Spelling suggestions: "subject:"spectroscopie infrarouge."" "subject:"pectroscopie infrarouge.""
191 |
Métalloporphyrines obéissantes : Détection et contrôle de la forme moléculaire dans une série de chiroporphyrines bridéesCastaings, Anna 20 December 2006 (has links) (PDF)
Une série de chiroporphyrines bridées et leurs complexes métalliques, dans lesquels les substituants méso adjacents, dérivés du biocartol, sont liés deux à deux par une bride de n groupements méthylènes, a été préparée. Ces composés peuvent exister sous la forme de quatre atropoisomères (alpha-alpha-alpha-alpha, alpha-beta-alpha-beta, alpha-alpha-alpha-beta ou alpha-alpha-beta-beta) suivant que les substituants méso sont orientés au-dessus (alpha) ou en dessous (beta) du plan moyen de la porphyrine. Nous avons caractérisé la conformation de ces porphyrines chirales à l'aide de plusieurs techniques spectroscopiques : résonance magnétique nucléaire du proton, dichroïsme circulaire électronique, et dichroïsme circulaire vibrationnel. Ces deux dernières techniques se sont révélées particulièrement utiles pour la caractérisation conformationnelle des métallochiroporphyrines paramagnétiques. La chiroporphyrine comportant les brides les plus courtes (n = 8), ainsi que son complexe de zinc, peuvent être isolés à l'état solide sous la forme de l'atropoisomère alpha-alpha-alpha-alpha mais en solution ils sont soumis à des équilibres conformationnels aboutissant à des distributions d'atropoisomères qui dépendent fortement du solvant et de la concentration. L'addition de pipéridine en position axiale sur le complexe de zinc a une influence importante sur la distribution des atropoisomères. Inspirés par cette remarquable flexibilité conformationnelle, nous avons tenté de contrôler la forme moléculaire de quelques complexes métalliques dans cette série par plusieurs méthodes. Nos résultats démontrent qu'il est possible d'induire des changements conformationnels de grande ampleur (alpha-alpha-alpha-alpha ↔ alpha-beta-alpha-beta) dans les complexes de nickel(II) et de manganèse(II/III) par application d'un signal chimique ou rédox qui modifie l'occupation de l'orbitale stéréochimiquement active 3dx2-y2. Les basculements conformationnels observés sont réversibles. La bistabilité moléculaire que nous avons mise en évidence dans ces systèmes est potentiellement intéressante pour la conception de dispositifs nanoélectroniques tels que les mémoires moléculaires non volatiles.
|
192 |
Étude de systèmes de matériaux évolutifs : interactions solides-gaz, propriétés catalytiques et électriques dans le cas d'hydroxycarbonates, carbonates et oxydes à base de terres rares (La, Ce, Lu)Bakiz, Bahcine 30 October 2010 (has links) (PDF)
Dans le cadre général de l'amélioration de la sélectivité de capteurs et microcapteurs de gaz, les hydroxycarbonates, dioxycarbonates et oxydes à base de terres rares font partie de catégories de matériaux évolutifs, susceptibles, de part leur changements de phases, d'être sensibles à la vapeur d'eau, au gaz carbonique et enfin à un gaz type CH4 ou CO, toxique ou d'intérêt industriel. L'étude de la stabilité des phases LaOHCO3, La2O2CO3, La2O3 puis des phases CeOHCO3, CeO2, a été entreprise afin d'évaluer d'une part leurs comportements catalytiques vis-à-vis de CH4 et CO, et d'autre part, leurs réponses électriques sous air et sous flux de CO2. Les diverses phases LaOHCO3 et CeOHCO3 ont été élaborées par voie humide à basse température. Les phases La2O2CO3, La2O3, CeO2 ont été obtenues par décomposition thermique des hydroxycarbonates. La phase CeO2 a également été obtenue sous forme nanostructurée par voie humide et à température