Spelling suggestions: "subject:"epectral theory."" "subject:"8pectral theory.""
171 |
Cocycle dynamics and problems of ergodicity / Dynamique de cocycles et problèmes d'ergodicitéLeguil, Martin 04 April 2017 (has links)
Le travail qui suit comporte quatre chapitres : le premier est centré autour de la propriété de mélange faible pour les échanges d'intervalles et flots de translation. On y présente des résultats obtenus avec Artur Avila qui renforcent des résultats précédents dus à Artur Avila et Giovanni Forni. Le deuxième chapitre est consacré à un travail en commun avec Zhiyuan Zhang et concerne les propriétés d'ergodicité et d'accessibilité stables pour des systèmes partiellement hyperboliques de dimension centrale au moins égale à deux. On montre que sous des hypothèses de cohérence dynamique, center bunching et pincement fort, la propriété d'accessibilité stable est dense en topologie C^r, r>1, et même prévalente au sens de Kolmogorov. Dans le troisième chapitre, on expose les résultats d'un travail réalisé en collaboration avec Julie Déserti, consacré à l'étude d'une famille à un paramètre d'automorphismes polynomiaux de C^3 ; on montre que de nouveaux phénomènes apparaissent par rapport à ce qui était connu dans le cas de la dimension deux. En particulier, on étudie les vitesses d'échappement à l'infini, en montrant qu'une transition s'opère pour une certaine valeur du paramètre. Le dernier chapitre est issu d'un travail en collaboration avec Jiangong You, Zhiyan Zhao et Qi Zhou ; on s'intéresse à des estimées asymptotiques sur la taille des trous spectraux des opérateurs de Schrödinger quasi-périodiques dans le cadre analytique. On obtient des bornes supérieures exponentielles dans le régime sous-critique, ce qui renforce un résultat précédent de Sana Ben Hadj Amor. Dans le cas particulier des opérateurs presque Mathieu, on montre également des bornes inférieures exponentielles, qui donnent des estimées quantitatives en lien avec le problème dit "des dix Martinis". Comme conséquences de nos résultats, on présente des applications à l'homogénéité du spectre de tels opérateurs ainsi qu'à la conjecture de Deift. / The following work contains four chapters: the first one is centered around the weak mixing property for interval exchange transformations and translation flows. It is based on the results obtained together with Artur Avila which strengthen previous results due to Artur Avila and Giovanni Forni. The second chapter is dedicated to a joint work with Zhiyuan Zhang, in which we study the properties of stable ergodicity and accessibility for partially hyperbolic systems with center dimension at least two. We show that for dynamically coherent partially hyperbolic diffeomorphisms and under certain assumptions of center bunching and strong pinching, the property of stable accessibility is dense in C^r topology, r>1, and even prevalent in the sense of Kolmogorov. In the third chapter, we explain the results obtained together with Julie Déserti on the properties of a one-parameter family of polynomial automorphisms of C^3; we show that new behaviours can be observed in comparison with the two-dimensional case. In particular, we study the escape speed of points to infinity and show that a transition exists for a certain value of the parameter. The last chapter is based on a joint work with Jiangong You, Zhiyan Zhao and Qi Zhou; we get asymptotic estimates on the size of spectral gaps for quasi-periodic Schrödinger operators in the analytic case. We obtain exponential upper bounds in the subcritical regime, which strengthens a previous result due to Sana Ben Hadj Amor. In the particular case of almost Mathieu operators, we also show exponential lower bounds, which provides quantitative estimates in connection with the so-called "Dry ten Martinis problem". As consequences of our results, we show applications to the homogeneity of the spectrum of such operators, and to Deift's conjecture.
|
172 |
A posteriori error estimation for non-linear eigenvalue problems for differential operators of second order with focus on 3D vertex singularitiesPester, Cornelia 21 April 2006 (has links)
This thesis is concerned with the finite element
analysis and the a posteriori error estimation for
eigenvalue problems for general operator pencils on
two-dimensional manifolds.
A specific application of the presented theory is the
computation of corner singularities.
Engineers use the knowledge of the so-called singularity
exponents to predict the onset and the propagation of
cracks.
