281 |
Global and local Q-algebrization problems in real algebraic geometrySavi, Enrico 10 May 2023 (has links)
In 2020 Parusiński and Rond proved that every algebraic set X ⊂ R^n is homeomorphic to an algebraic set X’ ⊂ R^n which is described globally (and also locally) by polynomial equations whose coefficients are real algebraic numbers. In general, the following problem was widely open: Open Problem. Is every real algebraic set homeomorphic to a real algebraic set defined by polynomial equations with rational coefficients? The aim of my PhD thesis is to provide classes of real algebraic sets that positively answer to above Open Problem. In Chapter 1 I introduce a new theory of real and complex algebraic geometry over subfields recently developed by Fernando and Ghiloni. In particular, the main notion to outline is the so called R|Q-regularity of points of a Q-algebraic set X ⊂ R^n. This definition suggests a natural notion of a Q-nonsingular Q-algebraic set X ⊂ R^n. The study of Q-nonsingular Q-algebraic sets is the main topic of Chapter 2. Then, in Chapter 3 I introduce Q-algebraic approximation techniques a là Akbulut-King developed in collaboration with Ghiloni and the main consequences we proved, that are, versions ‘over Q’ of the classical and the relative Nash-Tognoli theorems. Last results can be found in in Chapters 3 & 4, respectively. In particular, we obtained a positive answer to above Open Problem in the case of compact nonsingular algebraic sets. Then, after extending ‘over Q’ the Akbulut-King blowing down lemma, we are in position to give a complete positive answer to above Open Problem also in the case of compact algebraic sets with isolated singularities in Chapter 4. After algebraic Alexandroff compactification, we obtained a positive answer also in the case of non-compact algebraic sets with isolated singularities. Other related topics are investigated in Chapter 4 such as the existence of Q-nonsingular Q-algebraic models of Nash manifolds over every real closed field and an answer to the Q-algebrization problem for germs of an isolated algebraic singularity. Appendices A & B contain results on Nash approximation and an evenness criterion for the degree of global smoothings of subanalytic sets, respectively.
|
282 |
Propriétés Structurales et Électroniques du Graphène Épitaxié sur Carbure de Silicium / Structural and Electronic Properties of Epitaxial Graphene on Silicon CarbideRidene, Mohamed 17 October 2013 (has links)
La synthèse du graphène par traitement thermique d’un substrat de carbure de silicium (SiC) est une technique prometteuse pour l’intégration de ce nouveau matériau dans l’industrie, notamment dans les dispositifs électroniques. L’avantage de cette méthode réside dans la croissance de films minces de graphène de taille macroscopique directement sur substrat isolant. Toutefois, avant d’intégrer ce matériau, il convient d’en contrôler la synthèse et d’en moduler les propriétés. Dans ce travail de thèse, nous étudions les propriétés structurales et électroniques du graphène obtenu par la graphitisation des polytypes 3C-, 4H- et 6H-SiC. A partir de diverses méthodes de caractérisation, telles que la diffraction des électrons lents (LEED) ou la microscopie et spectroscopie à effet tunnel (STM/STS), nous avons vérifié, dans un premier temps, que le caractère discontinu du graphène sur les bords de marches peut introduire un confinement latéral supplémentaire des électrons dans le graphène. Dans un second temps, l’observation des singularités de Van Hove nous a permis de démontrer l’effet de confinement unidimensionnel dans les régions d’accumulations de marches du SiC. Enfin, l’introduction de désordre dans nos couches de graphène induit une réduction de la densité de porteurs de charges dans les couches. De même, ce désordre conduit à une transition de phase quantique entre le régime localisé et le régime d’effet Hall quantique. / The synthesis of graphene by thermal decomposition of silicon carbide (SiC) is a promising technique for the integration of this new material in the industry, especially in electronic devices. The advantage of this method lies in the growth of macroscopic graphene films directly on an insulator substrate. However, before using this material in electronic devices, it is advisable to control its synthesis and modulate its properties. In this thesis, we present the structural and electronic properties of graphene obtained by graphitization of 3C- , 4H - and 6H- SiC polytypes. Various characterization methods were used, including low energy electron diffraction (LEED) and microscopy and scanning tunneling spectroscopy (STM / STS). Based on STM / STS measurements, we show that the discontinuity of epitaxial graphene at the step edges may introduce an additional lateral confinement of electrons in graphene. The observation of Van Hove singularities in the STS spectra confirmed the one dimensional confinement of graphene in step bunching regions of SiC.Finally, we show that when disorder is introduced on our graphene samples, the charge carrier density is reduced. This disorder lead to the observation of a quantum phase transition from a localized regime to a quantum Hall effect regime.