ambiante. Chaque phase a fait l'objet d'une analyse par diffraction de rayons X, microscopies électroniques à balayage et en transmission afin de déterminer les natures des phases, les morphologies et tailles de cristallites. L'étude des interactions solide gaz a été réalisée en fonction de la température et du temps de réaction, en utilisant un réacteur tubulaire traversé par des flux air-CH4 ou air-CO. La spectroscopie infrarouge à transformée de Fourier a été utilisée pour déterminer les quantités relatives de CO2 issues de la conversion de CH4 ou CO. Les efficacités catalytiques sont mesurées en normant les intensités IRTF absorbées par rapport aux surfaces spécifiques BET. L'oxyde de lutécium peut être considéré comme meilleur catalyseur parmi les trois oxydes de terres rares étudiés, vis-à-vis de CO et de CH4. La cinétique de carbonatation sous flux de CO2 pur de La2O3 a été étudiée en analysant les prises de masses à températures fixées. En utilisant le modèle d'Avrami, nous avons mis en évidence l'existence de deux régimes lors de la formation du carbonate La2O2CO3 : un régime réactionnel puis un régime diffusionnel. Les mesures par spectroscopie d'impédance électrique ont été effectuées afin d'évaluer l'amplitude des réponses électriques liées aux divers changements de phase, en montée en température, sous air ou sous flux de CO2. Les variations électriques sont très significatives lors de la décomposition thermique de LaOHCO3 sous air. Les changements de phase (LaOHCO3ﰁLa2O3CO3ﰁLa2O3) sont identifiés au travers des variations des logarithmes de la résistance électrique, et comparés aux variations de masses observées lors des mesures ATD-TG. Les processus de carbonatation puis de décarbonatation ont été mis en évidence par thermogravimétrie sous flux de CO2 pur, à température croissante puis décroissante. Les mesures électriques sous CO2 ont de même été effectuées à température croissante : dans la phase de carbonatation, les deux régimes réactionnel et diffusionnel sont à nouveau observés. La décarbonatation observée à 800°C a permis de clairement identifier le caractère majoritaire de la conduction ionique en ions CO32- dans le composé La2O2CO3. Un ordre de grandeur de la mobilité ionique des ions carbonates à 750°C a pu ainsi être proposé, pour la première fois. La série La2O3-La2O2CO3-LaOHCO3 semble être un ensemble " évolutif " prometteur permettant le développement futur d'un capteur, sensible soit à la vapeur d'eau à basse température, soit à CO vers 200°C, soit à CO2 vers 500°C, soit enfin à CH4 à des températures élevées (T> 425°C).
|
193 |
Electrospinning and characterization of self-assembled inclusion complexiesLiu, Yang 08 1900 (has links)
L’électrofilage est une technique permettant de fabriquer des fibres polymériques dont le diamètre varie entre quelques nanomètres et quelques microns. Ces fibres ont donc un rapport surface/volume très élevé. Les fibres électrofilées pourraient trouver des applications dans le relargage de médicaments et le génie tissulaire, comme membranes et capteurs chimiques, ou dans les nanocomposites et dispositifs électroniques. L’électrofilage était initialement utilisé pour préparer des toiles de fibres désordonnées, mais il est maintenant possible d’aligner les fibres par l’usage de collecteurs spéciaux. Cependant, il est important de contrôler non seulement l’alignement macroscopique des fibres mais aussi leur orientation au niveau moléculaire puisque l’orientation influence les propriétés mécaniques, optiques et électriques des polymères. Les complexes moléculaires apparaissent comme une cible de choix pour produire des nanofibres fortement orientées.
