Spelling suggestions: "subject:"slurry."" "subject:"blurry.""
331 |
Study Of Solidification And Microstructure Produced By Cooling Slope MethodKund, Nirmala Kumar 09 1900 (has links) (PDF)
In most casting applications, dendritic microstructure morphology is not desired because it leads to poor mechanical properties. Forced convection causing sufficient shearing in the mushy zone of the partially solidified melt is one of the means to suppress this dendritic growth. The dendrites formed at the solid-liquid interface are detached and carried away due to strong fluid flow to form slurry. This slurry, consisting of rosette or globular particles, provides less resistance to flow even at a high solid fraction and can easily fill the die-cavity. The stated principle is the basis of a new manufacturing technology called “semi-solid forming” (SSF), in which metal alloys are cast in the semi-solid state. This technique has numerous advantages over other existing commercial casting processes, such as reduction of macrosegregation, reduction of porosity and low forming efforts. Among all currently available methods available for large scale production of semisolid slurry, the cooling slope is considered to be a simple but effective method because of its simple design and easy control of process parameters, low equipment and running costs, high production efficiency and reduced inhomogeneity. With this perspective, the primary objective of the present research is to investigate, both experimentally and numerically, convective heat transfer and solidification on a cooling slope, in addition to the study of final microstructure of the cast billets.
Some key process parameters are identified, namely pouring temperature, slope angle, slope length, and slope cooling rate. A systematic scaling analysis is performed in order to understand the relative importance of the parameters in influencing the final properties of the slurry and microstructure after solidification. A major part of the present work deals with the development of an experimental set up with careful consideration of the range of process parameters involved by treating the cooling slope as a heat exchanger. Subsequently, a comprehensive numerical model is developed to predict the flow, heat transfer, species concentration solid fraction distribution of aluminum alloy melt while flowing down the cooling slope. The model uses a variable viscosity relation for slurry. The metal-air interface at the top during the melt flow is tracked using a volume of fluid (VOF) method. Solidification is modeled using an enthalpy based approach and a volume averaged technique. The mushy region is modeled as a multi-layered porous medium consisting of fixed columnar dendrites and mobile equiaxed or fragmented grains. In addition, the solidification model also incorporates a fragmentation criterion and solid phase movement.
The effects of key process parameters on flow behavior involving velocity distribution, temperature distribution, solid fractions at the slope exit, and macrosegregation, are studied numerically and experimentally for aluminium alloy A356. The resulting microstructures of the cast billets obtained from the experiments are studied and characterized. Finally the experimental results are linked to the model predictions for establishing the relations involving interdependence of the stated key process parameters in determining the quality of the final cast products. This study is aimed towards providing the necessary guidelines for designing a cooling slope and optimizing the process parameters for desirable quality of the solidified product.
|
332 |
Co-méthanisation des déchets fermiers et alimentaires : expérimentation et modélisation / Anaerobic co-digestion of farm and food washes : modeling and experimentationRakotoniaina, Volana Astérie 17 August 2012 (has links)
Les deux principaux objectifs de cette thèse sont de développer les aspects théoriques et expérimentaux sur la co-méthanisation des déchets fermiers et alimentaires. Les objectifs de nos études portent sur l'élimination du maximum de déchets mis en ISDND, la réduction des pollutions des milieux naturels (eau, sol, air) par les effluents d'élevage, les boues de STEP et sur la mise en disposition d'une source énergétique renouvelable via le biogaz obtenu. Premièrement, nous avons effectué des expérimentations sur la co-méthanisation des effluents liquides, lisier de porc, boues de STEP, et de la vinasse et le mélange de ces effluents d'élevage avec les déjections solides des animaux (fumier, fientes) et des biodéchets (restes de repas). Ces expérimentations avaient pour but de suivre l'évolution du milieu réactionnel en fonction du composant du mélange ainsi co-digéré. Deuxièmement des tests des potentiels méthane et biogaz issus de mélange associant plusieurs types de déchets organiques sous différents états physiques (liquide, semi liquide, pâteux, solide) ont été effectués. La problématique qui se posait étant de savoir parmi les déchets à mélanger, quelle proportion de chaque mono-substrat donnera le meilleur potentiel méthanogène et s'il était possible de mettre en avant des effets synergétiques entre déchets. Nous avons fait appel à un outil statistique, le plan de mélange pour définir les mélanges à tester. Pour un mélange à 3 composants (fumier de vache, lisier de porc, restes de repas), le nombre d'expériences optimum