|
283 |
Contributions à l'amélioration de la performance des conditions aux limites approchées pour des problèmes de couche mince en domaines non réguliers / Contributions to the performance’s improvement of approximate boundary conditions for problems with thin layer in corner domainAuvray, Alexis 02 July 2018 (has links)
Les problèmes de transmission avec couche mince sont délicats à approcher numériquement, en raison de la nécessité de construire des maillages à l’échelle de la couche mince. Il est courant d’éviter ces difficultés en usant de problèmes avec conditions aux limites approchées — dites d’impédance. Si l’approximation des problèmes de transmission par des problèmes d’impédance s’avère performante dans le cas de domaines réguliers, elle l’est beaucoup moins lorsque ceux-ci comportent des coins ou arêtes. L’objet de cette thèse est de proposer de nouvelles conditions d’impédance, plus performantes, afin de corriger cette perte de performance. Pour cela, les développements asymptotiques des différents problèmes-modèles sont construits et étudiés afin de localiser avec précision l’origine de la perte, en lien avec les profils singuliers associés aux coins et arêtes. De nouvelles conditions d’impédance sont construites, de type Robin multi-échelle ou Venctel. D’abord étudiées en dimension 2, elles sont ensuite généralisées à certaines situations en dimension 3. Des simulations viennent confirmer l’efficience des méthodes théoriques. / Transmission problems with thin layer are delicate to approximate numerically, because of the necessity to build meshes on the scale of the thin layer. It is common to avoid these difficulties by using problems with approximate boundary conditions — also called impedance conditions. Whereas the approximation of transmission problems by impedance problems turns out to be successful in the case of smooth domains, the situation is less satisfactory in the presence of corners and edges. The goal of this thesis is to propose new impedance conditions, more efficient, to correct this lack of performance. For that purpose, the asymptotic expansions of the various models -problems are built and studied to locate exactly the origin of the loss, in connection with the singular profiles associated to corners and edges. New impedance conditions are built, of multi-scale Robin or Venctel types. At first studied in dimension 2, they are then generalized in certain situations in dimension 3. Simulations have been carried out to confirm the efficiency of the theoretical methods to some.
|
284 |
Persistence in discrete Morse theory / Persistenz in der diskreten Morse-TheorieBauer, Ulrich 12 May 2011 (has links)
No description available.
|
285 |
Mathematical Modelling of the Role of Haptotaxis in Tumour Growth and InvasionMallet, Daniel Gordon January 2004 (has links)
In this thesis, a number of mathematical models of haptotactic cell migration are developed. The modelling of haptotaxis is presented in two distinct parts - the first comprises an investigation of haptotaxis in pre-necrotic avascular tumours, while the second consists of the modelling of adhesion-mediated haptotactic cell migration within tissue, with particular attention paid to the biological appropriateness of the description of cell-extracellular matrix adhesion. A model is developed that describes the effects of passive and haptotactic migration on the cellular dynamics and growth of pre-necrotic avascular tumours. The model includes a description of the extracellular matrix and its effect on cell migration. Questions are posed as to which cell types act as a source of the extracellular matrix, and the model is used to simulate the possible effects of different matrix sources. Simulations in one-dimensional and spherically symmetric geometry are presented, displaying familiar results such as three-phase tumour growth and tumours comprising a rim of proliferating cells surrounding a non-proliferating region. Novel effects are also described such as cell population splitting and tumour shrinkage due to haptotaxis and appropriate extracellular matrix construction. The avascular tumour model is then extended to describe the internalisation of labelled cells and inert microspheres within multicell tumour spheroids. A novel model of adhesion-receptor mediated haptotactic cell migration is presented and specific applications of the model to tumour invasion processes are discussed. This model includes a more biologically realistic description of cell adhesion than has been considered in previous models of cell population haptotaxis. Through assumptions of fast kinetics, the model is simplified with the identification of relationships between the simplified model and previous models of haptotaxis. Further simpli.cations to the model are made and travelling wave solutions of the original model are then investigated. It is noted that the generic numerical solution routine NAG D03PCF is not always appropriate for the solution of the model, and can produce oscillatory and inaccurate solutions. For this reason, a control volume numerical solver with .ux limiting is developed to provide a better method of solving the cell migration models.