Dans les complexes d’inclusion d’urée, les chaînes polymères sont empilées dans des canaux unidimensionnels construits à partir d’un réseau tridimensionnel de molécules d’urée liées par des ponts hydrogène. Ainsi, les chaînes polymère sonts très allongées à l’échelle moléculaire. Des nanofibres du complexe PEO-urée ont été préparées pour la première fois par électrofilage de suspensions et de solutions. Tel qu’attendu, une orientation moléculaire inhabituellement élevée a été observée dans ces fibres. De tels complexes orientés pourraient être utilisés à la fois dans des études fondamentales et dans la préparation de matériaux hiérarchiquement structurés.
La méthode d’électrofilage peut parfois aussi être utilisée pour préparer des matériaux polymériques métastables qui ne peuvent pas être préparés par des méthodes conventionnelles. Ici, l’électrofilage a été utilisé pour préparer des fibres des complexes stables (α) et "métastables" (β) entre le PEO et l’urée. La caractérisation du complexe β, qui était mal connu, révèle un rapport PEO:urée de 12:8 appartenant au système orthorhombique avec a = 1.907 nm, b = 0.862 nm et c = 0.773 nm. Les chaînes de PEO sont orientées selon l’axe de la fibre. Leur conformation est significativement affectée par les ponts hydrogène. Une structure en couches a été suggérée pour la forme β, plutôt que la structure conventionnelle en canaux adoptée par la forme α.
Nos résultats indiquent que le complexe β est thermodynamiquement stable avant sa fonte et peut se transformer en forme α et en PEO liquide par un processus de fonte et recristallisation à 89 ºC. Ceci va dans le sens contraire aux observations faites avec le complexe β obtenu par trempe du complexe α fondu. En effet, le complexe β ainsi obtenu est métastable et contient des cristaux d’urée. Il peut subir une transition de phases cinétique solide-solide pour produire du complexe α dans une vaste gamme de températures. Cette transition est induite par un changement de conformation du PEO et par la formation de ponts hydrogène intermoléculaires entre l’urée et le PEO. Le diagramme de phases du système PEO-urée a été tracé sur toute la gamme de compositions, ce qui a permis d’interpréter la formation de plusieurs mélanges qui ne sont pas à l’équilibre mais qui sont été observés expérimentalement.
La structure et le diagramme de phases du complexe PEO-thiourée, qui est aussi un complexe très mal connu, ont été étudiés en détail. Un rapport molaire PEO :thiourée de 3:2 a été déduit pour le complexe, et une cellule monoclinique avec a = 0.915 nm, b = 1.888 nm, c = 0.825 nm et β = 92.35º a été déterminée. Comme pour le complexe PEO-urée de forme β, une structure en couches a été suggérée pour le complexe PEO-thiourée, dans laquelle les molécules de thiourée seraient disposées en rubans intercalés entre deux couches de PEO. Cette structure en couches pourrait expliquer la température de fusion beaucoup plus faible des complexes PEO-thiourée (110 ºC) et PEO-urée de forme β (89 ºC) en comparaison aux structures en canaux du complexe PEO-urée de forme α (143 ºC). / Electrospinning is a technique that allows production of polymeric fibers with diameters ranging from nanometers to a few microns, and thus with an inherent high surface-to-volume ratio. Electrospun fibers are finding potential applications in drug delivery and tissue engineering, as membranes and chemical sensors, and in nanocomposites and electronic devices. Electrospinning was initially used to prepare disordered, non-woven mats, but it is now possible to produce highly aligned fibers by using different target collectors. However, it is of great interest to not only control the macroscopic alignment of the fibers but also their orientation at the molecular level since it influences the mechanical, optical and electrical properties of polymers. Molecular complexes were targeted as a means of increasing molecular orientation in electrospun fibers.
In the host-guest urea inclusion complexes (ICs), polymer chains are packed in one-dimensional channels constructed from an essentially infinite three-dimensional network of hydrogen-bonded urea molecules. The polymer chains are thus highly extended at the molecular scale. PEO-urea complex nanofibers have been prepared for the first time by electrospinning of suspension and solutions. As predicted, an unusually large molecular orientation in the fibers was achieved. Such highly ordered IC fibers could find use both for fundamental studies of the inclusion complexes and for the preparation of hierarchically structured materials.