All results of this thesis are explained for two model
problems, the Laplace and the linear elasticity problem,
and verified by numerous numerical results.
|
173 |
Selection-mutation dynamics with age structure : long-time behaviour and application to the evolution of life-history traits / Dynamiques de sélection-mutation structurées en âge : comportement en temps long et application à l'évolution des histoires de vieRoget, Tristan 30 November 2018 (has links)
Cette thèse est divisée en deux parties reliées par un même fil conducteur. Elle porte sur l'étude théorique et l'application de modèles mathématiques décrivant des dynamiques de population où les individus se reproduisent et meurent à des taux dépendant de leur âge et d'un trait phénotypique. Le trait est fixé durant la vie de l'individu. Il est modifié au fil des générations par des mutations apparaissant lors de la reproduction. On modélise la sélection naturelle en introduisant un taux de mortalité densité-dépendant décrivant la compétition pour les ressources.Dans une première partie, nous nous intéressons au comportement en temps long d'une équation aux dérivées partielles de sélection-mutation structurée en âge décrivant une grande population d'individus. En étudiant les propriétés spectrales d'une famille d'opérateurs positifs sur un espace de mesures, nous montrons l'existence de mesures stationnaires pouvant admettre des masses de Dirac en les traits maximisant la fitness. Lorsque ces mesures admettent une densité continue, nous montrons la convergence des solutions vers cet (unique) état stationnaire.La seconde partie de cette thèse est motivée par un problème issu de la biologie du vieillissement. Nous voulons comprendre l'apparition et le maintien au cours de l'évolution d'un marqueur de sénescence observé chez l'espèce Drosophila melanogaster. Pour cela, nous introduisons un modèle individu-centré décrivant la dynamique d'une population structurée par l'âge et par le trait d'histoire de vie suivant : l'âge de fin de reproduction et celui où la mortalité devient non-nulle. Nous modélisons également l'effet Lansing, qui est l’effet suivant lequel « la descendance de parent jeune vit plus longtemps que celle de parents vieux » . Nous montrons, sous des hypothèses de grande population et de mutations rares, que l'évolution amène ces deux traits à coïncider. Pour cela, nous sommes amenés à étendre l'équation canonique de la dynamique adaptative à une situation où le gradient de fitness n'admet pas des propriétés de régularité suffisantes. L'évolution du trait n'est plus décrite par la trajectoire (unique) d'une équation différentielle ordinaire mais par un ensemble de trajectoires solutions d'une inclusion différentielle. / This thesis is divided into two parts connected by the same thread. It concerns the theoretical study and the application of mathematical models describing population dynamics. The individuals reproduce and die at rates which depend on age a and phenotypic trait. The trait is fixed duringthe life of the individual. It is modified over generations by mutations appearing during reproduction. Natural selection is modeled by introducing a density-dependent mortality rate describing competition for resources.In the first part, we study the long-term behavior of a selection-mutation partial differential equation with age structure describing such a large population. By studying the spectral properties of a family of positive operators on a measures space, we show the existence of stationary measures that can admit Dirac masses in traits maximizing fitness. When these measures admit a continuous density, we show the convergence of the solutions towards this (unique) stationary state.The second part of this thesis is motivated by a problem from the biology of aging. We want to understand the appearance and maintenance during evolution of a senescence marker observed in the species Drosophila melanogaster. For this, we introduce an individual-based model describing the dynamics of a population structured by age and by the following life history trait: the age of reproduction ending and the one where the mortality becomes non-zero. We also model the Lansing effect, which is the effect through which the “progeny of old parents do not live as long as those of young parents”. We show, under large population and rare mutation assumptions, that the evolution brings these two traits to coincide. For this, we are led to extend the canonical equation of adaptive dynamics to a situation where the fitness gradient does not admit sufficient regularity properties. The evolution of the trait is no longer described by the (unique) trajectory of an ordinary differential equation but by a set of trajectories solutions of a differential inclusion.
|
174 |
The Integrated Density of States for Operators on GroupsSchwarzenberger, Fabian 14 May 2014 (has links)
This book is devoted to the study of operators on discrete structures. The operators are supposed to be self-adjoint and obey a certain translation invariance property. The discrete structures are given as Cayley graphs via finitely generated groups. Here, sofic groups and amenable groups are in the center of our considerations. Note that every finitely generated amenable group is sofic. We investigate the spectrum of a discrete self-adjoint operator by studying a sequence of finite dimensional analogues of these operators. In the setting of amenable groups we obtain these approximating operators by restricting the operator in question to finite subsets Qn , n ∈ N. These finite dimensional operators are self-adjoint and therefore admit a well-defined normalized eigenvalue counting function. The limit of the normalized eigenvalue counting functions when |Qn | → ∞ (if it exists) is called the integrated density of states (IDS). It is a distribution function of a probability measure encoding the distribution of the spectrum of the operator in question on the real axis.