|
286 |
Διαφορική θεωρία Galois και μη-ολοκληρωσιμότητα του ανισοτροπικού προβλήματος Stormer και του ισοσκελούς προβλήματος τριών σωμάτωνΝομικός, Δημήτριος 20 October 2010 (has links)
Στην παρούσα διατριβή μελετήσαμε την ολοκληρωσιμότητα του ανισοτροπικού προβλήματος Størmer (ASP) και του ισοσκελούς προβλημάτος τριών σωμάτων (IP), με εφαρμογή της θεωρίας Morales-Ramis-Simó. Τα αποτελέσματα της μελέτης δημοσιεύθηκαν στο περιοδικό Physica D: Nonlinear Phenomena.
Ένα σύστημα Hamilton SH, Ν βαθμών ελευθερίας, είναι ολοκληρώσιμο (κατά Liouville) όταν επιδέχεται Ν συναρτησιακώς ανεξάρτητα και σε ενέλιξη πρώτα ολοκληρώματα. Οι J.J. Morales-Ruiz, J.P. Ramis και C. Simó απέδειξαν ότι αν ένα SH είναι ολοκληρώσιμο, τότε η ταυτοτική συνιστώσα G0k της διαφορικής ομάδας Galois των εξισώσεων μεταβολών VE¬k τάξης k , που αντιστοιχούν σε μια ολοκληρωτική καμπύλη του SH, είναι αβελιανή.
Το ASP μπορεί να θεωρηθεί ότι είναι ένα σύστημα Hamilton δυο βαθμών ελευθερίας που περιέχει τις παραμέτρους pφ και ν2>0, το οποίο περιγράφει την κίνηση ενός φορτισμένου σωματιδίου υπό την επίδραση του μαγνητικού πεδίου ενός διπόλου. Οι Α. Almeida, T. Stuchi είχαν αποδείξει ότι το ASP είναι μη-ολοκληρώσιμο για pφ≠0 και ν2>0, ενω για pφ=0 είχαν αποδείξει τη μη-ολοκληρωσιμότητα των περιπτώσεων που αντιστοιχούν στις τιμές ν2≠5/12, 2/3. Η δική μας διερεύνηση απέδειξε ότι το ASP με pφ=0 (ASP0) είναι, επίσης, μη-ολοκληρώσιμο για ν2=5/12, 2/3. Αρχικά, με χρήση της μεθόδου Yoshida, αναλύσαμε τις G01 των VE¬1, που αντιστοιχούν σε δύο ολοκληρωτικές καμπύλες του ASP0, καταλήγοντας ότι οι G01 είναι μη-αβελιανές για ν2≠2/3. Στη συνέχεια, ορίσαμε τις VE3 κατά μήκος μιας τρίτης ολοκληρωτικής καμπύλης του ASP0 και δείξαμε ότι η αντίστοιχη G03 είναι μη-αβελιανή για ν2=2/3. Σύμφωνα με τη θεωρία Morales-Ramis-Simó, τα προαναφερόμενα αποδεικνύουν τη μη-ολοκληρωσιμότητα του ASΡ για pφ=0 και ν2>0.
Το ΙΡ είναι μια υποπερίπτωση του προβλήματος τριών σωμάτων και μπορεί να μελετηθεί ως ένα σύστημα Hamilton δύο βαθμών ελευθερίας με παραμέτρους pφ και m, m3>0. Η προγενέστερη ανάλυση του ΙΡ υπεδείκνυε τη μη-ολοκληρωσιμότητα του συστήματος, όμως είχε πραγματοποιηθεί με χρήση αριθμητικών μεθόδων. Βρίσκοντας από μια ολοκληρωτική καμπύλη για κάθε μια απο τις περιπτώσεις pφ=0, pφ≠0, ορίσαμε τις αντίστοιχες VE1 και αποδείξαμε τη μη-ολοκληρωσιμότητα του ΙΡ. Για pφ=0 χρησιμοποιήσαμε τη μέθοδο Yoshida για να μελετήσουμε την G01, ενώ για pφ≠0 εφαρμόσαμε τον αλγόριθμο Kovacic και ερευνητικά αποτελέσματα των D. Boucher, J.A. Weil για να διερευνήσουμε την αντίστοιχη G01. Οι G01 και στις δυο προαναφερόμενες περιπτώσεις είναι μη-αβελιανές, οπότε το ΙΡ είναι μη-ολοκληρώσιμο, σύμφωνα με τη θεωρία Morales-Ramis-Simó. / In the present dissertation we studied the integrability of the anisotropic Stormer problem (ASP) and the isosceles three-body problem (IP), applying the Morales-Ramis-Simo theory. The results of our study were published by the journal Physica D: Nonlinear Phenomena.