à réaliser a été de 13. La réalisation du plan de mélange, c'est à dire la campagne expérimentale sur les co-méthanisations des 13 mélanges proposés nous a permis d'observer que le potentiel méthane d'un mélange dépend tout premièrement de sa texture (état physique) à l'entrée du processus. Un mélange contenant un maximum en proportion en co-produits liquides (lisier de porc) associé avec le maximum de déchets riches en substrats solubles (restes de repas) nous a donné les meilleurs potentiels méthane et biogaz. Cette observation a été confirmée par le taux de conversion de la matière sèche (MS) en matière volatile (MV) du mélange. Compte tenu du taux de MS, MV et le ratio MV/MS d'un mélange, ainsi que les interactions entre les composants du mélange, une loi permettant de prédire le potentiel biogaz d'un mélange doit considérer ces facteurs. Cette loi doit tenir compte de l'effet positif (synergisme) et l'effet négatif (antagonisme) entre les composants du mélange. Cette loi a été définie dans le but de prédire le potentiel méthane des mélanges constitués de fumier de vache, lisier de porc et restes de repas et se situant à l'intérieur du domaine expérimental défini par les limites sur les proportions minimale et maximale de chaque composant du mélange. Toutefois, cette loi définie n'est applicable qu'aux mélanges d'association de fumier de vache, de lisier de porc et des restes de repas. Cette loi a été définie pour estimer le BMP des mélanges, et ne permet pas de suivre le procédé de la méthanisation. Aussi, pour prédire le volume de biogaz (méthane) journalier ou cumulé de la cométhanisation. / The two main objectives of this thesis are to develop theoretical and experimental aspects of the anaerobic co-digestion of farm wastes associated with food. Our general studies have for objectives the elimination as much as possible the maximum of organic waste into non-hazardous landfills, reduce pollution of natural environments (water, soil, air) by the effluent livestock, sewage sludge, and dispose of energy via the produced biogas.Firstly, we carried out experiments on the anaerobic co-digestion of the liquid effluents association (pig slurry, sewage sludge, vinasse effluents) and the mixture of animal slurries, manures, and food waste. The aim of these experiments was to follow the evolution of the reactor behavior according to the component of the co-digested mixture.Secondly, BMP tests of mixture of association several types of organic waste under different physical condition (liquid, semi liquid, pasty, solid) were carried out. We have been tried to know, which proportion of each mono-substrate will give the best BMP among waste to mix? We used a statistical tool, the mixture design to define the mixtures to be tested. For a mixture with 3 components (cow dung, pig slurry, food waste), the optimum number of experiments to realize was 13.The realization of the mixture design, i.e. the experiment series on the anaerobic co-digestion of the 13 proposed mixtures enabled us to observe that the BMP of a mixture firstly depends on its texture (physical state) at the entry of the process. A mixture containing a maximum in proportion in liquid substrate (pig slurry) associated with food waste gave us the best biogas and methane potential. This observation was confirmed by the conversion rate of dry matter to volatile solid (VS) of the mixture. These results were proven by the activity (synergism, antagonism) of mixtures components influencing to BMP tests.The empiric law defined to predict the BMP of a mixture must to account the rate of VS/DM of a mixture, and the interactions between components of the mixture. This law must also include the positive effect (synergism) and negative (antagonism) between components of the mixture. This law has been defined in order to predict the potential methane mixtures of cow dung, pig slurry and food wastes and being within the experimental domain defined by the limits on minimum and maximum proportions of each component of the mixture. However, this definite law is applicable only to the mixtures of cow dung, pig slurry and food waste. The definite law is limited for prediction of mixtures BMP. However, this empiric law can not be used to follow reactor process. Model with three stages (hydrolysis of soluble substrate, acidogenic production stage and methanogenic stage) was used to predict daily and cumulative of biogas and methane production of anaerobic digestion of farm waste associated with vegetable waste. This model must be adapted with substrate type used and experimentations conditions (batch and mesophilic conditions). An adjustment of the model equations describing hydrolysis polymers stage was necessary in order to take into account of the concentration of polymers in particulate forms contained in complex substrates such as manure, slurry, and vegetable food waste. This adapted model was called model of Coupling. Indeed, a calibration of the most influential parameters of the model of Coupling, on the output must be carried out in order to validate the model.Daily and cumulative predictions of biogas and methane production of anaerobic digestion of farm waste associated with food waste were obtained by using adapted dynamical model. Model parameters values depend on the substrate type using in experimentation processes. Moreover, parameters values must be verified, needing further work.
