Spelling suggestions: "subject:"apherical eometry"" "subject:"apherical ceometry""
11 |
Geometrias não-euclidianas na escola : uma proposta de ensino através da geometria dinâmicaRibeiro, Ricardo Silva January 2013 (has links)
Esta dissertação traz ideias para a inserção de novos conteúdos na matemática escolar. Ela trata da exploração de geometrias não-euclidianas, através de dois ambientes de geometria dinâmica, o "Spherical Easel” e o "Disco de Poincaré". O primeiro é um software livre e o segundo foi desenvolvido utilizando-se o recurso de macro-construção do GeoGebra. Na concepção das atividades tratamos as idéias que correspondem ao mundo não-euclidiano fazendo comparações com aquelas que fazem parte da geometria euclidiana e para cada atividade há um comentário que explica a sua intenção de aprendizagem. É a partir de considerações teóricas sobre a natureza da geometria e sua evolução histórica, bem como sobre o processo de aprendizagem da geometria, que é feita a apresentação da proposta. / This dissertation brings ideas to the inclusion of new contents in school mathematics. They are related to the exploitation of non-Euclidean geometries through two dynamic geometry environments, the "Spherical Easel" and the "Poincaré Disk". The first one is a free software and the second one was developed using the GeoGebra macro-construction. In the design of the activities the approach of ideas that correspond to non-euclidian worlds was made through comparison with the euclidian world and for each activity there is a comment that explain its learning objective. The proposal is supported by theoretical considerations about the nature of geometry and its historical evolution, as well as about the geometry learning process.
|
12 |
Geometrias não-euclidianas na escola : uma proposta de ensino através da geometria dinâmicaRibeiro, Ricardo Silva January 2013 (has links)
Esta dissertação traz ideias para a inserção de novos conteúdos na matemática escolar. Ela trata da exploração de geometrias não-euclidianas, através de dois ambientes de geometria dinâmica, o "Spherical Easel” e o "Disco de Poincaré". O primeiro é um software livre e o segundo foi desenvolvido utilizando-se o recurso de macro-construção do GeoGebra. Na concepção das atividades tratamos as idéias que correspondem ao mundo não-euclidiano fazendo comparações com aquelas que fazem parte da geometria euclidiana e para cada atividade há um comentário que explica a sua intenção de aprendizagem. É a partir de considerações teóricas sobre a natureza da geometria e sua evolução histórica, bem como sobre o processo de aprendizagem da geometria, que é feita a apresentação da proposta. / This dissertation brings ideas to the inclusion of new contents in school mathematics. They are related to the exploitation of non-Euclidean geometries through two dynamic geometry environments, the "Spherical Easel" and the "Poincaré Disk". The first one is a free software and the second one was developed using the GeoGebra macro-construction. In the design of the activities the approach of ideas that correspond to non-euclidian worlds was made through comparison with the euclidian world and for each activity there is a comment that explain its learning objective. The proposal is supported by theoretical considerations about the nature of geometry and its historical evolution, as well as about the geometry learning process.