We prove the existence of the IDS in various geometric settings and for different types of operators. The models we consider include deterministic as well as random situations. Depending on the specific setting, we prove existence of the IDS as a weak limit of distribution functions or even as a uniform limit. Moreover, in certain situations we are able to express the IDS via a semi-explicit formula using the trace of the spectral projection of the original operator. This is sometimes referred to as the validity of the Pastur-Shubin trace formula.
In the most general geometric setting we study, the operators are defined on Cayley graphs of sofic groups. Here we prove weak convergence of the eigenvalue counting functions and verify the validity of the Pastur-Shubin trace formula for random and non-random operators . These results apply to operators which not necessarily bounded or of finite hopping range. The methods are based on resolvent techniques. This theory is established without having an ergodic theorem for sofic groups at hand. Note that ergodic theory is the usual tool used in the proof of convergence results of this type.
Specifying to operators on amenable groups we are able to prove stronger results. In the discrete case, we show that the IDS exists uniformly for a certain class of finite hopping range operators. This is obtained by using a Banach space-valued ergodic theorem. We show that this applies to eigenvalue counting functions, which implies their convergence with respect to the Banach space norm, in this case the supremum norm. Thus, the heart of this theory is the verification of the Banach space-valued ergodic theorem. Proceeding in two steps we first prove this result for so-called ST-amenable groups. Then, using results from the theory of ε-quasi tilings, we prove a version of the Banach space-valued ergodic theorem which is valid for all amenable groups.
Focusing on random operators on amenable groups, we prove uniform existence of the IDS without the assumption that the operator needs to be of finite hopping range or bounded. Moreover, we verify the Pastur-Shubin trace formula. Here we present different techniques. First we show uniform convergence of the normalized eigenvalue counting functions adapting the technique of the Banach space-valued ergodic theorem from the deterministic setting. In a second approach we use weak convergence of the eigenvalue counting functions and additionally obtain control over the convergence at the jumps of the IDS. These ingredients are applied to verify uniform existence of the IDS. In both situations we employ results from the theory of large deviations, in order to deal with long-range interactions.
|
175 |
Théorie spectrale pour des applications de Poincaré aléatoires / Spectral theory for random Poincaré mapsBaudel, Manon 01 December 2017 (has links)
Nous nous intéressons à des équations différentielles stochastiques obtenues en perturbant par un bruit blanc des équations différentielles ordinaires admettant N orbites périodiques asymptotiquement stables. Nous construisons une chaîne de Markov à temps discret et espace d’états continu appelée application de Poincaré aléatoire qui hérite du comportement métastable du système. Nous montrons que ce processus admet exactement N valeurs propres qui sont exponentiellement proches de 1 et nous donnons des expressions pour ces valeurs propres et les fonctions propres associées en termes de fonctions committeurs dans les voisinages des orbites périodiques. Nous montrons également que ces valeurs propres sont bien séparées du reste du spectre. Chacune de ces valeurs propres exponentiellement proche de 1 est également reliée à un temps d’atteinte de ces voisinages. De plus, les N valeurs propres exponentiellement proches de 1 et fonctions propres à gauche et à droite associées peuvent être respectivement approchées par des valeurs propres principales, des distributions quasi-stationnaires, et des fonctions propres principales à droite de processus tués quand ils atteignent ces voisinages. Les preuves reposent sur une représentation de type Feynman–Kac pour les fonctions propres, la transformée harmonique de Doob, la théorie spectrale des opérateurs compacts et une propriété de type équilibré détaillé satisfaite par les fonctions committeurs. / We consider stochastic differential equations, obtained by adding weak Gaussian white noise to ordinary differential equations admitting N asymptotically stable periodic orbits. We construct a discrete-time,continuous-space Markov chain, called a random Poincaré map, which encodes the metastable behaviour of the system. We show that this process admits exactly N eigenvalues which are exponentially close to 1,and provide expressions for these eigenvalues and their left and right eigenfunctions in terms of committorfunctions of neighbourhoods of periodic orbits. We also provide a bound for the remaining part of the spectrum. The eigenvalues that are exponentially close to 1 and the right and left eigenfunctions are well-approximated by principal eigenvalues, quasistationary distributions, and principal right eigenfunctions of processes killed upon hitting some of these neighbourhoods. Each eigenvalue that is exponentially close to 1is also related to the mean exit time from some metastable neighborhood of the periodic orbits. The proofsrely on Feynman–Kac-type representation formulas for eigenfunctions, Doob’s h-transform, spectral theory of compact operators, and a recently discovered detailed balance property satisfied by committor functions.
