Spelling suggestions: "subject:"spectroscopie infrarouge."" "subject:"pectroscopie infrarouge.""
171 |
Caractérisation par électrochimie et spectroscopie infrarouge in situ d'une électrode d'or (111) modifiée par du 2-mercaptobenzimidazole / Electrochemical and in situ infrared spectroscopic characterization of a gold (111) electrode modified with 2-mercaptobenzimidazoleDoneux, Thomas 25 November 2005 (has links)
Résumé du travail<p><p>L’étude des modifications de surfaces, et plus particulièrement des matériaux d’électrodes est un domaine en plein essor. Les modifications d’électrodes par voie organique ont des applications potentielles dans des domaines aussi variés que l’inhibition de la corrosion, l’électronique moléculaire, l’optoélectronique ou encore les biosenseurs.<p>Dans ce travail, nous nous sommes intéressés à l’électrode d’Au (111) modifiée par du 2-mercaptobenzimidazole. <p><p>Dans un premier temps, l’adsorption du MBI sur électrode d’Au (111) sous contrôle du potentiel a été examinée par des mesures de capacité, de voltampérométrie cyclique, de chronocoulométrie et de spectroscopie SNIFTIR in situ.<p>Les mesures de capacité révèlent qu’en milieu neutre, la molécule de MBI s’adsorbe en un film compact à des potentiels supérieurs à -0,3 V (vs. ECS). En deçà de cette valeur, le film se dilue progressivement lorsque le potentiel est rendu plus négatif, jusqu’à une valeur de -0,9 V où les molécules de MBI sont totalement désorbées de la surface.<p>La morphologie des voltampérogrammes subit des variations significatives au cours du temps. Ces changements montrent que l’adsorption du MBI s’accompagne d’une levée de reconstruction de la surface, qui passe d’une structure initiale (√3 x 22) à une structure (1 x 1). Une estimation de la quantité de MBI adsorbée est obtenue par intégration des courbes de densité de courant.<p>La courbe de densité de charge interfaciale a été extraite des mesures de chronocoulométrie. Cette courbe de densité de charge fournit des informations quant à l’évolution de l’excès superficiel en fonction du potentiel.<p>La qualité des spectres infrarouges relevés in situ nous a permis d’effectuer des analyses qualitatives et quantitatives. Celles-ci montrent une bonne corrélation avec les résultats électrochimiques et apportent une signature moléculaire du film adsorbé et des espèces issues de sa désorption. Des calculs basés sur la Théorie de la Fonctionnelle de la Densité (DFT) ont permis une bonne interprétation des spectres infrarouges du MBI et de certains de ses dérivés. En outre, nous avons pu déterminer l’orientation des molécules à la surface, et montré que celle-ci varie peu avec le potentiel.<p><p>Dans un second temps, nous nous sommes focalisés sur les propriétés de la monocouche auto-assemblée de MBI sur électrode d’Au (111), déterminées par voltampérométrie cyclique et spectroscopie infrarouge in situ. La monocouche est stable lorsque le potentiel est maintenu dans un domaine d’environ 800 mV. La monocouche auto-assemblée de MBI subit un processus de désorption réductive, influencé par le temps d’immersion de l’électrode dans la solution de surfactant ainsi que par le pH du milieu. Deux mécanismes de désorption réductive sont proposés, l’un valable en milieu neutre et basique, l’autre en milieu acide. Les résultats des mesures de spectroscopie infrarouge in situ apportent une preuve moléculaire de la validité des mécanismes proposés sur base des résultats électrochimiques.<p>Un rapide examen des potentialités de cette monocouche a été réalisé à l’aide de réactions sondes.<p>/<p>Abstract<p><p>Studies on surface modifications, and particularly of electrode material, are a growing field of interest. Organic modifications of electrode surfaces have potential applications in domains such as corrosion inhibition, molecular electronics, optoelectronics or biosensors.<p>In the present work, we focussed on the modification of Au(111) electrodes by 2-mercaptobenzimidazole (MBI).<p><p>In the first part, the adsorption, under potential control, of the MBI molecule onto the Au(111) electrode was studied by means of capacitance measurements, cyclic voltammetry, chronocoulometry and in-situ SNIFTIR spectroscopy.<p>Capacitance measurements indicate that in neutral solution, the MBI molecule is adsorbed as a compact film at potentials higher than -0.3 V (vs. SCE). Below this value, the film becomes progressively less dense when the potential is made more negative, until a value of -0.9 V where MBI molecules are totally desorbed from the surface.<p>The shape of the voltammograms evolves significantly with time. These changes show that a lift of the surface reconstruction occurs concomitantly to the adsorption of MBI. The initial (√3 x 22) reconstructed structure is lifted to the (1 x 1) unreconstructed one. The amount of adsorbed MBI is estimated by integration of the current density curves.<p>The interfacial charge density curve was obtained by chronocoulometry measurements. This curve provides useful data regarding the evolution of the surface concentration with the potential.<p>The quality of the infrared spectra obtained in situ allowed us to perform quantitative as well as qualitative analyses of the results. These analyses show a good correlation with the electrochemical results and provide molecular information on the adsorbed layer and on the species formed during the desorption process. Density Functional Theory (DFT) calculations were helpful in the interpretation of the infrared spectra of MBI and some of its derivatives. Additionally, we were able to determine the orientation of the molecules on the surface, and demonstrated that this orientation is slightly affected by the potential.<p><p>In the second part of the work, we investigated the properties of the self-assembled monolayer of MBI on Au(111) electrode by cyclic voltammetry and in situ infrared spectroscopy. The monolayer is stable within an 800 mV potential range. The self-assembled monolayer undergoes a reductive desorption process, which is affected by the pH of the medium and by the immersion time of the electrode into the surfactant solution. Two mechanisms were proposed for the reductive desorption, one being valid in neutral and basic media, the other in acidic conditions. The in situ infrared spectroscopic results provide molecular evidences supporting the mechanisms proposed on an electrochemical basis.<p>An exploratory examination of the potentialities of the monolayer is made by means of electrochemical probe reactions.<p> / Doctorat en sciences, Spécialisation chimie / info:eu-repo/semantics/nonPublished
|
172 |
Modulation du spectre infrarouge du graphèneAymong, Vincent 09 1900 (has links)
Les recherches présentées dans ce mémoire ont été rendues possible grâce à la contribution financière du CRSNG, par à leur Programme de subventions à la découverte (SD) et leur Programme de bourses d’études supérieures du Canada au niveau de la maîtrise (BESC M); du FRQNT, par leur Programme de bourse de maîtrise (B1); et du CLS, par leur Graduate and Post-Doctoral Student Travel Support Program. / Le graphène est un nano-matériau très prometteur grâce à ses excellentes propriétés mécaniques, optiques et électriques. Toutefois, la plupart de ses applications les plus novatrices requièrent de l'altérer, mais la compréhension du graphène altéré est encore limitée.
