to build
quantum fields for particles of spin s ≥ 1 that still satisfy these fundamental principles,
one ends up with non-renormalizable interactions. For spin one and two, there exist fields
in the context of gauge theory with the same good UV behaviour as the scalar field for
spin zero. However, for this one has to introduce an unphysical state space, as well as
unphysical fields (ghosts). Motivated by previous works, we begin to investigate quantum
fields, for massive bosons of any spin, that have the same good UV behaviour as the scalar
field (s = 0), act in a Hilbert space without ghosts and are Poincaré covariant. These
fields are, however, no longer point-local, being localized instead on semi-infinite lines in
Minkowski space extending to lightlike infinity (lightlike strings).
|
264 |
Estrutura topológica do conjunto de soluções de perturbações não lineares do p-laplaciano / Topological structure of the solution set of ninlinear perturbation of the p-laplacianMarcial, Marcos Roberto 23 June 2014 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2015-01-16T17:13:32Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Tese - Marcos Roberto Marcial - 2014.pdf: 1577179 bytes, checksum: ac1649c996b2193bad6b704f05eca30c (MD5) / Approved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2015-01-16T17:40:15Z (GMT) No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Tese - Marcos Roberto Marcial - 2014.pdf: 1577179 bytes, checksum: ac1649c996b2193bad6b704f05eca30c (MD5) / Made available in DSpace on 2015-01-16T17:40:15Z (GMT). No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Tese - Marcos Roberto Marcial - 2014.pdf: 1577179 bytes, checksum: ac1649c996b2193bad6b704f05eca30c (MD5)
Previous issue date: 2014-06-23 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we study the topological structure of the solution set for a class of problems
−Δpu = λ f (u)+μg(u)|∇u|p+Ψ(x) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,
where Ω ⊂ IRN is a bounded domain with ∂Ω smooth, p, λ, μ are constants with p > 1,
λ ≥ 0, μ ∈ IR and
f ,g : (0,∞)→IR Ψ : Ω→IR
are continuous functions. We will use Variational and Topological Methods, which includes
minimization of energy functional and building connected components of solutions in
a sense that we will define. Also we will employ arguments about the theory of regularity
for p-Laplacian operator, approach arguments , maximum principles, results about sub
and supersolutions and also arguments including monotonic type operators. / Neste trabalho estudamos a estrutura topológica do conjunto de soluções da classe de
problemas
−Δpu = λ f (u)+μg(u)|∇u|p+Ψ(x) em Ω,
u > 0 em Ω,
u = 0 sobre ∂Ω,
onde Ω⊂IRN é um domínio limitado com fronteira ∂Ω regular, p, λ, μ são constantes com
p > 1, λ ≥ 0, μ ∈ IR e f ,g : (0,∞)→IR, Ψ : Ω→IR são funções contínuas. Utilizamos
Métodos Variacionais e Topológicos, que incluem minimização de funcionais energia
e construção de componentes conexas de soluções em um sentido que definiremos.
Empregamos também argumentos sobre a teoria da regularidade para o operador p-
Laplaciano, argumentos de aproximação, bem como princípios de máximo, resultados
sobre sub e supersoluções e também argumentos com operadores tipo monotônico.
|
265 |
Existência de medidas invariantes para aplicações no intervalo com presença de pontos críticos e singularidadesMontoya, Jorge Luis Abanto 20 May 2016 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-07-28T20:14:59Z
No. of bitstreams: 1
jorgeluisabantomontoya.pdf: 600922 bytes, checksum: 4b3e153d0e21453a8c9529785f8de3be (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-07-29T11:42:38Z (GMT) No. of bitstreams: 1
jorgeluisabantomontoya.pdf: 600922 bytes, checksum: 4b3e153d0e21453a8c9529785f8de3be (MD5) / Made available in DSpace on 2016-07-29T11:42:38Z (GMT). No. of bitstreams: 1
jorgeluisabantomontoya.pdf: 600922 bytes, checksum: 4b3e153d0e21453a8c9529785f8de3be (MD5)
Previous issue date: 2016-05-20 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Provaremos a existência de medidas de probabilidade invariantes absolutamente contínuas
com respeito à medida de Lebesgue. Aqui trabalhamos com uma classe de funções que
denotamos por F, esta classe consiste de aplicações no intervalo f : M ! M, que possuem
pontos críticos e singularidades mais outras propriedades. É preciso mencionar que uma
das propriedades é a condição de somabilidade ao longo da órbita crítica que vai ajudar a
ter resultados importantes para nosso trabalho.