|
176 |
Fonctions presque-périodiques et Équations DifférentiellesLassoued, Dhaou 09 December 2013 (has links) (PDF)
Cette thèse porte sur les équations d'évolution et s'articule autour de trois parties. Dans la première partie, on se propose de se concentrer sur le critère oscillatoire de certaines équations différentielles. Des résultats classiques sur les fonctions presque-périodiques sont rassemblés dans le premier chapitre. Le deuxième chapitre de cette thèse a pour objectif de prouver l'existence d'une solution presque-périodique de Besicovitch d'une équation différentielle de second ordre sur un espace de Hilbert. L'approche utilisée se base sur un formalisme variationnel. La deuxième partie de cette thèse traite le comportement asymptotique des problèmes de Cauchy dans le cas non autonome. Les semi-groupes et les familles d'évolution étant les outils principaux utilisés dans cette partie, le troisième chapitre introduit des résultats importants de cette théorie, notamment ceux permettant de caractériser la stabilité des semi-groupes et des familles d'évolution périodiques. Dans le quatrième chapitre de cette contribution, on prouve, en utilisant une approche basée sur les semi-groupes, un résultat liant la bornitude de solutions de problèmes de Cauchy périodiques et la stabilité exponentielle uniforme des familles d'évolution issues de ces problèmes. Dans une troisième partie, on focalise l'attention sur quelques résultats sur la dichotomie exponentielle comme une propriété liée au comportement asymptotique des systèmes différentiels. Quelques résultats connus sont, par suite, réunis au cinquième chapitre qui introduit brièvement la notion de dichotomie exponentielle. Dans un dernier chapitre, une caractérisation de la dichotomie exponentielle d'une famille d'évolution en termes de bornitude des solutions de problèmes de Cauchy opératoriels correspondants sera démontrée.
|
177 |
Sur le spectre de l'opérateur de Schrödinger magnétique dans un domaine diédralPopoff, Nicolas 20 November 2012 (has links) (PDF)
Cette thèse analyse le spectre d'opérateurs de Schrödinger avec champ magnétique constant dans des ouverts de type diédraux. Pour comprendre l'influence d'une arête courbe sur la première valeur propre de l'opérateur dans la limite semi-classique, il faut connaître le bas du spectre de l'opérateur de Schrödinger magnétique avec champ constant sur un dièdre infini. Par transformation de Fourier ce problème se ramène à l'étude d'une famille d'opérateurs à paramètre sur un secteur infini. On calcule le spectre essentiel de ces opérateurs sur le secteur et on montre que dans certains cas il y a des valeurs propres discrètes sous le spectre essentiel. Par comparaison avec des opérateurs de Sturm-Liouville singuliers sur le demi-axe on obtient des majorations du bas du spectre de l'opérateur sur le dièdre : pour un angle d'ouverture assez petit et certaines orientations du champ magnétique, celui-ci est strictement inférieur aux quantités spectrales issues du cas régulier. Finalement on applique ces résultats à l'opérateur de Schrödinger avec champ magnétique constant et petit paramètre dans des domaines bornés de l'espace possédant des arêtes courbes. Pour déterminer une asymptotique de la première valeur propre dans la limite semi-classique, on construit des quasi-modes près de l'arête à l'aide des fonctions propres du problème à paramètre sur le secteur. En utilisant une partition du domaine selon que l'on soit près de l'arête ou du bord régulier, on obtient le premier terme de l'asymptotique pour diverses orientations du champ magnétique et on montre dans certains cas que la première valeur propre est inférieure aux valeurs propres associées à des ouverts réguliers.