|
13 |
Geometria esférica: uma conexão com a geografiaPrestes, Irene da Conceição Rodrigues 10 November 2006 (has links)
Made available in DSpace on 2016-04-27T16:57:49Z (GMT). No. of bitstreams: 1
EDM - Irene C R Prestes.pdf: 5181924 bytes, checksum: e686275b6675ba4638c048be4d5f00a3 (MD5)
Previous issue date: 2006-11-10 / Secretaria da Educação do Estado de São Paulo / This work intends to help the teaching-learning process of geometry, mainly the sphere geometry, in order to help the implementation of the purposes that has as a goal the interaction of Math and Geography. It tried to answer the question of the research: Will the study of the contents of the Sphere Geometry help the comprehension of the Earth geometry? In order to clear this up it was done an experimental study, starting with a teaching sequence which could investigate possible relations made by the pupils when they needed i to solve situations involving the notions of the Sphere Geometry. It was used as a research methodology the ¨Teaching Engeneering¨ and the theoric reference was based on the ideas od Vergnaud s and Vygotsky s theories. The results of the experiments made with the students during the sequence development point to the importance of a work which integrates more than one subject matter / Este trabalho pretende contribuir com o processo de ensino e aprendizagem da Geometria da Esfera, procurando subsidiar a implementação de propostas que visam a interação entre Matemática e Geografia. Procurou-se responder à questão de Pesquisa: Uma introdução à Geometria Esférica pode favorecer o estudo da Geografia do Globo Terrestre e em particular o estudo de mapas? . Para auxiliar no delineamento desta proposta realizou-se um estudo experimental, partindo de uma seqüência de ensino que teve como intuito investigar as possíveis relações que os alunos estabelecem quando solicitados a resolver situações envolvendo noções de geometria esférica. Para tanto foi utilizada como metodologia de pesquisa a Engenharia Didática e o referencial teórico foi baseado na formação de conceitos das teorias de Vergnaud e Vygotsky. As produções e interações dos alunos, durante o desenvolvimento da seqüência de ensino, apontam que um trabalho integrando conteúdos de Geometria Esférica contribui para o processo de compreensão de conteúdos específicos de geografia, em particular do estudo dos mapas
|
14 |
As faces dos sólidos platônicos na superfície esférica: uma proposta para o ensino-aprendizagem de noções básicas de Geometria EsféricaMarqueze, João Pedro 28 September 2006 (has links)
Made available in DSpace on 2016-04-27T16:57:54Z (GMT). No. of bitstreams: 1
dissertacao_joao_pedro_marqueze.pdf: 1807513 bytes, checksum: e7a65d08873745adac848a0c57e5fd88 (MD5)
Previous issue date: 2006-09-28 / Secretaria da Educação do Estado de São Paulo / The aim of this study is to present a sequence of problem solving activities through a qualitative approach whose aim is to study how this sequence can allow high school students to learn basic concepts of Spherical Geometry while reviewing Plane Geometry. That is why we are trying to respond to the following basic question: What contributions a sequence of activities that has as a proposal the tessellation of the phases of the platonic solids on superficial sphere can allow for the teaching and learning of basic notions of Spherical Geometry? We appeal to the passion of the Brazilian people, soccer, in order to contextualize the topic in an ordinary way for the learners. In this ordinary example, not only a soccer ball is included, but also a tennis ball, volleyball, etc. The use of tangible materials such as polystyrene spheres, flexible rulers, colored pens, compasses, strings, pins and other materials that are easy to find, in addition to the traditional pen and paper, can all be used by students in learning about the phases of platonic solids, basis for understanding this task, to tessellate a soccer ball on a spherical surface. We formulate the hypothesis that the utilization of these materials and the departure from traditional methods that have been used will stimulate the interest of the students and create more understanding not only of Plane Geometry, but also Spherical Geometry as in the example above. We have compiled in this study a theoretical reference that includes socioconstructivism, which we believe created more interaction, and therefore made the teaching and learning environment more effective. We ended, in the end of this research, exciting indications that it is possible the teaching- learning of the Spherical Geometry, as it was proposed / O objetivo desta pesquisa é apresentar uma seqüência de atividades, por meio de resolução de problemas, numa abordagem qualitativa, visando a investigar como esta seqüência pode contribuir para que alunos do ensino médio apreendam conceitos básicos da Geometria Esférica enquanto resgatam conceitos da Geometria Plana. Para tanto procuramos responder a seguinte pergunta norteadora: Que contribuições uma seqüência de atividades que tem como proposta a tesselação