A Hamiltonian system SH, of N degrees of freedom, is integrable (in the Liouville sense) if it admits an involutive set of N functionally independent first integrals. J.J. Morales-Ruiz, J.P. Ramis and C. Simó proved that if an SH is integrable, then the identity component G0k of the differential Galois group of the variational equations VE¬k of order k that correspond to an integral curve of the SH, is abelian.
The ASP can be considered as a Hamiltonian system of two degrees of freedom that contains the parameters pφ and ν2>0, which describes the motion of a charged particle under the influence of the magnetic field of a dipole. Α. Almeida, T. Stuchi had proved that the ASP is non-integrable for pφ≠0 and ν2>0, while for pφ=0 they had proved the non-integrability of the cases that correspond to ν2≠5/12, 2/3. Our study proved that the ASP with pφ=0 (ASP0) is, also, non-integrable for ν2=5/12, 2/3. Initially, using the Yoshida method, we analysed the G01 of the VE¬1, that correspond to two integrals curves of the ASP0, concluding that they are non-abelian for ν2≠2/3. Then, we defined the VE3 along a third integral curve of the ASP0 and indicated that the corresponding G03 is non-abelian for ν2=2/3. According to the Morales-Ramis-Simó theory, the aforementioned considerations prove the non-integrability of the ASP for pφ=0 and ν2>0.
The IP is a special case of the three-body problem and it can be treated as a Hamiltonian system of two degrees of freedom that embodies the parameters pφ and m, m3>0. Previous analysis of the IP suggested the non-integrability of the system, but it was performed with the use of numerical methods. Finding an integral curve for each of the cases pφ=0, pφ≠0, we defined the corresponding VE1 and proved the non-integrability of the IP. For pφ=0 we used the Yoshida method to examine G01 , while for pφ≠0 we applied the Kovacic algorithm and some results of D. Boucher, J.A. Weil to investigate the corresponding G01 . In both of the aforementioned cases the G01 were non-abelian, yielding IP non-integrable, according to the Morales-Ramis-Simó theory.
|
287 |
Conformal spectra, moduli spaces and the Friedlander-Nadirahvili invariantsMedvedev, Vladimir 08 1900 (has links)
Dans cette thèse, nous étudions le spectre conforme d'une surface fermée et le spectre de Steklov conforme d'une surface compacte à bord et leur application à la géométrie conforme et à la topologie. Soit (Σ, c) une surface fermée munie d'une classe conforme c. Alors la k-ième valeur propre conforme est définie comme Λ_k(Σ,c)=sup{λ_k(g) Aire(Σ,g)| g ∈ c), où λ_k(g) est la k-ième valeur propre de l'operateur de Laplace-Beltrami de la métrique g sur Σ. Notons que nous commeçons par λ_0(g) = 0. En prennant le supremum sur toutes les classes conformes C sur Σ on obtient l'invariant topologique suivant de Σ: Λ_k(Σ)=sup{Λ_k(Σ,c)| c ∈ C}. D'après l'article [65], les quantités Λ_k(Σ, c) et Λ_k(Σ) sont bien définies. Si une métrique g sur Σ satisfait λ_k(g) Aire(Σ, g) = Λ_k(Σ), alors on dit que g est maximale pour la fonctionnelle λ_k(g) Aire(Σ, g). Dans l'article [73], il a été montré que les métriques maximales pour λ_1(g) Aire(Σ, g) peuvent au pire avoir des singularités coniques. Dans cette thèse nous montrons que les métriques maximales pour les fonctionnelles λ_1(g) Aire(T^2, g) et λ_1(g) Aire(KL, g), où T^2 et KL dénotent le 2-tore et la bouteille de Klein, ne peuvent pas avoir de singularités coniques. Ce résultat découle d'un théorème de classification de classes conformes par des métriques induites d'une immersion minimale ramifiée dans une sphère ronde aussi montré dans cette thèse. Un autre invariant que nous étudions dans cette thèse est le k-ième invariant de Friedlander-Nadirashvili défini comme: I_k(Σ) = inf{Λ_k(Σ, c)| c ∈ C}. L'invariant I_1(Σ) a été introduit dans l'article [34]. Dans cette thèse nous montrons que pour toute surface orientable et pour toute surface non-orientable de genre impaire I_k(Σ)=I_k(S^2) et pour toute surface non-orientable de genre paire I_k(RP^2) ≥ I_k(Σ)>I_k(S^2). Ici S^2 et RP^2 dénotent la 2-sphère et le plan projectif. Nous conjecturons que