Electrospinning can also sometimes be used to prepare metastable polymeric materials that cannot be prepared by the conventional methods. Here, solution electrospinning was used to prepare fibers of both the stable (α) and "metastable" (β) complexes between PEO and urea. Detailed characterization of the ill-studied β complex reveals that it possesses a 12:8 PEO:urea stoichiometry and belongs to the orthorhombic system with a = 1.907 nm, b = 0.862 nm, and c = 0.773 nm. The PEO chains are oriented along the fiber axis and present a conformation significantly affected by strong hydrogen bonding with urea as compared to the pure polymer and the stable α complex. A layered structure, rather than the conventional channel structure, is suggested.
In contrast with previous suggestions based on melt-quenched PEO-urea α complex, our results further indicate that the β complex is thermodynamically stable before melting and can phase-transfer to the α complex and liquid PEO through a thermodynamic melt-recrystallization process at 89 ºC. In contrast, the β complex obtained by melt-quenching the α complex is mixed with urea crystal and is metastable. It can experience a kinetic solid-solid phase transition process to produce α complex within a large temperature range. This transition is induced by a PEO conformation change and by the formation of intermolecular hydrogen bonds between urea and PEO. The phase diagram of the PEO/urea system was drawn over the complete composition range, which allowed interpreting the formation of various out-of-equilibrium mixtures observed experimentally.
The structure and phase diagram of the PEO/thiourea complex, another poorly understood system, was also studied in detail. An EO:thiourea molar ratio of 3:2 was deduced for the complex, and a monoclinic unit cell with a = 0.915 nm, b = 1.888 nm, c = 0.825 nm and β = 92.35º was determined. Just as for the PEO-urea β complex, a layered structure was suggested for the PEO-thiourea complex, in which the thiourea molecules would be arranged into a ribbon-like structure intercalated between two PEO layers. This layered structure could explain the much lower melting temperature of the PEO-thiourea (110 ºC) and PEO-urea β complexes (89 ºC) as compared to the well known channel-structured PEO-urea α complex (143 ºC).
|
194 |
Mise en place et application d'un spectromètre de dichroïsme linéaire infrarouge avec modulation de la polarisation pour l'étude de l'orientation des mélanges polymèresMauran, Damien January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
195 |
Polymères sous rayonnements ionisants : étude des transferts d'énergie vers les défauts d'irradiationVentura, Aude 13 December 2013 (has links) (PDF)
Les défauts créés dans les polymères soumis aux rayonnements ionisants, en atmosphère inerte, suivent pratiquement tous la même évolution en fonction de la dose. Lorsque la dose augmente, leur concentration augmente puis se stabilise. L'hypothèse retenue pour expliquer ce comportement est la mise en place de transferts d'énergie vers les défauts macromoléculaires créés aux faibles doses. Ceux-ci agissent comme des pièges à énergie et conduisent donc à la radio-stabilisation du polymère. Au cours de cette thèse, nous nous sommes attachés à la quantification de l'apport de l'insaturation trans-vinylène dans le comportement sous rayonnements ionisants du polyéthylène. Avec le dihydrogène, ce groupement compte parmi les défauts majoritaires créés dans ce polymère. Du fait de la variété des défauts et de la simultanéité de leur création, nous avons choisi une méthodologie nouvelle consistant à insérer par voie de synthèse, de manière spécifique et à différentes concentrations, des insaturations de type trans-vinylène, dans les chaînes de polyéthylène. Les polymères résultants ont été irradiés, en atmosphère inerte, avec des rayonnements de faibles TEL (gamma, bêta) et de forts TEL (ions lourds). Tant les défauts macromoléculaires que l'émission de dihydrogène ont été quantifiés. Il apparaît, sur la base des résultats expérimentaux, que l'apport des groupements trans-vinylènes est prédominant dans la radio-stabilisation du polyéthylène en atmosphère inerte.