das faces dos sólidos platônicos na superfície esférica pode proporcionar para o ensino-aprendizagem de Geometria Esférica? Apelamos para a paixão do povo brasileiro, o futebol, para contextualizar o tema no cotidiano dos aprendizes. Neste cotidiano não só a bola de futebol está presente, mas também, a bola de tênis, de vôlei, etc. O uso de materiais concretos como: esferas de isopor, régua flexível, canetas coloridas, compasso, barbantes, alfinetes e outros materiais de fácil acesso, além dos tradicionais lápis e papel, levou o aluno a representar, inspirado nas faces dos sólidos platônicos, base de compreensão para esta tarefa, a bola de futebol em uma superfície esférica. Acreditamos que a utilização destes materiais e a forma diferente da tradicional como é tratado o tema despertam no aluno o interesse para a compreensão não só da Geometria Plana, mas sim de outras Geometrias, neste caso, a Geometria Esférica. Compilamos neste estudo um referencial teórico à luz do sócio-construtivismo, que acreditamos proporciona um trabalho de interação, dinamizando, assim, o ambiente de ensino-aprendizagem. Concluímos, no final desta pesquisa, indícios animadores de que é possível o ensino-aprendizagem da Geometria Esférica, como foi proposto
|
15 |
A característica de EulerJustino, Gildeci José 24 September 2013 (has links)
Submitted by Clebson Anjos (clebson.leandro54@gmail.com) on 2015-05-18T18:12:57Z
No. of bitstreams: 1
arquivototal.pdf: 13930019 bytes, checksum: d5e52fb67904848f89fafaf5ec93c06d (MD5) / Approved for entry into archive by Clebson Anjos (clebson.leandro54@gmail.com) on 2015-05-18T18:15:19Z (GMT) No. of bitstreams: 1
arquivototal.pdf: 13930019 bytes, checksum: d5e52fb67904848f89fafaf5ec93c06d (MD5) / Made available in DSpace on 2015-05-18T18:15:19Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 13930019 bytes, checksum: d5e52fb67904848f89fafaf5ec93c06d (MD5)
Previous issue date: 2013-09-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This dissertation is focused on the Euler's theorem for polyhedra homeomorphic
to the sphere. Present statements made by Cauchy, Poincaré and Legendre. As
a consequence we show that there are only ve regular convex polyhedra, called
polyhedra Plato. / Esta dissertação tem como tema central o Teorema de Euler para poliedros homeomorfos
à esfera. Apresentamos demonstrações feitas por Cauchy, Poincaré e
Legendre. Como consequência mostramos a existência de apenas cinco poliedros
convexos regulares, os chamados poliedros de Platão.
|
16 |
O globo terrestre e a esfera celeste : uma abordagem interdisciplinar de matemática, geografia e astronomiaUSUI, Tetsuo 25 August 2014 (has links)
Submitted by (lucia.rodrigues@ufrpe.br) on 2017-03-29T14:39:03Z
No. of bitstreams: 1
Tetsuo Usui.pdf: 2577747 bytes, checksum: 9114b8620e50bf459a5b0f41ed172e08 (MD5) / Made available in DSpace on 2017-03-29T14:39:03Z (GMT). No. of bitstreams: 1
Tetsuo Usui.pdf: 2577747 bytes, checksum: 9114b8620e50bf459a5b0f41ed172e08 (MD5)
Previous issue date: 2014-08-25 / This work aims to establish a connection among Mathematics with Geography and Astronomy. In this perspective it aims to encompass an interdisciplinary approach in understanding the geographical concepts of the globe, as well as the concepts inherent in the celestial sphere underlying the theoretical foundations of Euclidean Geometry, in order to present a logical and deductive structure of Geometry and Trigonometry in that sphere. This work complements the existing gap between the subjects of Geography and Mathematics in High School because it gives Mathematical supports to the lines (parallels and meridians) and geographic coordinates. Being therefore useful for undergraduate Mathematics students, the same way that teachers of Mathematics and Geography from High School and Elementary Education. Moreover, it also contemplates the sky watchers who wish to have a look at Astronomy from a point of view of Greek antiquity, since the study of Spherical Trigonometry was totally linked to the celestial study. / O presente trabalho tem como objetivo principal estabelecer uma conexão da Matemática com a Geografia e a Astronomia. Nesta perspectiva visa contemplar uma abordagem interdisciplinar na compreensão dos conceitos geográficos do globo terrestre, assim como, dos conceitos inerentes à esfera celeste acoplados na fundamentação teórica de Geometria Euclidiana, a fim de apresentar uma estrutura lógica e dedutiva da geometria e da trigonometria na esfera. O trabalho complementa a lacuna existente entre as disciplinas de Geografia e Matemática do Ensino Médio, pois fundamenta matematicamente, as linhas (paralelos e meridianos) e coordenadas geográficas. Sendo, portanto, útil para alunos de Graduação de Licenciatura em Matemática, da mesma forma que aos professores de Matemática e Geografia do Ensino Médio e Fundamental. Além disso, também contempla aos observadores do céu que queiram olhar a astronomia de um ponto de vista da antiguidade grega, pois o estudo da trigonometria esférica estava totalmente vinculado ao estudo celestial.