I_k(Σ) sont des invariants des cobordismes des surfaces fermées. Le spectre de Steklov conforme est défini de manière similaire. Soit (Σ, c) une surface compacte à bord non vide ∂Σ, alors les k-ièmes valeurs propres de Steklov conformes sont définies comme: σ*_k(Σ, c)=sup{σ_k(g) Longueur(∂Σ, g)| g ∈ c}, où σ_k(g) est la k-ième valeur propre de Steklov de la métrique g sur Σ. Ici nous supposons que σ_0(g) = 0. De façon similaire au problème fermé, on peut définir les quantités suivantes: σ*_k(Σ)=sup{σ*_k(Σ, c)| c ∈ C} et I^σ_k(Σ)=inf{σ*_k(Σ, c)| c ∈ C}. Les résultats de l'article [16] impliquent que toutes ces quantités sont bien définies. Dans cette thèse on obtient une formule pour la limite de σ*_k(Σ, c_n) lorsque la suite des classes conformes c_n dégénère. Cette formule implique que pour toute surface à bord I^σ_k(Σ)= I^σ_k(D^2), où D^2 dénote le 2-disque. On remarque aussi que les quantités I^σ_k(Σ) sont des invariants des cobordismes de surfaces à bord. De plus, on obtient une borne supérieure pour la fonctionnelle σ^k(g) Longueur(∂Σ, g), où Σ est non-orientable, en terme de son genre et le nombre de composants de bord. / In this thesis, we study the conformal spectrum of a closed surface and the conformal Steklov spectrum of a compact surface with boundary and their application to conformal geometry and topology. Let (Σ,c) be a closed surface endowed with a conformal class c then the k-th conformal eigenvalue is defined as Λ_k(Σ,c)=sup{λ_k(g) Aire(Σ,g)| g ∈ c), where λ_k(g) is the k-th Laplace-Beltrami eigenvalue of the metric g on Σ. Note that we start with λ_0(g) = 0 Taking the supremum over all conformal classes C on Σ one gets the following topological invariant of Σ: Λ_k(Σ)=sup{Λ_k(Σ,c)| c ∈ C}. It follows from the paper [65] that the quantities Λ_k(Σ, c) and Λ_k(Σ) are well-defined. Suppose that for a metric g on Σ the following identity holds λ_k(g) Aire(Σ, g) = Λ_k(Σ). Then one says that the metric g is maximal for the functional λ_k(g) Aire(Σ, g). In the paper [73] it was shown that the maximal metrics for the functional λ_1(g) Aire(Σ, g) at worst can have conical singularities. In this thesis we show that the maximal metrics for the functionals λ_1(g) Aire(T^2, g) and λ_1(g) Aire(KL, g), where T^2 and KL stand for the 2-torus and the Klein bottle respectively, cannot have conical singularities. This result is a corollary of a conformal class classification theorem by metrics induced from a branched minimal immersion into a round sphere that we also prove in the thesis. Another invariant that we study in this thesis is the k-th Friedlander-Nadirashvili invariant defined as: I_k(Σ) = inf{Λ_k(Σ, c)| c ∈ C}. The invariant I_1(Σ) was introduced in the paper [34]. In this thesis we prove that for any orientable surface and any non-orientable surface of odd genus I_k(Σ)=I_k(S^2) and for any non-orientable surface of even genus I_k(RP^2) ≥ I_k(Σ)>I_k(S^2). Here S^2 and RP^2 denote the 2-sphere and the projective plane respectively. We also conjecture that I_k(Σ) are invariants of cobordisms of closed manifolds. The conformal Steklov spectrum is defined in a similar way. Let (Σ, c) be a compact surface with non-empty boundary ∂Σ then the k-th conformal Steklov eigenvalues is defined by the formula: σ*_k(Σ, c)=sup{σ_k(g) Longueur(∂Σ, g)| g ∈ c}, where σ_k(g) is the k-th Steklov eigenvalue of the metric g on Σ. Here we suppose that σ_0(g) = 0. Similarly to the closed problem one can define the following quantities: σ*_k(Σ)=sup{σ*_k(Σ, c)| c ∈ C} and I^σ_k(Σ)=inf{σ*_k(Σ, c)| c ∈ C}. The results of the paper [16] imply that all these quantities are well-defined. In this thesis we obtain a formula for the limit of the k-th conformal Steklov eigenvalue when the sequence of conformal classes degenerates. Using this formula we show that for any surface with boundary I^σ_k(Σ)= I^σ_k(D^2), where D^2 stands for the 2-disc. We also notice that I^σ_k(Σ) are invariants of cobordisms of surfaces with boundary. Moreover, we obtain an upper bound for the functional σ^k(g) Longueur(∂Σ, g), where Σ is non-orientable, in terms of its genus and the number of boundary components.