|
196 |
Propriétés optiques dans l'infrarouge des nanotubes de carbone et du graphèneLapointe, François 03 1900 (has links)
Les nanotubes de carbone et le graphène sont des nanostructures de carbone hybridé en sp2 dont les propriétés électriques et optiques soulèvent un intérêt considérable pour la conception d’une nouvelle génération de dispositifs électroniques et de matériaux actifs optiquement. Or, de nombreux défis demeurent avant leur mise en œuvre dans des procédés industriels à grande échelle. La chimie des matériaux, et spécialement la fonctionnalisation covalente, est une avenue privilégiée afin de résoudre les difficultés reliées à la mise en œuvre de ces nanostructures. La fonctionnalisation covalente a néanmoins pour effet de perturber la structure cristalline des nanostructures de carbone sp2 et, par conséquent, d’affecter non seulement lesdites propriétés électriques, mais aussi les propriétés optiques en émanant. Il est donc primordial de caractériser les effets des défauts et du désordre dans le but d’en comprendre les conséquences, mais aussi potentiellement d’en exploiter les retombées.
Cette thèse traite des propriétés optiques dans l’infrarouge des nanotubes de carbone et du graphène, avec pour but de comprendre et d’expliquer les mécanismes fondamentaux à l’origine de la réponse optique dans l’infrarouge des nanostructures de carbone sp2. Soumise à des règles de sélection strictes, la spectroscopie infrarouge permet de mesurer la conductivité en courant alternatif à haute fréquence des matériaux, dans une gamme d’énergie correspondant aux vibrations moléculaires, aux modes de phonons et aux excitations électroniques de faible énergie. Notre méthode expérimentale consiste donc à explorer un espace de paramètres défini par les trois axes que sont i. la dimensionnalité du matériau, ii. le potentiel chimique et iii. le niveau de désordre, ce qui nous permet de dégager les diverses contributions aux propriétés optiques dans l’infrarouge des nanostructures de carbone sp2.
Dans un premier temps, nous nous intéressons à la spectroscopie infrarouge des nanotubes de carbone monoparois sous l’effet tout d’abord du dopage et ensuite du niveau de désordre. Premièrement, nous amendons l’origine couramment acceptée du spectre vibrationnel des nanotubes de carbone monoparois. Par des expériences de dopage chimique contrôlé, nous démontrons en effet que les anomalies dans lespectre apparaissent grâce à des interactions électron-phonon. Le modèle de la résonance de Fano procure une explication phénoménologique aux observations. Ensuite, nous établissons l’existence d’états localisés induits par la fonctionnalisation covalente, ce qui se traduit optiquement par l’apparition d’une bande de résonance de polaritons plasmons de surface (nanoantenne) participant au pic de conductivité dans le térahertz. Le dosage du désordre dans des films de nanotubes de carbone permet d’observer l’évolution de la résonance des nanoantennes. Nous concluons donc à une segmentation effective des nanotubes par les greffons. Enfin, nous montrons que le désordre active des modes de phonons normalement interdits par les règles de sélection de la spectroscopie infrarouge. Les collisions élastiques sur les défauts donnent ainsi accès à des modes ayant des vecteurs d’onde non nuls.