Certaines applications envisagées sont en optique infrarouge. Or, notre compréhension actuelle du graphène ne permet pas d’expliquer l’apparition des pics infrarouges qui sont observés dans les bicouches et dans les monocouches fonctionnalisées. Le comportement du graphène fonctionnalisé est particulièrement contre-intuitif, puisque l’ajout de greffons le rend plus transparent, et non pas plus opaque!
Un modèle proposé par Bruno Rousseau, un étudiant post-doctorant du professeur Michel Côté à l'Université de Montréal, suggère une explication à ce phénomène: bien que les phonons du graphène ne puissent pas coupler directement avec la lumière, ils coupleraient indirectement avec celle-ci grâce à des collisions sur les électrons, qui eux, peuvent coupler avec les photons. Ce couplage indirect peut produire des interférences parfois constructives, parfois destructives, de telle sorte que ce mécanisme peut autant produire des pics d’absorbance que de transparence.
Dans le cadre de ce mémoire, nous avons entrepris de vérifier expérimentalement la validité de ce modèle, et nous concluons qu’il semble prédire adéquatement le comportement de l’activité infrarouge des bicouches de graphène et des monocouches fonctionnalisées. Nous avons aussi étudié les méthodes par lesquelles nous synthétisions ces différents types de graphène afin de les optimiser. Enfin, nous avons déterminé des techniques, basées sur la spectroscopie Raman, permettant de bien caractériser l’intensité de l’altération causée par ces méthodes. / Graphene is a promising nanomaterials thanks to its excellent mechanical, optical and electrical properties. However, its most innovative applications require that it be altered, but the understanding altered graphene is still limited.
Some applications are considered in infrared optics. However, our current understanding of graphene does not explain the appearance of the infrared peaks that are observed in bilayers and grafted monolayers. The behaviour of grafted graphene is especially baffling, since the addition of grafts makes it more transparent, not less!
A model proposed by Bruno Rousseau, a postdoctoral student of Professor Michel Côté at Université de Montréal, suggests an explanation for this phenomenon: although the phonons of graphene cannot couple directly with light, they could couple indirectly through collisions with the electrons, which can couple with photons. This indirect coupling may produce constructive and destructive interference, depending on the conditions, so this mechanism can produce absorbance peaks as much as transparency peaks.
In this master’s thesis, we have undertaken to experimentally verify the validity of this model, and we conclude that it seems to adequately predict the behaviour of the infrared activity of graphene bilayers and grafted monolayers. We also studied the methods by which we synthesized these different types of graphene to optimize them. Finally, we determined techniques based on Raman spectroscopy to characterize the intensity of the alteration induced by these methods.
|
173 |
Electrospinning and characterization of self-assembled inclusion complexiesLiu, Yang 08 1900 (has links)
L’électrofilage est une technique permettant de fabriquer des fibres polymériques dont le diamètre varie entre quelques nanomètres et quelques microns. Ces fibres ont donc un rapport surface/volume très élevé. Les fibres électrofilées pourraient trouver des applications dans le relargage de médicaments et le génie tissulaire, comme membranes et capteurs chimiques, ou dans les nanocomposites et dispositifs électroniques. L’électrofilage était initialement utilisé pour préparer des toiles de fibres désordonnées, mais il est maintenant possible d’aligner les fibres par l’usage de collecteurs spéciaux. Cependant, il est important de contrôler non seulement l’alignement macroscopique des fibres mais aussi leur orientation au niveau moléculaire puisque l’orientation influence les propriétés mécaniques, optiques et électriques des polymères. Les complexes moléculaires apparaissent comme une cible de choix pour produire des nanofibres fortement orientées.