|
288 |
Polynomiale Kollokations-Quadraturverfahren für singuläre Integralgleichungen mit festen SingularitätenKaiser, Robert 13 October 2017 (has links)
Viele Probleme der Riss- und Bruchmechanik sowie der mathematischen Physik lassen sich auf Lösungen von singulären Integralgleichungen über einem Intervall zurückführen. Diese Gleichungen setzen sich im Wesentlichen aus dem Cauchy'schen singulären Integraloperator und zusätzlichen Integraloperatoren mit festen Singularitäten in den jeweiligen Kernen zusammen. Zur numerischen Lösung solcher Gleichungen werden polynomiale Kollokations-Quadraturverfahren betrachet. Als Ansatzfunktionen und Kollokationspunkte werden dabei gewichtete Polynome und Tschebyscheff-Knoten gewählt. Die Gewichte sind so gewählt, dass diese das asymptotische Verhalten der Lösung in den Randpunkten widerspiegeln. Mit Hilfe von C*-Algebra Techniken, werden in dieser Arbeit notwendige und hinreichende Bedingungen für die Stabilität der Kollokations-Quadraturverfahren angegeben. Die theoretischen Resultate werden dabei durch numerische Berechnungen anhand des Problems der angerissenen Halbebene und des angerissenen Loches überprüft.
|
289 |
[en] ASYMPTOTIC NETS WITH CONSTANT AFFINE MEAN CURVATURE / [pt] REDES ASSINTÓTICAS COM CURVATURA AFIM MÉDIA CONSTANTEANDERSON REIS DE VARGAS 26 August 2021 (has links)
[pt] A Geometria Diferencial Discreta tem por objetivo desenvolver uma teoria discreta que respeite os aspectos fundamentais da teoria suave. Com isto em mente, são apresentados incialmente resultados da teoria suave da Geometria Afim que terão suas versões discretas tratadas a posteriori. O primeiro objetivo deste trabalho é construir uma estrutura afim discreta para as redes assintóticas definidas no espaço tridimensional, com métrica de Blaschke indefinida e parâmetros assintóticos. Com este intuito, são definidos um campo conormal, que satisfaz as equações de Lelieuvre e está associado a um parâmetro real, e um normal afim que define a forma cúbica da rede e torna a estrutura bem definida. Esta estrutura permite, por exemplo, o estudo das superfícies regradas, com ênfase nas esferas afins impróprias. Além disso, propõe-se uma definição para as singularidades no caso das esferas afins impróprias discretas a partir da construção centrocorda. Outro objetivo deste trabalho é propor uma definição para as superfícies afins discretas com curvatura afim média constante (CAMC), de forma que englobe as superfícies afins mínimas e as esferas afins. As superfícies afins mínimas discretas recebem uma caracterização geométrica bastante interessane e ligada diretamente às quádricas de Lie discretas. O trabalho se completa com o principal resultado, referente à versão discreta das superfícies de Cayley, esferas afins impróprias regradas caracterizadas a partir da conexão afim induzida: uma rede assintótica com CAMC é congruente equiafim à uma superfície de Cayley se, e somente se, a forma cúbica é não nula e a conexão afim induzida é paralela. / [en] Discrete Differential Geometry aims to develop a discrete theory which respects fundamental aspects of smooth theory. With this in mind, some results of smooth theory of Affine Geometry are firstly introduced since their discrete counterparts shall be treated a posteriori. The first goal of this work is construct a discrete affine structure for nets in a three-dimensional space with indefinite Blaschke metric and asymptotic parameters. For this purpose, one defines a conormal vector field, which satisfies
Lelieuvre s equations and it is associated to a real parameter; and an affine normal
vector field, which defines the cubic form of the net and makes the structure well
defined. This structure allows to study, e.g., ruled surfaces with emphasis on improper
affine spheres. Moreover, a definition for singularities is proposed in the case of discrete
improper affine spheres from the center-chord construction. Another goal here is to