|
333 |
Fundamental Studies on Transport Phenomena in Redox Flow Batteries with Flow Field Structures and Slurry or Semi-Solid Electrodes: Modeling and Experimental ApproachesKe, Xinyou 29 January 2019 (has links)
No description available.
|
334 |
Factors Affecting the Strength of Road Base Stabilized with Cement Slurry or Dry Cement in Conjunction with Full-Depth ReclamationDixon, Paul A. 19 April 2011 (has links) (PDF)
Full-depth reclamation (FDR) in conjunction with cement stabilization is an established practice for rehabilitating deteriorating asphalt roads. Conventionally, FDR uses dry cement powder applied with a pneumatic spreader, creating undesirable fugitive cement dust. The cement dust poses a nuisance and, when inhaled, a health threat. Consequently, FDR in conjunction with conventional cement stabilization cannot generally be used in urban areas. To solve the problem of fugitive cement dust, the use of cement slurry, prepared by combining cement powder and water, has been proposed to allow cement stabilization to be utilized in urban areas. However, using cement slurry introduces several factors not associated with using dry cement that may affect road base strength, dry density (DD), and moisture content (MC). The objectives of this research were to 1) identify construction-related factors that influence the strength of road base treated with cement slurry in conjunction with FDR and quantify the effects of these factors and 2) compare the strength of road base treated with cement slurry with that of road base treated with dry cement. To achieve the research objectives, road base taken from an FDR project was subjected to extensive full-factorial laboratory testing. The 7-day unconfined compressive strength (UCS), DD, and MC were measured as dependent variables, while independent variables included cement content; slurry water batching temperature; cement slurry aging temperature; cement slurry aging time; presence of a set-retarding, water-reducing admixture; and aggregate-slurry mixing time. This research suggests that, when road base is stabilized with cement slurry in conjunction with FDR, the slurry water batching temperature; haul time; environmental temperature; and presence of a set-retarding, water-reducing admixture will not significantly affect the strength of CTB, provided that those factors fall within the limits explored in this research and are applied to a road base with similar properties. Cement content and cement-aggregate mixing time are positively correlated with the strength of CTB regardless of cement form. Additionally, using cement slurry will result in slightly lower strength values than using dry cement.
|
335 |
Composites fibreux denses à matrice céramique autocicatrisante élaborés par des procédés hybrides / Dense self-healing ceramic matrix composites fabricated by hybrid processesMagnant, Jérôme 15 November 2010 (has links)
L'élaboration de composites à matrice céramique denses et à fibres continues multidirectionnelles par de nouveaux procédés hybrides a été étudiée. Les procédés développés reposent sur le dépôt d'interphases autour des fibres par Infiltration Chimique en phase Vapeur (CVI) puis sur l'introduction de poudres céramiques au sein de préformes fibreuses par infusion de suspensions aqueuses colloïdales concentrées et stables, et enfin sur la consolidation des préformes soit par frittage flash, soit par imprégnation réactive de métaux liquides.La consolidation des composites par frittage flash est très rapide (palier de maintien en température inférieure à 5 minutes) et permet d'obtenir des composites denses. Durant le frittage, la dégradation des fibres de carbone a pu être évitée en adaptant le cycle de pression afin de limiter l'évolution des gaz au sein du système.La densification totale des composites par imprégnation de métaux liquides a été obtenue en contrôlant attentivement les paramètres d'imprégnation afin d'éviter de piéger des espèces gazeuses au sein des préformes fibreuses.Les composites à fibres de carbone consolidés par frittage flash ou par imprégnation réactive de métaux liquide possèdent un comportement mécanique de type élastique endommageable ainsi qu'une contrainte à rupture en flexion voisine de 300 MPa. Ces composites ont montré leur capacité à s'autocicatriser dans des conditions oxydantes. Comparés aux composites à matrice céramiques élaborés par CVI, les composites densifiés par imprégnation de métaux liquide sont eux parfaitement denses et ont un comportement mécanique en traction à température ambiante similaire avec notamment une contrainte à rupture en traction de 220 MPa. / The fabrication of multidirectional continuous carbon fibers reinforced dense self healing Ceramic Matrix Composites by new short time hybrid processes was studied. The processes developed are based, first, on the deposition of fiber interphase and coating by chemical vapor infiltration, next, on the introduction of ceramic