Dans les complexes d’inclusion d’urée, les chaînes polymères sont empilées dans des canaux unidimensionnels construits à partir d’un réseau tridimensionnel de molécules d’urée liées par des ponts hydrogène. Ainsi, les chaînes polymère sonts très allongées à l’échelle moléculaire. Des nanofibres du complexe PEO-urée ont été préparées pour la première fois par électrofilage de suspensions et de solutions. Tel qu’attendu, une orientation moléculaire inhabituellement élevée a été observée dans ces fibres. De tels complexes orientés pourraient être utilisés à la fois dans des études fondamentales et dans la préparation de matériaux hiérarchiquement structurés.
La méthode d’électrofilage peut parfois aussi être utilisée pour préparer des matériaux polymériques métastables qui ne peuvent pas être préparés par des méthodes conventionnelles. Ici, l’électrofilage a été utilisé pour préparer des fibres des complexes stables (α) et "métastables" (β) entre le PEO et l’urée. La caractérisation du complexe β, qui était mal connu, révèle un rapport PEO:urée de 12:8 appartenant au système orthorhombique avec a = 1.907 nm, b = 0.862 nm et c = 0.773 nm. Les chaînes de PEO sont orientées selon l’axe de la fibre. Leur conformation est significativement affectée par les ponts hydrogène. Une structure en couches a été suggérée pour la forme β, plutôt que la structure conventionnelle en canaux adoptée par la forme α.
Nos résultats indiquent que le complexe β est thermodynamiquement stable avant sa fonte et peut se transformer en forme α et en PEO liquide par un processus de fonte et recristallisation à 89 ºC. Ceci va dans le sens contraire aux observations faites avec le complexe β obtenu par trempe du complexe α fondu. En effet, le complexe β ainsi obtenu est métastable et contient des cristaux d’urée. Il peut subir une transition de phases cinétique solide-solide pour produire du complexe α dans une vaste gamme de températures. Cette transition est induite par un changement de conformation du PEO et par la formation de ponts hydrogène intermoléculaires entre l’urée et le PEO. Le diagramme de phases du système PEO-urée a été tracé sur toute la gamme de compositions, ce qui a permis d’interpréter la formation de plusieurs mélanges qui ne sont pas à l’équilibre mais qui sont été observés expérimentalement.
La structure et le diagramme de phases du complexe PEO-thiourée, qui est aussi un complexe très mal connu, ont été étudiés en détail. Un rapport molaire PEO :thiourée de 3:2 a été déduit pour le complexe, et une cellule monoclinique avec a = 0.915 nm, b = 1.888 nm, c = 0.825 nm et β = 92.35º a été déterminée. Comme pour le complexe PEO-urée de forme β, une structure en couches a été suggérée pour le complexe PEO-thiourée, dans laquelle les molécules de thiourée seraient disposées en rubans intercalés entre deux couches de PEO. Cette structure en couches pourrait expliquer la température de fusion beaucoup plus faible des complexes PEO-thiourée (110 ºC) et PEO-urée de forme β (89 ºC) en comparaison aux structures en canaux du complexe PEO-urée de forme α (143 ºC). / Electrospinning is a technique that allows production of polymeric fibers with diameters ranging from nanometers to a few microns, and thus with an inherent high surface-to-volume ratio. Electrospun fibers are finding potential applications in drug delivery and tissue engineering, as membranes and chemical sensors, and in nanocomposites and electronic devices. Electrospinning was initially used to prepare disordered, non-woven mats, but it is now possible to produce highly aligned fibers by using different target collectors. However, it is of great interest to not only control the macroscopic alignment of the fibers but also their orientation at the molecular level since it influences the mechanical, optical and electrical properties of polymers. Molecular complexes were targeted as a means of increasing molecular orientation in electrospun fibers.
In the host-guest urea inclusion complexes (ICs), polymer chains are packed in one-dimensional channels constructed from an essentially infinite three-dimensional network of hydrogen-bonded urea molecules. The polymer chains are thus highly extended at the molecular scale. PEO-urea complex nanofibers have been prepared for the first time by electrospinning of suspension and solutions. As predicted, an unusually large molecular orientation in the fibers was achieved. Such highly ordered IC fibers could find use both for fundamental studies of the inclusion complexes and for the preparation of hierarchically structured materials.
Electrospinning can also sometimes be used to prepare metastable polymeric materials that cannot be prepared by the conventional methods. Here, solution electrospinning was used to prepare fibers of both the stable (α) and "metastable" (β) complexes between PEO and urea. Detailed characterization of the ill-studied β complex reveals that it possesses a 12:8 PEO:urea stoichiometry and belongs to the orthorhombic system with a = 1.907 nm, b = 0.862 nm, and c = 0.773 nm. The PEO chains are oriented along the fiber axis and present a conformation significantly affected by strong hydrogen bonding with urea as compared to the pure polymer and the stable α complex. A layered structure, rather than the conventional channel structure, is suggested.
In contrast with previous suggestions based on melt-quenched PEO-urea α complex, our results further indicate that the β complex is thermodynamically stable before melting and can phase-transfer to the α complex and liquid PEO through a thermodynamic melt-recrystallization process at 89 ºC. In contrast, the β complex obtained by melt-quenching the α complex is mixed with urea crystal and is metastable. It can experience a kinetic solid-solid phase transition process to produce α complex within a large temperature range. This transition is induced by a PEO conformation change and by the formation of intermolecular hydrogen bonds between urea and PEO. The phase diagram of the PEO/urea system was drawn over the complete composition range, which allowed interpreting the formation of various out-of-equilibrium mixtures observed experimentally.