|
178 |
Quelques modèles mathématiques en chimie quantique et propagation d'incertitudesEhrlacher, Virginie, Ehrlacher, Virginie 12 July 2012 (has links) (PDF)
Ce travail comporte deux volets. Le premier concerne l'étude de défauts locaux dans des matériaux cristallins. Le chapitre 1 donne un bref panorama des principaux modèles utilisés en chimie quantique pour le calcul de structures électroniques. Dans le chapitre 2, nous présentons un modèle variationnel exact qui permet de décrire les défauts locaux d'un cristal périodique dans le cadre de la théorie de Thomas-Fermi-von Weiszäcker. Celui-ci est justifié à l'aide d'arguments de limite thermodynamique. On montre en particulier que les défauts modélisés par cette théorie ne peuvent pas être chargés électriquement. Les chapitres 3 et 4 de cette thèse traitent du phénomène de pollution spectrale. En effet, lorsqu'un opérateur est discrétisé, il peut apparaître des valeurs propres parasites, qui n'appartiennent pas au spectre de l'opérateur initial. Dans le chapitre 3, nous montrons que des méthodes d'approximation de Galerkin via une discrétisation en éléments finis pour approcher le spectre d'opérateurs de Schrödinger périodiques perturbés sont sujettes au phénomène de pollution spectrale. Par ailleurs, les vecteurs propres associés aux valeurs propres parasites peuvent être interprétés comme des états de surface. Nous prouvons qu'il est possible d'éviter ce problème en utilisant des espaces d'éléments finis augmentés, construits à partir des fonctions de Wannier associées à l'opérateur de Schrödinger périodique non perturbé. On montre également que la méthode dite de supercellule, qui consiste à imposer des conditions limites périodiques sur un domaine de simulation contenant le défaut, ne produit pas de pollution spectrale. Dans le chapitre 4, nous établissons des estimations d'erreur a priori pour la méthode de supercellule. En particulier, nous montrons que l'erreur effectuée décroît exponentiellement vite en fonction de la taille de la supercellule considérée. Un deuxième volet concerne l'étude d'algorithmes gloutons pour résoudre des problèmes de propagation d'incertitudes en grande dimension. Le chapitre 5 de cette thèse présente une introduction aux méthodes numériques classiques utilisées dans le domaine de la propagation d'incertitudes, ainsi qu'aux algorithmes gloutons. Dans le chapitre 6, nous prouvons que ces algorithmes peuvent être appliqués à la minimisation de fonctionnelles d'énergie fortement convexes non linéaires et que leur vitesse de convergence est exponentielle en dimension finie. Nous illustrons ces résultats par la résolution de problèmes de l'obstacle avec incertitudes via une formulation pénalisée
|
179 |
Estimations quadratiques, calculs fonctionnels et applicationsHaak, Bernhard Hermann 28 November 2012 (has links) (PDF)
Ma recherche se situe dans le cadre de l'analyse harmonique et fonctionnelle avec des applications en théorie du contrôle. Le fil conducteur de mes travaux est le calcul fonctionnel ainsi que les estimations de fonctions carrées associées. Mes travaux concernent les thèmes ci-dessous : a) calcul fonctionnel H1 et estimations de fonctions carrées, b) applications des estimations de fonctions carrées au probl eme de Cauchy stochastique, c) résultats de perturbation pour des opérateurs (R) sectoriels, d) admissibilité et observabilité d'opérateurs de contrôle et d'observation, e) applications aux equations non-autonomes ou non-linéaires, en particulier aux équations de type Volterra et aux équations de Navier-Stokes, f) liens entre la théorie du contrôle et les mesures de Carleson.
|
180 |
Variable selection and structural discovery in joint models of longitudinal and survival dataHe, Zangdong January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Joint models of longitudinal and survival outcomes have been used with increasing frequency in clinical investigations. Correct specification of fixed and random effects, as well as their functional forms is essential for practical data analysis. However, no existing methods have been developed to meet this need in a joint model setting. In this dissertation, I describe a penalized likelihood-based method with adaptive least absolute shrinkage and selection operator (ALASSO) penalty functions for model selection. By reparameterizing variance components through a Cholesky decomposition, I introduce a penalty function of group shrinkage; the penalized likelihood is approximated by Gaussian quadrature and optimized by an EM algorithm. The functional forms of the independent effects are determined through a procedure for structural discovery. Specifically, I first construct the model by penalized cubic B-spline and then decompose the B-spline to linear and nonlinear elements by spectral decomposition. The decomposition represents the model in a mixed-effects model format, and I then use the mixed-effects variable selection method to perform structural discovery. Simulation studies show excellent performance. A clinical application is described to illustrate the use of the proposed methods, and the analytical results demonstrate the usefulness of the methods.
|
Page generated in 0.0534 seconds