powders into the fibrous preform by Slurry Impregnation and, finally, on the densification of the composite by liquid-phase Spark Plasma Sintering (SPS) or by Reactive Melt Infiltration of silicon (RMI).The homogeneous introduction of the ceramic particles into the multidirectional fiber preforms was realized by slurry impregnation from highly concentrated (> 32 %vol.) and well dispersed aqueous colloid suspensions. The densification of the composites by spark plasma sintering was possible with a short (< 5 minutes) dwelling period in temperature. The chemical degradation of the carbon fibers during the fabrication was prevented by adapting the sintering pressure cycle to inhibit gas evolution inside the system. The composites elaborated are dense. The fully densification of the composites by RMI was realised by carefully controlling the impregnation parameters to avoid to entrap some gaseous species inside the fiber preforms. Our carbon fiber reinforced ceramic matrix composites processed by Spark Plasma Sintering or Reactive Melt Infiltration have a damageable mechanical behaviour with a room temperature bending stress at failure around 300 MPa and have shown their ability to self-healing in oxidizing conditions. Compared to the CMC processed by CVI, the composites processed with a final consolidation step by RMI are fully dense and have a similar room temperature tensile test behaviour with an ultimate tensile stress around 220 MPa.
|
336 |
Integration and Simulation of a Bitumen Upgrading Facility and an IGCC Process with Carbon CaptureEl Gemayel, Gemayel 19 September 2012 (has links)
Hydrocracking and hydrotreating are bitumen upgrading technologies designed to enhance fuel quality by decreasing its density, viscosity, boiling point and heteroatom content via hydrogen addition. The aim of this thesis is to model and simulate an upgrading and integrated gasification combined cycle then to evaluate the feasibility of integrating slurry hydrocracking, trickle-bed hydrotreating and residue gasification using the Aspen HYSYS® simulation software. The close-coupling of the bitumen upgrading facilities with gasification should lead to a hydrogen, steam and power self-sufficient upgrading facility with CO2 capture. Hydrocracker residue is first withdrawn from a 100,000 BPD Athabasca bitumen upgrading facility, characterized via ultimate analysis and then fed to a gasification unit where it produces hydrogen that is partially recycled to the hydrocracker and hydrotreaters and partially burned for power production in a high hydrogen combined cycle unit. The integrated design is simulated for a base case of 90% carbon capture utilizing a monoethanolamine (MEA) solvent, and compared to 65% and no carbon capture scenarios. The hydrogen production of the gasification process is evaluated in terms of hydrocracker residue and auxiliary petroleum coke feeds. The power production is determined for various carbon capture cases and for an optimal hydrocracking operation. Hence, the feasibility of the integration of the upgrading process and the IGCC resides in meeting the hydrogen demand of the upgrading facility while producing enough steam and electricity for a power and energy self-sufficient operation, regardless of the extent of carbon capture.
|
337 |
Improving digestibility of cattle waste by thermobarical treatmentBudde, Jörn 16 April 2015 (has links)
Im Laborversuch konnte der positive Einfluss einer thermobarischen Vorbehandlung auf die Hydrolysier- und Vergärbarkeit von Rinderfestmist und Rindergülle nachgewiesen werden. Die Laborergebnisse wurden innerhalb eines theoretischen Modells in den Praxismaßstab übertragen, um den Einfluss auf Treibhausgasemissionen, Energiebilanz und Ökonomie zu bewerten. Die Vorbehandlungstemperaturen im Labor lagen zwischen 140 und 220°C in Schritten von 20 K und einer Vorbehandlungszeit von jeweils 5 Minuten. Die höchste Methanmehr¬ausbeute von 58 % konnte bei einer Temperatur von 180°C ermittelt werden. Das Auftreten von Inhibitoren und nicht vergärbaren Bestandteilen führte bei einer Aufbereitungstemperatur von 220°C zu Methanausbeuten, die geringer waren als die des unaufbereiteten Einsatzstoffes. In einer erweiterten Analyse konnte ein funktioneller Zusammenhang zwischen der Methanausbeute nach 30 Tagen und der Methanbildungsrate und -ausbeute während der Beschleunigungsphase gezeigt werden. Mittels einer Regressionsanalyse der so ermittelten Werte wurde nachgewiesen, dass die optimale Aufbereitungstemperatur 164°C ist und die minimale größer als 115°C zu sein hat. Treibhausgasemissionen und Energiebilanz wurden im Rahmen einer Ökobilanz nach ISO 14044 (2006) ermittelt, sowie eine Kosten-Nutzen-Analyse durchgeführt. Dazu wurde eine Anlage zur thermobarischen Vorbehandlung entwickelt und innerhalb eines Modells in eine Biogasanlage integriert. Weiterhin wurde in diesem Modell Maissilage durch Rinderfestmist und / oder Rindergülle als Einsatzstoff ersetzt. Rinderfestmist, ein