The structure and phase diagram of the PEO/thiourea complex, another poorly understood system, was also studied in detail. An EO:thiourea molar ratio of 3:2 was deduced for the complex, and a monoclinic unit cell with a = 0.915 nm, b = 1.888 nm, c = 0.825 nm and β = 92.35º was determined. Just as for the PEO-urea β complex, a layered structure was suggested for the PEO-thiourea complex, in which the thiourea molecules would be arranged into a ribbon-like structure intercalated between two PEO layers. This layered structure could explain the much lower melting temperature of the PEO-thiourea (110 ºC) and PEO-urea β complexes (89 ºC) as compared to the well known channel-structured PEO-urea α complex (143 ºC).
|
174 |
Mise en place et application d'un spectromètre de dichroïsme linéaire infrarouge avec modulation de la polarisation pour l'étude de l'orientation des mélanges polymèresMauran, Damien January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
175 |
Propriétés optiques dans l'infrarouge des nanotubes de carbone et du graphèneLapointe, François 03 1900 (has links)
Les nanotubes de carbone et le graphène sont des nanostructures de carbone hybridé en sp2 dont les propriétés électriques et optiques soulèvent un intérêt considérable pour la conception d’une nouvelle génération de dispositifs électroniques et de matériaux actifs optiquement. Or, de nombreux défis demeurent avant leur mise en œuvre dans des procédés industriels à grande échelle. La chimie des matériaux, et spécialement la fonctionnalisation covalente, est une avenue privilégiée afin de résoudre les difficultés reliées à la mise en œuvre de ces nanostructures. La fonctionnalisation covalente a néanmoins pour effet de perturber la structure cristalline des nanostructures de carbone sp2 et, par conséquent, d’affecter non seulement lesdites propriétés électriques, mais aussi les propriétés optiques en émanant. Il est donc primordial de caractériser les effets des défauts et du désordre dans le but d’en comprendre les conséquences, mais aussi potentiellement d’en exploiter les retombées.
Cette thèse traite des propriétés optiques dans l’infrarouge des nanotubes de carbone et du graphène, avec pour but de comprendre et d’expliquer les mécanismes fondamentaux à l’origine de la réponse optique dans l’infrarouge des nanostructures de carbone sp2. Soumise à des règles de sélection strictes, la spectroscopie infrarouge permet de mesurer la conductivité en courant alternatif à haute fréquence des matériaux, dans une gamme d’énergie correspondant aux vibrations moléculaires, aux modes de phonons et aux excitations électroniques de faible énergie. Notre méthode expérimentale consiste donc à explorer un espace de paramètres défini par les trois axes que sont i. la dimensionnalité du matériau, ii. le potentiel chimique et iii. le niveau de désordre, ce qui nous permet de dégager les diverses contributions aux propriétés optiques dans l’infrarouge des nanostructures de carbone sp2.
Dans un premier temps, nous nous intéressons à la spectroscopie infrarouge des nanotubes de carbone monoparois sous l’effet tout d’abord du dopage et ensuite du niveau de désordre. Premièrement, nous amendons l’origine couramment acceptée du spectre vibrationnel des nanotubes de carbone monoparois. Par des expériences de dopage chimique contrôlé, nous démontrons en effet que les anomalies dans lespectre apparaissent grâce à des interactions électron-phonon. Le modèle de la résonance de Fano procure une explication phénoménologique aux observations. Ensuite, nous établissons l’existence d’états localisés induits par la fonctionnalisation covalente, ce qui se traduit optiquement par l’apparition d’une bande de résonance de polaritons plasmons de surface (nanoantenne) participant au pic de conductivité dans le térahertz. Le dosage du désordre dans des films de nanotubes de carbone permet d’observer l’évolution de la résonance des nanoantennes. Nous concluons donc à une segmentation effective des nanotubes par les greffons. Enfin, nous montrons que le désordre active des modes de phonons normalement interdits par les règles de sélection de la spectroscopie infrarouge. Les collisions élastiques sur les défauts donnent ainsi accès à des modes ayant des vecteurs d’onde non nuls.
Dans une deuxième partie, nous focalisons sur les propriétés du graphène. Tout d’abord, nous démontrons une méthode d’électrogreffage qui permet de fonctionnaliser rapidement et à haute densité le graphène sans égard au substrat. Par la suite, nous utilisons l’électrogreffage pour faire la preuve que le désordre active aussi des anomalies dépendantes du potentiel chimique dans le spectre vibrationnel du graphène monocouche, des attributs absents du spectre d’un échantillon non fonctionnalisé. Afin d’expliquer le phénomène, nous présentons une théorie basée sur l’interaction de transitions optiques intrabandes, de modes de phonons et de collisions élastiques. Nous terminons par l’étude du spectre infrarouge du graphène comportant des îlots de bicouches, pour lequel nous proposons de revoir la nature du mécanisme de couplage à l’œuvre à la lumière de nos découvertes concernant le graphène monocouche. / Carbon nanotubes and graphene are sp2 hybridized carbon nanostructures which electrical and optical properties raise considerable interest for the design of a new generation of electronic devices and optically active materials. However, many challenges remain before their implementation in industrial processes on a large scale. Materials chemistry, especially covalent functionalization, is a privileged avenue to resolve the difficulties related to the processing of these nanostructures. Covalent functionalization, however, disrupts the sp2 carbon nanostructures’ crystalline structure, and pertubs not only said electrical properties, but also the deriving optical properties. It is therefore essential to characterize the effects of defects and disorder in order to understand their consequences, but also to potentially exploit the benefits.