|
17 |
Sur l'aire et le volume en géométrie sphérique et hyperbolique / On area and volume in spherical and hyperbolic geometryFrenkel, Elena 21 September 2018 (has links)
L'objet de ce travail est de prouver des théorèmes de géométrie hyperbolique en utilisant des méthodes développées par Euler, Schubert et Steiner en géométrie sphérique. On donne des analogues hyperboliques de certaines formules trigonométriques en utilisant la méthode des variations et une formule pour l'aire d'un triangle. Euler utilisa cette idée en géométrie sphérique.On résout ensuite le problème de Lexell en géométrie hyperbolique. Cette partie est basée sur un travail en collaboration avec Weixu Su. En utilisant l'analogue hyperbolique des identités de Cagnoli, on prouve deux résultats classiques en géométrie hyperbolique. Ensuite, on donne les solutions aux problèmes de Schubert (en collaboration avec Vincent Alberge) et de Steiner. En suivant les idées de Norbert A'Campo, on donne l'ébauche de la preuve de la formule de Schlafli en utilisant la géométrie intégrale. Cette recherche peut être généralisée partiellement au cas de la dimension 3. / Our aim is to prove sorne theorems in hyperbolic geometry based on the methods of Euler, Schubert and Steiner in spherical geometry. We give the hyperbolic analogues of sorne trigonometrie formulae by method of variations and an a rea formula in terms of sides of triangles, both due to Euler in spherical case. We solve Lexell's problem. This is a joint work with Weixu Su. We give a shorter formula than Euler's a rea formula. Using hyperbolic analogues of Cagnoli's identities, we prove two classical results in hyperbolic geometry. Further, we give solutions of Schubert's and Steiner's problems. The study of Schubert's problem is a joint work with Vincent Alberge. Finally, following ideas of Norbert A' Campo, we give the sketch of the proof of Schlafli formula using integral geometry. The mentioned theorems can be generalized to the case of dimension 3 partially by means of the techniques used developed in this the sis.