O resultado principal diz que, para cada f 2 F existe uma medida de probabilidade
invariante absolutamente contínua. Para conseguir este resultado, provaremos um teorema
auxiliar que trata da existência de uma partição enumerável I de intervalos abertos de M,
de uma aplicação que chamamos tempo induzido : M ! N que é constante nos elementos
da partição I, tal que a aplicação ˆ f : M ! M definida por ˆ f = f que chamamos aplicação
induzida, satisfaz três propriedades importantes que são, expansão, variação somável e
tempo induzido somável. Por isso ao longo do trabalho vamos concentrar em provar essas
três propriedades.
O ponto importante é que as duas primeiras propriedades junto com o teorema A garantem
a existência de uma medida de probabilidade absolutamente contínua para ˆ f, finalmente
utilizando a terceira propriedade junto com a proposição A, obtemos a existência de uma
medida de probabilidade absolutamente contínua para nossa f. / We prove the existence of invariant probability measures absolutely continuous with respect
to Lebesgue measure. Here we work with a class of maps that we denote by F, this class
consists of interval maps f : M ! M, having critical points and singularities more other
properties. I must mention that one of the properties is the condition of summability
along the critical orbit which will help to have important results for our work.
The main result says, for each f 2 F there is a probability measure invariant absolutely
continuous. To achieve this result, we prove an auxiliary theorem that is the existence of a
countable partition I of open intervals of M, an map that called induced time : M ! N
that is constant on the elements of the partition I, such that the map ˆ f : M ! M defined
by ˆ f = f we call induced map, satisfies three important properties that are, expanding,
summable variation and summable induced time. So throughout the work we focus on
evidence these three properties.
The important point is that the first two properties together with theorem A ensures the
existence of a measure absolutely continuous probability ˆ f, finally using the third property
together with proposition A, we get the existence of an absolutely continuous probability
measure for our f.
|
266 |
Study of RCS from Aerodynamic Flow using Parallel Volume-Surface Integral EquationPadhy, Venkat Prasad January 2016 (has links) (PDF)
Estimation of the Radar Cross Section of large inhomogeneous scattering objects such as composite aircrafts, ships and biological bodies at high frequencies has posed large computational challenge. The detection of scattering from wake vortex leading to detection and possible identification of low observable aircrafts also demand the development of computationally efficient and rigorous numerical techniques. Amongst the various methods deployed in Computational Electromagnetics, the Method of Moments predicts the electromagnetic characteristics accurately. Method of Moments is a rigorous method, combined with an array of modeling techniques such as triangular patch, cubical cell and tetrahedral modeling. Method of Moments has become an accurate technique for solving electromagnetic problems from complex shaped homogeneous and inhomogeneous objects. One of the drawbacks of Method of Moments is the fact that it results into a dense matrix, the inversion of which is a computationally complex both in terms of physical memory and compute power. This has been the prime reason for the Method of Moments hitherto remaining as a low frequency method. With recent advances in supercomputing, it is possible to extend the range of Method of Moments for Radar Cross Section computation of aircraft like structures and radiation characteristic of antennas mounted on complex shaped bodies at realistic frequencies of practical interest. This thesis is a contribution in this direction.
The main focus of this thesis is development of parallel Method of Moments solvers, applied to solve real world electromagnetic wave scattering and radiation problems from inhomogeneous objects. While the methods developed in this thesis are applicable to a variety of problems in Computational Electromagnetics as shown by illustrative examples, in specific, it has been applied to compute the Radar Cross Section enhancement due to acoustic disturbances and flow inhomogeneities from the wake vortex of an aircraft, thus exploring the possibility of detecting stealth aircraft. Illustrative examples also include the analysis of antenna mounted on an aircraft.