Einsatzstoff mit hohem organischen Trockenmassegehalt, der ohne Vorbehandlung nicht einsetzbar wäre, erreichte eine energetische Amortisationszeit von 9 Monaten, eine Vermeidung in Höhe der während der Herstellung emittierten Treibhausgase innerhalb von 3 Monaten und eine ökonomische Amortisationszeit von 3 Jahren 3 Monaten, wohingegen Rindergülle keine positiven Effekte zeigte. / Hydrolysis and digestibility of cattle waste as feedstock for anaerobic digestion were improved by thermobarical treatment in lab-scale experiments. The effects of this improvement on greenhouse gas emissions, energy balance and economic benefit was assessed in a full-scale model application. Thermobarical treatment temperatures in lab-scale experiments were 140 to 220°C in 20 K steps for a 5-minute duration. Methane yields could be increased by up to 58 % at a treatment temperature of 180°C. At 220°C, the abundance of inhibitors and other non-digestible substances led to lower methane yields than those obtained from untreated material. In an extended analysis, it could be demonstrated that there is a functional correlation between the methane yields after 30 days and the formation rate and methane yield in the acceleration phase. It could be proved in a regression of these correlation values that the optimum treatment temperature is 164°C and that the minimum treatment temperature should be above 115°C. The theoretical application of a full-scale model was used for assessing energy balance and greenhouse gas emissions following an LCA approach according to ISO 14044 (2006) as well as economy. A model device for thermobarical treatment has been suggested for and theoretically integrated in a biogas plant. The assessment considered the replacement of maize silage as feedstock with liquid and / or solid cattle waste. The integration of thermobarical pretreatment is beneficial for raw material with high organic dry matter content that needs pretreatment to be suitable for anaerobic digestion: Solid cattle waste revealed very short payback times, e.g. 9 months for energy, 3 months for greenhouse gases, and 3 years 3 months for economic amortization, whereas, in contrast, liquid cattle waste did not perform positive replacement effects in this analysis.
|
338 |
Optimisation of methane production from anaerobically digested cow slurry using mixing regime and hydraulic retention timeHughes, Kevin Lewis William January 2015 (has links)
AD is regarded as a sustainable technology that could assist the UK Government meet internationally agreed GHG emission targets by 2050. However, the mature status of the technology is based on expensive systems that rely on high energy feedstock to be profitable. Meanwhile, the natural biodegradation of cow slurry is a recognised contributor to climate change despite having a relatively low CH4 potential because of the large volumes produced. Economic mixing is essential to the cost-effectiveness of farm AD but techniques applied are not always appropriate as slurry is a shear thinning thixotropic Herschel-Bulkley fluid and therefore challenging to mix. The apparent viscosity of slurry and the shear stress induced was most influenced by solids content (exponential change) followed by temperature (linear). Most shear thinning occurred before a rising shear rate of 20s-1 was achieved with the fluid acting near-Newtonian above. Thixotropic recovery occurred within 1 hour of resting. Rheological values were also much higher than previously reported. Highest CH4 production occurred in the first 10 days of the batch process using a range of mixing regimes with different shear rates and rest periods. During fed-batch operations, changing shear rate had a minimal effect on CH4 production using a 30-day HRT whereas shorter rest periods increased production. Specific CH4 production rate was highest when feeding and mixing coincided. However, when HRT was reduced (OLR increased) the CH4 produced by all mixed regimes significantly increased with highest values being achieved using high intensity mixing rested for short periods. Lower HRTs also requires smaller digesters. Parasitic mixing energy invariably had the most influence on net energy production. Signs of instability were evident after 20 days using the low HRT. Significant microbial adaptation was also observed as the experiments progressed. The research outcomes demonstrate that mixing regime and HRT can be managed to maximise net energy production whilst reducing capital expenditure.
|
339 |
Comparison of geoenvironmental properties of caustic and noncaustic oil sand fine tailingsMiller, Warren Gregory 11 1900 (has links)
A study was conducted to evaluate the properties and processes influencing the rate and magnitude of volume decrease and strength gain for oil sand fine tailings resulting from a change in bitumen extraction process (caustic versus non-caustic) and the effect of adding a coagulant to caustic fine tailings.