|
18 |
Geometria esférica para a formação de professores: uma proposta interdisciplinarPataki, Irene 28 November 2003 (has links)
Made available in DSpace on 2016-04-27T16:58:21Z (GMT). No. of bitstreams: 1
irene pataki.pdf: 2012677 bytes, checksum: 06b1249e92ce7aa730b0c645dcdc5ae1 (MD5)
Previous issue date: 2003-11-28 / This work concerns the inservice education of mathematics teachers. One of its aims
is to propose, to teachers, a teaching sequence, with activities that show the
interdisciplinary relationship that exists between spherical geometry and geography,
forming interconnections between these domains, at the same time as contextualising
the content to be considered and motivating learning in a way that articulates the
object of study with reality. Another aim is to provide to the teachers involved
reflections about aspects related to the teaching of spherical geometry. Based on the
Theory of Didactic Situation developed by G. BROUSSEAU (1986), the research
methodology Didactic Engineering of M. ARTIGUE (1988) and the theory of Britt-Mari
BARTH (1993) concerning teacher education, we elaborate a teaching sequence,
composed of a motivating problem-situation along with eight other activities involving
notions of spherical geometry. We investigate the question: How can a teaching
sequence permit the appropriation of a new domain spherical geometry and
encourage educators to re-elaborate their thinking? Our research hypotheses assume
that geometrical knowledge allows different perspectives about our world, that the
apprehension of content can lead to changes in our behaviour as teachers and that
the use of interdisciplinarity and contextualisation will establish connections between
different fields of knowledge. The analysis of the results points to a change in the
attitudes and values of the teachers, which confirms our research hypothesis and
emphasises the importance of the methodology adopted, leading us to believe that
some aspects of the geometry studies were learnt and became institutionalised
knowledge / Este trabalho dirige-se à formação continuada de professores de Matemática. Um
dos seus objetivos é propor, aos professores, uma seqüência didática, com
atividades, que mostre a relação interdisciplinar existente entre a Geometria esférica
e a Geografia, formando interconexões entre esses domínios, ao mesmo tempo em
que contextualiza os conteúdos a serem considerados e possibilita uma
aprendizagem motivadora, que articule o objeto de estudo com a realidade. Outro
objetivo é proporcionar aos professores envolvidos reflexões e questionamentos
sobre alguns aspectos do ensino da Geometria esférica. Fundamentados na Teoria
das Situações Didáticas desenvolvida por G. BROUSSEAU (1986), na Metodologia
de Pesquisa denominada Engenharia Didática de M. ARTIGUE (1988) e na Teoria de
Britt-Mari BARTH (1993) concernente à Formação de Professores, elaboramos uma
seqüência didática, a partir de uma situação-problema motivadora e mais oito
atividades, abordando noções de Geometria esférica. Investigamos a questão: Como
uma seqüência de ensino pode possibilitar a apropriação de um novo domínio a
Geometria esférica e levar o educador a reelaborar seu pensar? Nossas hipóteses
de pesquisa pressupõem que o conhecimento geométrico nos permite ter olhares
diferentes do nosso mundo, que a apreensão dos conteúdos poderá nos conduzir a
mudanças no comportamento como docente e que o uso da interdisciplinaridade e
da contextualização estabelecerá conexões com outros campos do conhecimento. A
análise dos resultados obtidos aponta uma mudança de atitudes e valores, nos
professores, que confirmam nossas hipóteses de pesquisa e enfatizam a importância
da Metodologia adotada, levando-nos a crer que alguns aspectos da Geometria em
estudo foram apreendidos e se tornaram saberes institucionalizados
|
19 |
Μελέτη προτύπων ιατρικής φυσικής μέσω της επίλυσης προβλημάτων μαθηματικής νευροφυσιολογίαςΓιαπαλάκη, Σοφία 13 March 2009 (has links)
Η Ηλεκτροεγκεφαλογραφία (ΗΕΓ) και η Μαγνητοεγκεφαλογραφία (ΜΕΓ) αποτελούν δύο από τις πλέον ευρέως χρησιμοποιούμενες μη επεμβατικές μεθόδους μελέτης της λειτουργίας του ανθρώπινου εγκεφάλου, κατά τις οποίες καταγράφονται εξωτερικά του κρανίου, το ηλεκτρικό και το μαγνητικό πεδίο, που οφείλονται στη διέργεση εγκεφαλικών νευρώνων. Oι κύριες βιοηλεκτρικές πηγές των πεδίων που καταγράφονται σ’ αυτά, είναι ομάδες νευρώνων, που προτυποποιούνται με ένα ηλεκτρικό δίπολο.