propose a definition for an asymptotic net with constant affine mean curvature
(CAMC), in a way that encompasses discrete affine minimal surfaces and discrete affine
spheres. Discrete affine minimal surfaces receive a beautiful geometrical
characterization directly linked to discrete Lie quadrics. This work is completed with
the main result about a discrete version of Cayley surfaces, which are ruled improper
affine spheres that can be characterized by the induced connection as: an asymptotic net
with CAMC is equiaffinely congruent to a Cayley surface if and only if the cubic form
does not vanish and the affine induced connection is parallel.
|
290 |
Géométrie des variétés de Fano : sous-faisceaux du fibré tangent et diviseur fondamental / Geometry of Fano varieties : subsheaves of the tangent bundle and fundamental divisorLiu, Jie 26 June 2018 (has links)
Cette thèse est consacrée à l'étude de la géométrie des variétés de Fano complexes en utilisant les propriétés des sous-faisceaux du fibré tangent et la géométrie du diviseur fondamental. Les résultats principaux compris dans ce texte sont : (i) Une généralisation de la conjecture de Hartshorne: une variété lisse projective est isomorphe à un espace projectif si et seulement si son fibré tangent contient un sous-faisceau ample.(ii) Stabilité du fibré tangent des variétés de Fano lisses de nombre de Picard un : à l'aide de théorèmes d'annulation sur les espaces hermitiens symétriques irréductibles de type compact M, nous montrons que pour presque toute intersection complète générale dans M, le fibré tangent est stable. La même méthode nous permet de donner une réponse sur la stabilité de la restriction du fibré tangent de l'intersection complète à une hypersurface générale.(iii) Non-annulation effective pour des variétés de Fano et ses applications : nous étudions la positivité de la seconde classe de Chern des variétés de Fano lisses de nombre de Picard un. Ceci nous permet de montrer un théorème de non-annulation pour les variétés de Fano lisses de dimension n et d'indice n-3. Comme application, nous étudions la géométrie anticanonique des variétés de Fano et nous calculons les constantes de Seshadri des diviseurs anticanoniques des variétés de Fano d'indice grand.(iv) Diviseurs fondamentaux des variétés de Moishezon lisses de dimension trois et de nombre de Picard un : nous montrons l'existence d'un diviseur lisse dans le système fondamental dans certain cas particulier. / This thesis is devoted to the study of complex Fano varieties via the properties of subsheaves of the tangent bundle and the geometry of the fundamental divisor. The main results contained in this text are:(i) A generalization of Hartshorne's conjecture: a projective manifold is isomorphic to a projective space if and only if its tangent bundle contains an ample subsheaf.(ii) Stability of tangent bundles of Fano manifolds with Picard number one: by proving vanishing theorems on the irreducible Hermitian symmetric spaces of compact type M, we establish that the tangent bundles of almost all general complete intersections in M are stable. Moreover, the same method also gives an answer to the problem of stability of the restriction of the tangent bundle of a complete intersection on a general hypersurface.(iii) Effective non-vanishing for Fano varieties and its applications: we study the positivity of the second Chern class of Fano manifolds with Picard number one, this permits us to prove a non-vanishing result for n-dimensional Fano manifolds with index n-3. As an application, we study the anticanonical geometry of Fano varieties and calculate the Seshadri constants of anticanonical divisors of Fano manifolds with large index.(iv) Fundamental divisors of smooth Moishezon threefolds with Picard number one: we prove the existence of a smooth divisor in the fundamental linear system in some special cases.
|
Page generated in 0.0354 seconds