This thesis deals with the optical properties in the infrared of carbon nanotubes and graphene, with the aim to understand and explain the fundamental mechanisms at the origin of the optical response in the infrared of sp2 carbon nanostructures. Subject to strict selection rules, infrared spectroscopy measures the high frequency AC conductivity of materials in an energy range corresponding to molecular vibrations, phonon modes and low energy electronic excitations. Our experimental method is therefore to explore a parameter space defined by the three axes that are i. the dimensionality of the material, ii. the chemical potential, and iii. the disorder level, which allows us to identify the various contributions to optical properties in the infrared of sp2 carbon nanostructures.
At first, we focus on the infrared spectroscopy of single-walled carbon nanotubes as a function of doping and disorder level. We start by amending the commonly accepted origin of single-walled carbon nanotubes vibrational spectra. Using controlled chemical doping experiments, we show that the anomalies in the carbon nanotube spectra appear through electron-phonon interactions. The Fano resonance model provides a phenomenological explanation for the observations. Then, we establish the existence of localized states induced by covalent functionalization, which appear as a surface plasmon polariton resonance (nanoantenna) contributing to the terahertz conductivity peak. Control of the disorder level in carbon nanotube films allows us to observe the evolution of the nanoantenna resonance. We therefore conclude to an effective segmentation of the nanotubes by the grafts. Finally, we show that disorder activates phonon modes that are usually forbidden by infrared spectroscopy’s selection rules. Disorder-induced infrared activity originates from elastic collisions on defects that give access to phonon modes with non-zero wave vectors.
In a second part, we focus on the properties of graphene. First, we demonstrate an electrografting method to rapidly functionalize graphene with high-density, regardless of the substrate. Subsequently, we use electrografting to show that disorder activates chemical potential dependent anomalies in the vibrational spectra of single-layer graphene. These anomalies are absent in the spectra of pristine samples. In order to explain this phenomenon, we present a theory based on the interaction of intraband optical transitions, phonon modes and elastic collisions. We conclude by studying the infrared spectra of graphene with bilayer islands, for which we propose to review the nature of the coupling mechanism in the light of our findings on single-layer graphene.
|
176 |
Electrospinning and characterization of supramolecular poly(4-vinyl pyridine)-small molecule complexesWang, Xiaoxiao 12 1900 (has links)
La chimie supramoléculaire est basée sur l'assemblage non covalent de blocs simples, des petites molécules aux polymères, pour synthétiser des matériaux fonctionnels ou complexes. La poly(4-vinylpyridine) (P4VP) est l'une des composantes supramoléculaires les plus utilisées en raison de sa chaîne latérale composée d’une pyridine pouvant interagir avec de nombreuses espèces, telles que les petites molécules monofonctionnelles et bifonctionnelles, grâce à divers types d'interactions. Dans cette thèse, des assemblages supramoléculaires de P4VP interagissant par liaisons hydrogène avec de petites molécules sont étudiés, en ayant comme objectifs de faciliter l'électrofilage de polymères et de mieux comprendre et d'optimiser la photoréponse des matériaux contenant des dérivés d'azobenzène.
Une nouvelle approche est proposée afin d'élargir l'applicabilité de l'électrofilage, une technique courante pour produire des nanofibres. À cet effet, un complexe entre la P4VP et un agent de réticulation bifonctionnel capable de former deux liaisons hydrogène, le 4,4'-biphénol (BiOH), a été préparé pour faciliter le processus d’électrofilage des solutions de P4VP. Pour mieux comprendre ce complexe, une nouvelle méthode de spectroscopie infrarouge (IR) a d'abord été développée pour quantifier l'étendue de la complexation. Elle permet de déterminer un paramètre clé, le rapport du coefficient d'absorption d'une paire de bandes attribuées aux groupements pyridines libres et liées par liaisons hydrogène, en utilisant la 4-éthylpyridine comme composé modèle à l’état liquide. Cette méthode a été appliquée à de nombreux complexes de P4VP impliquant des liaisons hydrogène et devrait être généralement applicable à d'autres complexes polymères.
La microscopie électronique à balayage (SEM) a révélé l'effet significatif du BiOH sur la facilité du processus d’électrofilage de P4VP de masses molaires élevées et faibles. La concentration minimale pour former des fibres présentant des perles diminue dans le N, N'-diméthylformamide (DMF) et diminue encore plus lorsque le nitrométhane, un mauvais solvant pour la P4VP et un non-solvant pour le BiOH, est ajouté pour diminuer l'effet de rupture des liaisons hydrogène causé par le DMF. Les liaisons hydrogène dans les solutions et les fibres de P4VP-BiOH ont été quantifiées par spectroscopie IR et les résultats de rhéologie ont démontré la capacité de points de réticulation effectifs, analogues aux enchevêtrements physiques, à augmenter la viscoélasticité de solutions de P4VP pour mieux résister à la formation de gouttelettes. Cette réticulation effective fonctionne en raison d'interactions entre le BiOH bifonctionnel et deux chaînes de P4VP, et entre les groupements hydroxyles du BiOH complexé de manière monofonctionnelle. Des études sur d’autres agents de réticulation de faible masse molaire ont montré que la plus forte réticulation effective est introduite par des groupes d’acide carboxylique et des ions de zinc (II) qui facilitent le processus d’électrofilage par rapport aux groupements hydroxyles du BiOH. De plus, la sublimation est efficace pour éliminer le BiOH contenu dans les fibres sans affecter leur morphologie, fournissant ainsi une méthode élégante pour préparer des fibres de polymères purs dont le processus d’électrofilage est habituellement difficile.