Dans une deuxième partie, nous focalisons sur les propriétés du graphène. Tout d’abord, nous démontrons une méthode d’électrogreffage qui permet de fonctionnaliser rapidement et à haute densité le graphène sans égard au substrat. Par la suite, nous utilisons l’électrogreffage pour faire la preuve que le désordre active aussi des anomalies dépendantes du potentiel chimique dans le spectre vibrationnel du graphène monocouche, des attributs absents du spectre d’un échantillon non fonctionnalisé. Afin d’expliquer le phénomène, nous présentons une théorie basée sur l’interaction de transitions optiques intrabandes, de modes de phonons et de collisions élastiques. Nous terminons par l’étude du spectre infrarouge du graphène comportant des îlots de bicouches, pour lequel nous proposons de revoir la nature du mécanisme de couplage à l’œuvre à la lumière de nos découvertes concernant le graphène monocouche. / Carbon nanotubes and graphene are sp2 hybridized carbon nanostructures which electrical and optical properties raise considerable interest for the design of a new generation of electronic devices and optically active materials. However, many challenges remain before their implementation in industrial processes on a large scale. Materials chemistry, especially covalent functionalization, is a privileged avenue to resolve the difficulties related to the processing of these nanostructures. Covalent functionalization, however, disrupts the sp2 carbon nanostructures’ crystalline structure, and pertubs not only said electrical properties, but also the deriving optical properties. It is therefore essential to characterize the effects of defects and disorder in order to understand their consequences, but also to potentially exploit the benefits.
This thesis deals with the optical properties in the infrared of carbon nanotubes and graphene, with the aim to understand and explain the fundamental mechanisms at the origin of the optical response in the infrared of sp2 carbon nanostructures. Subject to strict selection rules, infrared spectroscopy measures the high frequency AC conductivity of materials in an energy range corresponding to molecular vibrations, phonon modes and low energy electronic excitations. Our experimental method is therefore to explore a parameter space defined by the three axes that are i. the dimensionality of the material, ii. the chemical potential, and iii. the disorder level, which allows us to identify the various contributions to optical properties in the infrared of sp2 carbon nanostructures.
At first, we focus on the infrared spectroscopy of single-walled carbon nanotubes as a function of doping and disorder level. We start by amending the commonly accepted origin of single-walled carbon nanotubes vibrational spectra. Using controlled chemical doping experiments, we show that the anomalies in the carbon nanotube spectra appear through electron-phonon interactions. The Fano resonance model provides a phenomenological explanation for the observations. Then, we establish the existence of localized states induced by covalent functionalization, which appear as a surface plasmon polariton resonance (nanoantenna) contributing to the terahertz conductivity peak. Control of the disorder level in carbon nanotube films allows us to observe the evolution of the nanoantenna resonance. We therefore conclude to an effective segmentation of the nanotubes by the grafts. Finally, we show that disorder activates phonon modes that are usually forbidden by infrared spectroscopy’s selection rules. Disorder-induced infrared activity originates from elastic collisions on defects that give access to phonon modes with non-zero wave vectors.
In a second part, we focus on the properties of graphene. First, we demonstrate an electrografting method to rapidly functionalize graphene with high-density, regardless of the substrate. Subsequently, we use electrografting to show that disorder activates chemical potential dependent anomalies in the vibrational spectra of single-layer graphene. These anomalies are absent in the spectra of pristine samples. In order to explain this phenomenon, we present a theory based on the interaction of intraband optical transitions, phonon modes and elastic collisions. We conclude by studying the infrared spectra of graphene with bilayer islands, for which we propose to review the nature of the coupling mechanism in the light of our findings on single-layer graphene.