In this thesis, first the RWG basis functions have been used in Method of Moments procedure, for solving scattering problems from complex conducting structures such as aircraft and antenna(s) mounted on airborne vehicles, of electrically large size of about 45 and 0.76 million unknowns.
Next, the solver using SWG basis functions with tetrahedral and pulse basis functions with cubical modeling have been developed to solve scattering from 3D inhomogeneous bodies. The developed codes are validated by computing the Radar Cross Section of spherical homogeneous and inhomogeneous layered scatterers, lossy dielectric cylinder with region wise inhomogeneity and high contrast dielectric objects.
Aerodynamic flow solver ANSYS FLUENT, based on Finite Volume Method is used to solve inviscid compressible flow problem around the aircraft. The gradients of pressure/density are converted to dielectric constant variation in the wake region by using empirical relation and interpolation techniques. Then the Radar Cross Section is computed from the flow inhomogeneities in the vicinity of a model aircraft and beyond (wake zone) using the developed parallel Volume Surface Integral Equation using Method of Moments and investigated more rigorously. Radar Cross Section enhancement is demonstrated in the presence of the flow inhomogeneities and detectability is discussed. The Bragg scattering that occurs when electromagnetic and acoustic waves interact is also discussed and the results are interpreted in this light. The possibility of using the scattering from wake vortex to detect low visible aircraft is discussed.
This thesis also explores the possibility of observing the Bragg scattering phenomenon from the acoustic disturbances, caused by the wake vortex. The latter sets the direction for use of radars for target identification and beyond target detection.
The codes are parallelized using the ScaLAPACK and BiCG iterative method on shared and distributed memory machines, and tested on variety of High Performance Computing platforms such as Blue Gene/L (22.4TF), Tyrone cluster, CSIR-4PI HP Proliant 3000 BL460c (360TF) and CRAY XC40 machines. The parallelization speedup and efficiency of all the codes has also been shown.
|
267 |
Formal reduction of differential systems : Singularly-perturbed linear differential systems and completely integrable Pfaffian systems with normal crossings / Réduction Formelle des systèmes différentiels linéaires singuliers : Systèmes différentiels linéaires singulièrement perturbés et systèmes de Pfaff complètement intégrables à croisements normauxMaddah, Sumayya Suzy 25 September 2015 (has links)
Dans cette thèse, nous nous sommes intéressés à l'analyse locale de systèmes différentiels linéaires singulièrement perturbés et de systèmes de Pfaff complètement intégrables et multivariés à croisements normaux. De tels systèmes ont une vaste littérature et se retrouvent dans de nombreuses applications. Cependant, leur résolution symbolique est toujours à l'étude. Nos approches reposent sur l'état de l'art de la réduction formelle des systèmes linéaires singuliers d'équations différentielles ordinaires univariées (ODS). Dans le cas des systèmes différentiels linéaires singulièrement perturbés, les complications surviennent essentiellement à cause du phénomène des points tournants. Nous généralisons les notions et les algorithmes introduits pour le traitement des ODS afin de construire des solutions formelles. Les algorithmes sous-jacents sont également autonomes (par exemple la réduction de rang, la classification de la singularité, le calcul de l'indice de restriction). Dans le cas des systèmes de Pfaff, les complications proviennent de l'interdépendance des multiples sous-systèmes et de leur nature multivariée. Néanmoins, nous montrons que les invariants formels de ces systèmes peuvent être récupérés à partir d'un ODS associé, ce qui limite donc le calcul à des corps univariés. De plus, nous donnons un algorithme de réduction de rang et nous discutons des obstacles rencontrés. Outre ces deux systèmes, nous parlons des singularités apparentes des systèmes différentiels univariés dont les coefficients sont des fonctions rationnelles et du problème des valeurs propres perturbées. Les techniques développées au sein de cette thèse facilitent les généralisations d'autres algorithmes disponibles pour les systèmes différentiels univariés aux cas des systèmes bivariés ou multivariés, et aussi aux systèmes d''equations fonctionnelles. / In this thesis, we are interested in the local analysis of singularly-perturbed linear differential systems and completely integrable Pfaffian systems in several variables. Such systems have a vast literature and arise profoundly in applications. However, their symbolic resolution is still open to investigation. Our approaches rely on the state of art of formal reduction of singular linear systems of ordinary differential