Deux complexes entre la P4VP et des azobenzènes photoactifs portant le même groupement tête hydroxyle et différents groupes queue, soit cyano (ACN) ou hydrogène (AH), ont été étudiés par spectroscopie infrarouge d’absorbance structurale par modulation de la polarisation (PM-IRSAS) pour évaluer l'impact des groupements queue sur leur performance lors de l'irradiation avec de la lumière polarisée linéairement. Nous avons constaté que ACN mène à la photo-orientation des chaînes latérales de la P4VP et des azobenzènes, tandis que AH mène seulement à une orientation plus faible des chromophores. La photo-orientation des azobenzènes diminue pour les complexes avec une teneur croissante en chromophore, mais l'orientation de la P4VP augmente. D'autre part, l'orientation résiduelle après la relaxation thermique augmente avec la teneur en ACN, à la fois pour le ACN et la P4VP, mais la tendance opposée est constatée pour AH. Ces différences suggèrent que le moment dipolaire a un impact sur la diffusion rotationnelle des chromophores. Ces résultats contribueront à orienter la conception de matériaux polymères contenant des azobenzène efficaces. / Supramolecular chemistry is based on the non-covalent assembly of simple building blocks, from small molecules to polymers, to synthesize functional or complex materials. Poly(4-vinyl pyridine) (P4VP) is one of the most used supramolecular components because its side-chain pyridine rings can interact with many species, such as monofunctional and bifunctional small molecules, through various types of interactions. In this thesis, supramolecular assemblies of P4VP hydrogen-bonded with various small molecules are studied with the objectives of facilitating the electrospinning of polymers and to better understand and optimize the photoresponse of azobenzene-containing materials.
A new approach is proposed to widen the applicability of electrospinning, a common technique to produce thin nanofibers. To this end, a complex between P4VP and a bifunctional hydrogen bond crosslinker, 4,4’-biphenol (BiOH), is prepared to increase the electrospinnability of P4VP solutions. To better understand this complex, a new infrared (IR) spectroscopy method is first developed to quantify the extent of complexation. The method allows determining a key parameter, the absorption coefficient ratio of a pair of bands due to free and hydrogen-bonded pyridine rings, by using 4-ethylpyridine as a liquid model compound. This method is applied to many hydrogen-bonded P4VP complexes and should be generally applicable to other polymer complexes.
Scanning electron microscopy (SEM) reveals the significant effect of BiOH on the electrospinnability of P4VP with high and low molecular weights. The minimum concentration for the formation of beaded fibers decreases in N,N’-dimethylformamide (DMF) and to a greater extent when nitromethane, a poor solvent for P4VP and a non-solvent for BiOH, is added to decrease the hydrogen bond breaking effect of DMF. Hydrogen bonding in P4VP-BiOH solutions and fibers is quantified by IR spectroscopy and rheology results demonstrate the capability of the effective crosslinks, as analogs to physical entanglements, of increasing the viscoelasticity of P4VP solutions to better resist the formation of droplets. This effective crosslinking works due to bifunctional interactions of BiOH with two P4VP chains and between the hydroxyl groups of monofunctionally complexed BiOH. Studies of other small crosslinkers show that the stronger effective crosslinking introduced by carboxylic acid groups and zinc (II) ions leads to better electrospinnability than the hydroxyl groups of BiOH. Additionally, sublimation is found to be effective to remove BiOH from fibers without affecting their morphology, providing a smart method for preparing fibers of pure polymers with limited electrospinnability.
Two complexes between P4VP and photoactive azobenzenes bearing the same hydroxyl head group and different tail groups, either cyano (ACN) or hydrogen (AH), are studied by polarization modulation infrared structural absorbance spectroscopy (PM-IRSAS) to investigate the impact of the tail groups on their performance upon irradiation with linearly polarized light. We find that ACN leads to photo-orientation of both P4VP side-chains and azobenzenes, while AH only leads to a weaker orientation of the chromophores. Photo-orientation of the azobenzenes decreases for both complexes with increasing chromophore content, but the orientation of P4VP increases. On the other hand, the residual orientation after thermal relaxation increases with increasing ACN content, for both ACN and P4VP, but the opposite trend is found for AH. Such differences suggest the impact of the dipole moment on the rotational diffusion of chromophores. These findings will contribute to directing the design of efficient azobenzene-containing polymer materials.
|
177 |
Fonctionnalisation covalente de monocouches et bicouches de graphèneNguyen, Minh 03 1900 (has links)
Le graphène est une nanostructure de carbone hybridé sp2 dont les propriétés électroniques et optiques en font un matériau novateur avec un très large potentiel d’application. Cependant, la production à large échelle de ce matériau reste encore un défi et de nombreuses propriétés physiques et chimiques doivent être étudiées plus en profondeur pour mieux les exploiter. La fonctionnalisation covalente est une réaction chimique qui a un impact important dans l’étude de ces propriétés, car celle-ci a pour conséquence une perte de la structure cristalline des carbones sp2. Néanmoins, la réaction a été très peu explorée pour ce qui est du graphène déposé sur des surfaces, car la réactivité chimique de ce dernier est grandement dépendante de l’environnement chimique. Il est donc important d’étudier la fonctionnalisation de ce type de graphène pour bien comprendre à la fois la réactivité chimique et la modification des propriétés électroniques et optiques pour pouvoir exploiter les retombées. D’un autre côté, les bicouches de graphène sont connues pour avoir des propriétés très différentes comparées à la monocouche à cause d’un empilement des structures électroniques, mais la croissance contrôlée de ceux-ci est encore très difficile, car la cinétique de croissance n’est pas encore maîtrisée.