|
197 |
Formation et comportement de nanoparticules dans un plasma: Instabilités dans les plasmas poudreux.Tawidian, Hagop 24 October 2013 (has links) (PDF)
L'objectif de cette thèse est l'étude de la formation de nanoparticules carbonées dans un plasma basse pression. Les poussières sont créées par pulvérisation d'une couche de polymère deposée sur l' électrode d'une décharge radio-fréquence à couplage capacitif. La présence des poudres perturbe et modifie les propriétés du plasma. La croissance des poudres peut notamment déclencher des instabilités basse fréquence qui évoluent avec la taille et la densité des poudres. Au centre du plasma, une région sans poudre, appelée void, est souvent observée. Cette région se caractérise en particulier par une forte luminosité. Différents diagnostics (mesures électriques, imagerie video rapide, Fluorescence Induite par Laser) sont utilisés afin d'analyser ces différents comportements résultant des interactions entre le plasma et les poussières. L'analyse approfondie des instabilités a permis de mettre en évidence plusieurs régimes et d'extraire leurs principales caractéristiques comme leur durée et l' évolution de leurs fréquences. Ces instabilités se traduisent par la formation de petites "boules" de plasma qui se déplacent et interagissent au sein de celui-ci. Des phénomènes particulièrement surprenants de fusion et de division de ces boules ont été mis en évidence. Concernant le void, nos travaux ont con firmé la forte excitation présente dans cette zone. Dans la dernière partie de la thèse, la dissociation de l'aluminium triisopropoxide (ATI) est étudiée dans un plasma à l'aide de la Spectroscopie Infrarouge à Transformée de Fourier. Ce diagnostic nous a permis de mettre en évidence l' évolution de la densité d'ATI en fonction des paramètres de la décharge. Nous avons également quantifié les différents composants hydrocarbonés formés par polymérisation.
|
198 |
Synthèse et caractérisation de nouveaux phosphates utilisés comme matériaux d’électrode positive pour batteries au lithium / Synthesis and characterization of new phosphates used as positive electrode materials for lithium batteriesMarx, Nicolas 17 December 2010 (has links)
Ce travail porte sur la synthèse et la caractérisation de nouveaux matériaux d’électrodes positives pour batteries au lithium. Nos recherches se sont principalement orientées vers les matériaux de type phosphates de métaux de transition, et notamment vers la famille des tavorites de composition (Li,H)FePO4(OH), qui présente une structure tridimensionnelle comportant plusieurs types de tunnels propices à l’insertion d’ions lithium. La structure du matériau LiFePO4(OH) a ainsi été parfaitement résolue, de même que celle du matériau FePO4.H2O, qui est un nouveau phosphate de fer (III) découvert au cours de ces travaux. Ces deux matériaux, ainsi que ceux obtenus par traitement thermique de la phase FePO4.H2O, ont été caractérisés à l’aide de différentes techniques d’analyse physico-chimiques. Leur comportement électrochimique vis-à-vis de l’intercalation / désintercalation du lithium a été étudié, ainsi que les mécanismes redox et structuraux associés mis en jeu. / This work deals with the synthesis and characterization of new positive electrode materials for lithium batteries. Our researches were mainly focused on phosphates of transition metals, and especially on the tavorite-type materials of composition (H,Li)FePO4(OH). Their structure is characterized by a three-dimensional network with different types of tunnels, which can host inserted lithium ions. In this context, LiFePO4(OH) structure was perfectly solved, as well as that of FePO4.H2O, which is a new iron (III) phosphate discovered during this work. These two materials, together with those obtained by heat-treatment of FePO4.H2O, were characterized using different analytical techniques. Their electrochemical behavior toward intercalation / deintercalation of lithium was also studied, as well as the structural and redox processes involved.
|
199 |
Étude fondamentale du traitement du bois dans les plasmas N2-O2Prégent, Julien 09 1900 (has links)
No description available.