Laboratory flume deposition tests were carried out with the objective to hydraulically deposit oil sand tailings and compare the effects of extraction processes on the nature of beach deposits in terms of geometry, particle size distribution, and density. A good correlation exists between flume deposition tests results using oil sand tailings and the various other tailings materials. These comparisons show the reliability and effectiveness of flume deposition tests in terms of establishing general relationships and can serve as a guide to predict beach slopes.
Fine tailings were collected from the various flume tests and a comprehensive description of physical and chemical characteristics of the different fine tailings was carried out. The characteristics of the fine tailings is presented in terms of index properties, mineralogy, specific surface area, water chemistry, liquid limits, particle size distribution and structure. The influence of these fundamental properties on the compressibility, hydraulic conductivity and shear strength properties of the fine tailings was assessed. Fourteen two meter and one meter high standpipe tests were instrumented to monitor the rate and magnitude of self-weight consolidation of the different fine tailings materials. Consolidation tests using slurry consolidometers were carried out to determine consolidation properties, namely compressibility and hydraulic conductivity, as well as the effect of adding a coagulant (calcium sulphate [CaSO4]) to caustic fine tailings. The thixotropic strength of the fine tailings was examined by measuring shear strength over time using a vane shear apparatus.
A difference in water chemistry during bitumen extraction was concluded to be the cause of substantial differences in particle size distributions and degree of dispersion of the comparable caustic and non-caustic fine tailings. The degree of dispersion was consistent with predictions for dispersed clays established by the sodium adsorption ratio (SAR) values for these materials. The biggest advantage of non-caustic fine tailings and treating caustic fine tailings with coagulant is an increased initial settlement rate and slightly increased hydraulic conductivity at higher void ratios. Thereafter, compressibility and hydraulic conductivity are governed by effective stress. The chemical characteristics of fine tailings (water chemistry, degree of dispersion) do not have a significant impact on their compressibility behaviour and have only a small influence at high void ratio (low effective stress). Fine tailings from a caustic based extraction process had relatively higher shear strengths than comparable non-caustic fine tailings at equivalent void ratios. However, shear strength differences were small and the overall impact on consolidation behaviour, which also depends on compressibility and hydraulic conductivity, is not expected to be significant.
|
340 |
Integration and Simulation of a Bitumen Upgrading Facility and an IGCC Process with Carbon CaptureEl Gemayel, Gemayel 19 September 2012 (has links)
Hydrocracking and hydrotreating are bitumen upgrading technologies designed to enhance fuel quality by decreasing its density, viscosity, boiling point and heteroatom content via hydrogen addition. The aim of this thesis is to model and simulate an upgrading and integrated gasification combined cycle then to evaluate the feasibility of integrating slurry hydrocracking, trickle-bed hydrotreating and residue gasification using the Aspen HYSYS® simulation software. The close-coupling of the bitumen upgrading facilities with gasification should lead to a hydrogen, steam and power self-sufficient upgrading facility with CO2 capture. Hydrocracker residue is first withdrawn from a 100,000 BPD Athabasca bitumen upgrading facility, characterized via ultimate analysis and then fed to a gasification unit where it produces hydrogen that is partially recycled to the hydrocracker and hydrotreaters and partially burned for power production in a high hydrogen combined cycle unit. The integrated design is simulated for a base case of 90% carbon capture utilizing a monoethanolamine (MEA) solvent, and compared to 65% and no carbon capture scenarios. The hydrogen production of the gasification process is evaluated in terms of hydrocracker residue and auxiliary petroleum coke feeds. The power production is determined for various carbon capture cases and for an optimal hydrocracking operation. Hence, the feasibility of the integration of the upgrading process and the IGCC resides in meeting the hydrogen demand of the upgrading facility while producing enough steam and electricity for a power and energy self-sufficient operation, regardless of the extent of carbon capture.
|
Page generated in 0.032 seconds