equations (ODS) over univariate fields. In the case of singularly-perturbed linear differential systems, the complications arise mainly from the phenomenon of turning points. We extend notions introduced for the treatment of ODS to such systems and generalize corresponding algorithms to construct formal solutions in a neighborhood of a singularity. The underlying components of the formal reduction proposed are stand-alone algorithms as well and serve different purposes (e.g. rank reduction, classification of singularities, computing restraining index). In the case of Pfaffian systems, the complications arise from the interdependence of the multiple components which constitute the former and the multivariate nature of the field within which reduction occurs. However, we show that the formal invariants of such systems can be retrieved from an associated ODS, which limits computations to univariate fields. Furthermore, we complement our work with a rank reduction algorithm and discuss the obstacles encountered. The techniques developed herein paves the way for further generalizations of algorithms available for univariate differential systems to bivariate and multivariate ones, for different types of systems of functional equations.
|
268 |
Sur le rôle des singularités hamiltonniennes dans les systèmes contrôlés : applications en mécanique quantique et en optique non linéaire / About the role of hamiltonian singularities in controlled systems : applications in quantum mechanics and nonlinear opticsAssemat, Élie 19 October 2012 (has links)
Cette thèse possède un double objectif : le premier est l'amélioration des techniques de contrôle en mécanique quantique, et plus particulièrement en RMN, grâce aux techniques du contrôle optimal géométrique. Le second consiste à étudier l'influence des singularités hamiltoniennes dans les systèmes physiques contrôlés. Le chapitre traitant du contrôle optimal étudie trois problèmes classiques en RMN : l'inversion simultanée de deux spins, l'inclusion des termes non-linéaires dans le modèle et la méthode du point fixe. Ensuite, nous appliquons le PMP au problème de transfert de population dans un système quantique à trois niveaux pour retrouver le processus STIRAP. Les deux chapitres suivants étudient les singularités hamiltoniennes. Nous montrons comment l'étude des singularités hamiltoniennes permet de contrôler la polarisation dans différentes fibres optiques. Ensuite, nous montrons l'existence d'une monodromie hamiltonienne généralisée dans le spectre vibrationnel de la molécule HOCl. Enfin, nous donnons une méthode de mesure de la monodromie hamiltonienne dynamique dans deux systèmes classiques en optique non-linéaire : le modèle de Bragg et le mélange à trois ondes / This thesis has two goals: the first one is to improve the control techniques in quantum mechanics, and more specifically in NMR, by using the tools of geometric optimal control. The second one is the study of the influence of Hamiltonian singularities in controlled systems. The chapter about optimal control study three classical problems of NMR : the inversion problem, the influence of the radiation damping term, and the steady state technique. Then, we apply the geometric optimal control to the problem of the population transfert in a three levels quantum system to recover the STIRAP scheme.The two next chapters study Hamiltonian singularities. We show that they allow to control the polarization in different type of optical fibers. Then, we show the existence of generalized hamiltonian monodromy in the vibrational spectrum of the HOCl molecule. Finally, we propose a method to measure dynamically the monodromy in two different nonlinear optics systems : the Bragg model and the three waves mixing model
|
269 |
Polynomiale Kollokations-Quadraturverfahren für singuläre Integralgleichungen mit festen SingularitätenKaiser, Robert 25 October 2017 (has links) (PDF)
Viele Probleme der Riss- und Bruchmechanik sowie der mathematischen Physik lassen sich auf Lösungen von singulären Integralgleichungen über einem Intervall zurückführen. Diese Gleichungen setzen sich im Wesentlichen aus dem Cauchy'schen singulären Integraloperator und zusätzlichen Integraloperatoren mit festen Singularitäten in den jeweiligen Kernen zusammen. Zur numerischen Lösung solcher Gleichungen werden polynomiale Kollokations-Quadraturverfahren betrachet. Als Ansatzfunktionen und Kollokationspunkte werden dabei gewichtete Polynome und Tschebyscheff-Knoten gewählt. Die Gewichte sind so gewählt, dass diese das asymptotische Verhalten der Lösung in den Randpunkten widerspiegeln. Mit Hilfe von C*-Algebra Techniken, werden in dieser Arbeit notwendige und hinreichende Bedingungen für die Stabilität der Kollokations-Quadraturverfahren angegeben. Die theoretischen Resultate werden dabei durch numerische Berechnungen anhand des Problems der angerissenen Halbebene und des angerissenen Loches überprüft.