|
200 |
Effets des changements climatiques sur la dynamique de décomposition microbienne du carbone organique du sol en prairie subalpine calcaire / Effect of climate changes on microbial organic carbon decomposition dynamic in subalpine calcareous grasslandPuissant, Jérémy 21 September 2015 (has links)
Les sols de montagne constituent un réservoir majeur de carbone stocké sous forme de matière organique (carbone organique du sol, COS), potentiellement hautement vulnérable aux changements des conditions climatiques. Afin de comprendre les répercussions des changements des conditions climatiques sur la dynamique du COS des sols de montagne, cette thèse s'appuie sur une expérimentation de transplantation altitudinale de monolithes de sol de prairie subalpine calcaire, mise en place dans le Jura Suisse en 2009. Cette expérimentation permet de simuler deux scénarios réalistes de changements climatiques attendus au cours du 21éme siècle, visant à réchauffer et assécher le climat (+2°C et +4°C ; -20% et -40% de précipitations).La démarche conceptuelle de cette thèse a été d'étudier les effets des changements des conditions climatiques (variations saisonnières et manipulation climatique) au bout de quatre années d'expérimentation sur (i) la dynamique des communautés microbiennes et de leur activité enzymatique de décomposition du COS, (ii) la dynamique de différents pools de COS qui constituent la ressource énergétique des micro-organismes décomposeurs, (iii) les interactions s'établissant entre les communautés microbiennes et leurs ressources énergétiques et (iv) les stocks de COS du sol.Nos résultats montrent une très forte dynamique saisonnière du processus de décomposition microbienne se traduisant par de fortes activités enzymatiques de décomposition, une biomasse microbienne plus importante et une structure des communautés microbienne différente lors de la saison hivernale par rapport à la saison estivale. Ces résultats sont en lien avec la dynamique observée des pools les plus labiles du COS (C organique extractible à l'eau et C organique particulaire libre), et des modèles d'équations structurelles montrent que les conditions climatiques (variations saisonnières et manipulation climatique) modifient les interactions s'établissant entre les communautés microbiennes et leurs ressources pour contrôler la décomposition enzymatique du COS.Enfin, ce travail de thèse montre une forte diminution des concentrations en COS sous l'effet de la manipulation climatique, qui ne peut être expliquée par une décomposition microbienne accrue du COS. Au contraire, nos résultats suggèrent que la diminution de la concentration en COS pourrait être due à l'accélération des processus pédologiques naturels sous les scénarios de changement climatique au sein de ces sols calcaires de prairies subalpines, avec une décarbonatation accrue favorisant la lixiviation du carbone organique dissous et le lessivage du pool de COS associé aux argiles. Ces résultats inédits offrent de nouvelles perspectives de recherche sur les effets des changements climatiques sur l'évolution des stocks de COS. / Mountain soils stocks huge quantities of carbon as soil organic matter (SOM) which may be highly vulnerable to climate change and thus alter the atmospheric greenhouse gases concentration at a decadal timescale. To understand the effect of climate conditions on the dynamics of mountain soil organic carbon (SOC), a climate change experiment was set up in October 2009 in Swiss Jura subalpine grassland soils. The climate change experiment (soil transplantation) simulated two realistic climate change scenarios, with increased air temperatures ranging between 2 °C and 4 °C and decreased precipitation ranging between 20% and 40%. These changes reflect current predictions of climate change for the 21th century in temperate mountain regions.We studied the effect of climate conditions (climate manipulation and seasonal changes) after four years of climate experiment on (i) the dynamic of microbial decomposition, microbial abundance and community structure, (ii) the dynamic soil organic matter pools with contrasted turnover rate and representing the energetic resource of microbial communities, (iii) the interactions between microbial communities and soil organic matter pools and (iv) the soil organic carbon stocks.This work shows a strong seasonal dynamics of microbial decomposition with higher enzymatic activities, higher microbial abundance and shift of microbial community structure in winter than in summer. These results were linked to the seasonal organic matter labile pools dynamics. Moreover structural equation modeling shows that climate manipulation differently influences the drivers of SOC enzymatic decomposition in summer and winter.Finally, this work shows a strong decrease of soil organic carbon concentration under the climate change manipulation which cannot be explained by an increase of microbial activities. In contrast, our results suggest that the observed climate-induced decrease in bulk soil organic C content was due a SOC decrease in the most biogeochemically stable SOM fraction associated with a decrease in clay content and a decrease of soil calcareous concentration. Thus, our results hint more so towards an effect of SOM leaching (Gavazov, 2013) to explain the climate effect on SOC content than an effect of microbial and/or plant activities.
|
Page generated in 0.0689 seconds