Ainsi, ce mémoire de maîtrise va porter sur l’étude de la réactivité chimique du graphène à la fonctionnalisation covalente et de l’étude des propriétés optiques du graphène. Dans un premier temps, nous avons effectué des croissances de graphène en utilisant la technique de dépôt chimique en phase vapeur. Après avoir réussi à obtenir du graphène monocouche, nous faisons varier les paramètres de croissance et nous nous rendons compte que les bicouches apparaissent lorsque le gaz carboné nécessaire à la croissance reste présent durant l’étape de refroidissement. À partir de cette observation, nous proposons un modèle cinétique de croissance des bicouches.
Ensuite, nous effectuons une étude approfondie de la fonctionnalisation du graphène monocouche et bicouche. Tout d’abord, nous démontrons qu’il y a une interaction avec le substrat qui inhibe grandement le greffage covalent sur la surface du graphène. Cet effet peut cependant être contré de plusieurs façons différentes : 1) en dopant chimiquement le graphène avec des molécules réductrices, il est possible de modifier le potentiel électrochimique afin de favoriser la réaction; 2) en utilisant un substrat affectant peu les propriétés électroniques du graphène; 3) en utilisant la méthode d’électrogreffage avec une cellule électrochimique, car elle permet une modulation contrôlée du potentiel électrochimique du graphène. De plus, nous nous rendons compte que la réactivité chimique des bicouches est moindre dû à la rigidité de structure due à l’interaction entre les couches.
En dernier lieu, nous démontrons la pertinence de la spectroscopie infrarouge pour étudier l’effet de la fonctionnalisation et l’effet des bicouches sur les propriétés optiques du graphène. Nous réussissons à observer des bandes du graphène bicouche dans la région du moyen infrarouge qui dépendent du dopage. Normalement interdites selon les règles de sélection pour la monocouche, ces bandes apparaissent néanmoins lorsque fonctionnalisée et changent grandement en amplitude dépendamment des niveaux de dopage et de fonctionnalisation. / Graphene is a sp2 hybridized carbon nanostructure with incredible electronical and optical properties that make it interesting for various applications. Its large scale production is still a challenge and there is still some physical and chemical properties that need further studies to better exploit them. Covalent functionalization is a chemical reaction that can be used as a tool to study those properties because it breaks the sp2 crystalline structure, so it modulates the properties of graphene. There are not many studies of that reaction on graphene deposited on a surface because the chemical reactivity depends greatly on the chemical environment. That is why it is important to study the functionalization of graphene on surfaces to understand chemical reactivity and the modification of electronical and optical properties in order to potentially exploit the benefits.
This master thesis is focusing on the chemical reactivity of graphene to covalent functionalization and the study of its optical properties. First, we grow graphene using the chemical vapour deposition method. After the growth of monolayer, we change the parameters and we observe the formation of bilayers if the carbonated gas is present during the cooling step of the growth. From that observation, we propose a kinetic model of bilayer growth.
Then we proceed to a detailed study of monolayer and bilayer graphene functionalization. First, we demonstrate that there is a substrate effect that inhibits greatly the grafting of organic molecules on the graphene surface. However it is possible to overcome this substrate effect by different ways: 1) chemical doping of the graphene with reducing molecules can modify the electrochemical potential to enhance the reaction; 2) transferring graphene on a substrate that doesn’t affect the electronical properties of graphene; 3) the use of an electrografting method with an electrochemical cell can also modulate the potential so the efficiency of the reaction is enhanced. Also, we observe that the chemical reactivity of bilayer graphene is lower compared to the monolayer because of structural rigidity caused by interlayer interaction.
Finally, we demonstrate that the infrared spectroscopy is a powerful tool to study the effect of functionalization and the effect of bilayers on the optical properties of graphene. We observe some bands in the region of the mid-IR, while the infrared selection rules don’t predict any. Also, the shape of those bands change greatly depending on the doping level when there is bilayers or when the graphene is functionalized.
|
178 |
Synthèse de polyuréthanes par organo-catalyse dans le dioxyde de carbone supercritique / Organocatalysed synthesis of polyurethanes in supercritical carbon dioxideSmith, Christopher 20 December 2012 (has links)
La synthèse de particules polyuréthane par organo-catalyse dans le dioxyde de carbone supercritique a été étudiée. Des réactions modèles ont été préalablement conduites et suivies par spectroscopie infrarouge in situ dans le CO2 supercritique afin d'identifier les catalyseurs organiques de réaction d'uréthanisation les plus efficients. Une série de polymères siliconés CO2-phile, porteurs de la fonction organo-catalytique en bout de chaîne (organo-catasurfs), a ensuite été préparée et testée dans le CO2 supercritique pour la polymérisation en dispersion de polyuréthane. / The organocatalysed synthesis of polyurethane particles in supercritical carbon dioxide has been studied. Model reactions were first carried out in supercritical CO2 and monitored by in situ infrared spectroscopy in order to indentify the most efficient catalysts for the urethanisation reaction. A series of CO2-philic silicone polymers, end-functionalised with the organocatalytic group (organocatasurfs), were then synthesised and tested in supercritical CO2 for the dispersion polymerisation of polyurethane.