|
270 |
Une fonction zêta motivique pour l'étude des singularités réelles / A motivic zeta function to study real singularitiesCampesato, Jean-Baptiste 11 December 2015 (has links)
Nous nous intéressons à l'étude des singularités réelles à l'aide d'arguments provenant de l'intégration motivique. Une telle démarche a été initiée par S. Koike et A. Parusiński puis poursuivie par G. Fichou. Afin de donner une classification des singularités réelles, T.-C. Kuo a défini la notion d'équivalence blow-analytique. Il s'agit d'une relation d'équivalence pour les germes analytiques réels n'admettant pas de module continu pour les singularités isolées. Cette notion est étroitement liée à la notion d'applications analytiques par arcs définie par K. Kurdyka. Il est donc naturel d'adapter des arguments provenant de l'intégration motivique pour l'étude de l'équivalence blow-analytique. La difficulté réside désormais dans le fait de trouver des méthodes permettant de montrer que deux germes sont équivalents et de construire des invariants permettant de distinguer deux germes qui ne sont pas dans la même classe. Nous travaillons avec une variante plus algébrique de cette notion, l'équivalence blow-Nash introduite par G. Fichou. La première partie de la thèse consiste en un théorème d'inversion donnant des conditions pour que l'inverse d'un homéomorphisme blow-Nash soit encore blow-Nash. L'intérêt d'un tel énoncé est que de telles applications apparaissent dans la définition de l'équivalence blow-Nash. La seconde partie est consacrée à l'étude d'une nouvelle fonction zêta motivique. Il s'agit d'associer à un germe analytique une série formelle. Cette fonction zêta motivique généralise les fonctions zêta de Koike-Parusiński et de Fichou et admet une formule de convolution. Il s'agit d'un invariant pour l'équivalence blow-Nash. / The main purpose of this thesis is to study real singularities using arguments from motivic integration as initiated by S. Koike and A. Parusiński and then continued by G. Fichou. In order to classify real singularities, T.-C. Kuo introduced the blow-analytic equivalence which is an equivalence relation on real analytic germs without moduli for isolated singularities. This notion is closely related to the notion of arc-analytic maps introduced by K. Kurdyka, thus it is natural to adapt arguments from motivic integration to the study of the relation. The difficulty lies in finding efficient ways to prove that two germs are equivalent and in constructing invariants that distinguish germs which are not in the same class. We focus on the blow-Nash equivalence, a more algebraic notion which was introduced by G. Fichou. The first part of this thesis consists in an inverse theorem for blow-Nash maps. Under certain assumptions, this ensures that the inverse of a homeomorphism which is blow-Nash is also blow-Nash. Such maps are involved in the definition of the blow-Nash equivalence. In the second part, we associate a power series to an analytic germ, called the zeta function of the germ. This construction generalizes the zeta functions of Koike-Parusiński and Fichou. Furthermore, it admits a convolution formula while being an invariant for the blow-Nash equivalence.
|
Page generated in 0.0298 seconds