Αρχικά επιλέγεται το πλέον ρεαλιστικό πρότυπο των τριών φλοιών. Δηλαδή ως αγωγός θεωρείται ολόκληρο το κρανίο, συμπεριλαμβανομένου του δέρματος, των κρανιακών οστών, του εγκεφαλονωτιαίου υγρού και του εγκεφαλικού ιστού – περιοχές διαφορετικής ηλεκτρικής αγωγιμότητας – και υπολογίζεται το ηλεκτρικό δυναμικό και το μαγνητικό πεδίο, επιλύεται δηλαδή τόσο το ευθύ πρόβλημα ΗΕΓ, όσο και το αντίστοιχο ΜΕΓ, στη σφαιρική και στην ελλειψοειδή γεωμετρία. Το δεύτερο πρότυπο αφορά στην επίλυση του ευθέος προβλήματος ΗΕΓ για την περίπτωση όπου ο εγκεφαλικός ιστός θεωρηθεί ως ένα σφαιρικός αγωγός, στο εσωτερικό του οποίου βρίσκεται είτε ομόκεντρα μια σφαιρική περιοχή υγρού, οπότε χρησιμοποιείται για την επίλυση το σφαιρικό σύστημα συντεταγμένων, είτε έκκεντρα, οπότε χρησιμοποιείται αντίστοιχα το δισφαιρικό. Τέλος, ως αγωγός θεωρείται μια ομογενής σφαίρα, περίπτωση όπου η ακριβής και πλήρης αναλυτική λύση για το πρόβλημα του Βιομαγνητισμού είναι γνωστή. Η συνεισφορά όμως της διατριβής για το πρότυπο αυτό είναι στη δημιουργία χρήσιμων εργαλείων για την μετατροπή των αναπτυγμάτων των λύσεων σε σειρές, στις αντίστοιχες κλειστές μορφές μέσω της άθροισης των σειρών, καθώς και στην εξαγωγή συμπερασμάτων σχετικά με το αντίστροφο πρόβλημα ΗΕΓ, τα οποία προκύπτουν από τη γραφική επεξεργασία της κλειστής λύσης του ηλεκτρικού δυναμικού, όπως αυτή προέκυψε από τη μέθοδο των ειδώλων. / Electroenchephalography (EEG) and Magnetoenchephalophy (MEG) are common non
invansive methods for studying the function of the human brain. Considering that the
data of the generated electric potential (Electroencephalogram) and the magnetic field
(Magnetoenchephalogram), takes place on or in the surrounding the head, the entire head,
including the skin, the bones, the cerebrospinal fluid and the cerebral, regions which are
characterizing by different electric conductivity are including. For this model, the direct
Bioelectromagnetism problem is solved in both spherical and ellipsoidal geometry. Specifically,
the leading terms of the electric potential in the exterior of the conductor and
everywhere in the interior, as well as the leading quadrupolic term of the multipole expansion
of the exterior magnetic induction field in the ellipsoidal geometry, are obtained.
The reduction of the the ellipsoidal results to the corresponding spherical case, which has
brought up useful conclusions concerning these two geometrical models, is also presented.
The direct EEG problem is described, for the case where the entire cerebral is considered
as a spherical conductor, which surrounds a fluid spherical region of different conductivity.
When the two spherical regions are concentric, the problem is solved with the spherical
geometry, but when these are eccentric the problem is solved with the bispherical geometry.
Finally, the exact and complete analytic solution for the forward EEG problem is produced
by the Image Theory for the homogeneous spherical conductor and is elaborated
graphically. In particular, some electric potential distributions are produced on the surface
of the spherical brain, where the equipotential curves are represented by circles. Considering
these distributions, a parametric analysis of the position and the orientation o the
moment dipole is accomplished for the current dipole that has considered in this thesis.
Consequently, when the source is near the surface, the orientation of the moment is directed
vertically to the zero equipotential circle to the increase potential, since the position
vector of the source tends to become vertical to the maximum equipotential curves. The
existence of special position and orientation of the source, for which the contribution in the external magnetic field is zero - and for the spherical case, where the position and the
orientation of the sources are parallel - corresponds to parallel equipotential curves.
|
Page generated in 0.0624 seconds