|
179 |
Application des techniques spectroscopiques vibrationnelles couplées aux analyses statistiques multivariées pour la caractérisation et l'objectivation des produits de soins comestiques / Application of vibrational spectroscopic techniques coupled to multivariate statistical analysis for the characterization of cosmetic care productsMiloudi, Lynda 18 October 2018 (has links)
La fonction barrière de la peau, qui protège l’organisme contre les molécules exogènes, limite la pénétration des actifs cosmétiques, ce qui réduit l’efficacité des molécules actives dans les couches profondes de l’épiderme. Il est alors apparu essentiel d'optimiser l'administration des actifs cosmétiques déjà existants afin d’en tirer tout le bénéfice escompté. Certaines innovations sont développées pour répondre à ce défi, notamment l’encapsulation des actifs cosmétiques dans des nanosystemes. En parallèle, il est nécessaire de s’intéresser aux méthodes analytiques capables de fournir une information qualitative et quantitative sur ces systèmes dispersés dans un produit fini complexe et de permettre une évaluation biologique à différents stades de développement des formulations. / The barrier function of the skin, which protects the body against exogenous molecules, limits the penetration of active cosmetic ingredients (ACI), thus reduce the effectiveness of molecules with a deep cellular target. Therefore, it appeared crucial to optimize the administration of existing active cosmetic in order to get the full benefits expected. Some innovations are explored to bypass this issue, including the encapsulation of existing active cosmetic in nanocarriers. In parallel, it is important to also focus on the development of analytical methodologies that could provide qualitative and quantitative information, in particular the determination of ACI contents and potentially excipients incorporated in a final form, and biological evaluation at different stages of formulation.
|
180 |
Etude de la dynamique et de la structure de couches minces d’oxydes fonctionnels : srTiO3, VO2 et Al2O3 / Dynamical and structural study of functional oxide thin layers : srTiO3, VO2 and Al2O3Peng, Weiwei 04 April 2011 (has links)
Afin de développer de nouvelles applications aux couches minces d’oxydes fonctionnels, il est nécessaire de comprendre les corrélations entre leurs modes de croissance, leur microstructure, leur structure à l’interface avec le substrat, et leurs contraintes et propriétés physiques. Pour cela, une étude par spectroscopie infrarouge et THz des systèmes modèles films/substrats a été exécutée, et confrontée à des calculs théoriques, en particulier sur des couches épitaxiales de SrTiO3/Si(001), VO2/Gd2O3/Si(111) et des couches d’alumine sur alliage d’aluminium. Les caractéristiques vibrationnelles des couches minces sont ici étudiées dans l’infrarouge moyen et lointain sur la ligne AILES du Synchrotron SOLEIL, et simulées à l’aide de la Théorie de la Fonctionnelle de la Densité (DFT), permettant ainsi la première détermination de la structure cristalline de ces couches. Ainsi, une comparaison entre la structure bidimensionnelle et tridimensionnelle des matériaux est effectuée. L’effet des contraintes dans les couches est évalué grâce aux variations des énergies de vibration par rapport au matériau massif. L’influence des conditions expérimentales de l’épitaxie dans la structure locale interatomique de couches minces de SrTiO3/Si(001) est évaluée. D’autre part, la nature de l’interface STO-Si peut être caractérisée par les modes de vibration du réseau cristallin. Enfin, la transition métal-isolant (MIT) des couches minces de VO2 sur des substrats de Gd2O3/Si(111) est étudié par spectroscopie IR ; les variations de propriétés optiques et diélectriques pendant la transition, ainsi que les changements d’intensité des modes de vibration, indiquent que la transition est entraînée par une corrélation électronique et une basse température. La phase monoclinique M1 de VO2 est un isolant de Mott. Ce résultat peut aider à un meilleur contrôle des MIT de couches minces de VO2 pour de futures applications. / In order to understand the relations between growth, microstructure, interface structure, strain, and physical properties in functional oxide thin films for further applications, a study of infrared and THz spectroscopy combined with theoretical calculation has been performed on the films/substrates model systems, in particular epitaxial SrTiO3/Si(001), VO2/Gd2O3/Si(111) films and alumina/alloy films. The vibrational characteristics of the crystal structure of films have been investigated in the mid and far infrared ranges on the AILES beamline at Synchrotron SOLEIL. This experimental vibrational study has been combined with Density Functional Theory (DFT) simulation to allow for the first measure of the crystalline structure of these thin films. The 2-dimensional lattice modification compared with the bulk materials has been discussed. The strain effect in the films can be evaluated on the phonon shifts compared with the crystal spectrum. The influences of epitaxial conditions on the local interatomic structure of SrTiO3/Si(001) thin films have been estimated. The nature of STO-Si interface can be characterized by the phonon modes. The metal–insulator transition (MIT) of VO2 thin films on Gd2O3/Si(111) substrate have been studied by IR spectroscopy. The variations of optical and dielectric properties during the MIT, as well as the phonon intensities, indicate that the MIT is driven by electron correlation and the low temperature M1 monoclinic phase of VO2 is a Mott insulator. This result may help to better understand and control the MITs of VO2 thin films in the device applications.
|
Page generated in 0.0704 seconds