Spelling suggestions: "subject:"streamflow"" "subject:"dtreamflow""
321 |
Subsídios à operação de reservatórios baseada na previsão de variáveis hidrológicasBravo, Juan Martín January 2010 (has links)
Diversas atividades humanas são fortemente dependentes do clima e da sua variabilidade, especialmente aquelas relacionadas ao uso da água. A operação integrada de reservatórios com múltiplos usos requer uma série de decisões que definem quanta água deve ser alocada, ao longo do tempo para cada um dos usos, e quais os volumes dos reservatórios a serem mantidos. O conhecimento antecipado das condições climáticas resulta de vital importância para os operadores de reservatórios, pois o insumo dos reservatórios é a vazão dos rios, que por sua vez é dependente de condições atmosféricas e hidrológicas em diferentes escalas de tempo e espaço. A pesquisa trata sobre três importantes elementos de subsídio à tomada de decisão na operação de reservatórios baseada na previsão de variáveis hidrológicas: (a) as previsões de vazão de curto prazo; (b) as previsões de precipitação de longo prazo e (c) as medidas de desempenho das previsões. O reservatório de Furnas, localizado na bacia do Rio Grande, em Minas Gerais, foi selecionado como estudo de caso devido, principalmente, à disponibilidade de previsões quantitativas de chuva e pela importância desse reservatório na região analisada. A previsão de curto prazo de vazão com base na precipitação foi estimada com um modelo empírico (rede neural artificial) e a previsão de precipitação foi obtida pelo modelo regional ETA. Uma metodologia de treinamento e validação da rede neural artificial foi desenvolvida utilizando previsões perfeitas de chuva (considerando a chuva observada como previsão) e utilizando o maior número de dados disponíveis, favorecendo a representatividade dos resultados obtidos. A metodologia empírica alcançou os desempenhos obtidos com um modelo hidrológico conceitual, mostrando-se menos sensitiva aos erros na previsão quantitativa de precipitação nessa bacia. Os resultados obtidos mostraram que as previsões de vazão utilizando modelos empíricos e conceituais e incorporando previsões quantitativas de precipitação são melhores que a metodologia utilizada pelo ONS no local de estudo. A redução dos erros de previsão relativos à metodologia empregada pelo ONS foi em torno de 20% quando usadas previsões quantitativas de precipitação definidas pelo modelo regional ETA e superiores a 50% quando usadas previsões perfeitas de precipitação. Embora essas últimas previsões nunca possam ser obtidas na prática, os resultados sugerem o quanto o incremento do desempenho das previsões quantitativas de chuva melhoraria as previsões de vazão. A previsão de precipitação de longo prazo para a bacia analisada foi também estimada com um modelo empírico de redes neurais artificiais e utilizando índices climáticos como variáveis de entrada. Nesse sentido, foram estimadas previsões de precipitação acumulada no período mais chuvoso (DJF) utilizando índices climáticos associados a fenômenos climáticos, como o El Niño - Oscilação Sul e a Oscilação Decadal do Pacífico, e a modos de variabilidade climática, como a Oscilação do Atlântico Norte e o Modo Anular do Hemisfério Sul. Apesar das redes neurais artificiais terem sido aplicadas em diversos problemas relacionados a hidrometeorologia, a aplicação dessas técnicas na previsão de precipitação de longo prazo é ainda rara. Os resultados obtidos nesse trabalho mostraram que consideráveis reduções dos erros da previsão relativos ao uso apenas da média climatológica como previsão podem ser obtidos com a metodologia utilizada. Foram obtidas reduções dos erros de, no mínimo 50%, e chegando até um valor próximo a 75% nos diferentes testes efetuados no estudo de caso. Uma medida de desempenho da previsão foi desenvolvida baseada no uso de tabelas de contingência e levando em conta a utilidade da previsão. Essa medida de desempenho foi calculada com base nos resultados do uso das previsões por um modelo de operação de reservatório, e não apenas na comparação de vazões previstas e observadas. Nos testes realizados durante essa pesquisa, ficou evidente que não existe uma relação unívoca entre qualidade das previsões e utilidade das previsões. No entanto, em função de comportamentos particulares das previsões, tendências foram encontradas, como por exemplo nos modelos cuja previsão apresenta apenas defasagem. Nesses modelos, a utilidade das previsões tende a crescer na medida que a qualidade das mesmas aumenta. Por fim, uma das grandes virtudes da medida de desempenho desenvolvida nesse trabalho foi sua capacidade de distinguir o desempenho de modelos que apresentaram a mesma qualidade. / Several human activities are strongly dependent on climate and its variability, especially those related to water use. The operation of multi-purpose reservoirs systems defines how much water should be allocated and the reservoir storage volumes to be maintained, over time. Knowing in advance the weather conditions helps the decision making process, as the major inputs to reservoirs are the streamflows, which are dependent on atmospheric and hydrological conditions at different time-space scales. This research deals with three important aspects towards the decision making process of multi-purpose reservoir operation based on forecast of hydrological variables: (a) short-term streamflow forecast, (b) long-range precipitation forecast and (c) performance measures. The Furnas reservoir on the Rio Grande basin was selected as the case study, primarily because of the availability of quantitative precipitation forecasts from the Brazilian Center for Weather Prediction and Climate Studies and due to its importance in the Brazilian hydropower generation system. Short-term streamflow forecasts were estimated by an empirical model (artificial neural network – ANN) and incorporating forecast of rainfall. Quantitative precipitation forecasts (QPFs), defined by the ETA regional model, were used as inputs to the ANN models. A methodology for training and validating the ANN models was developed using perfect precipitation forecasts (i.e., using the observed precipitation as if it was a forecast) and considering the largest number of available samples, in order to increase the representativeness of the results. The empirical methodology achieved the performance obtained with a conceptual hydrological model and seemed to be less sensitive to precipitation forecast error relative to the conceptual hydrological model. Although limited to one reservoir, the results obtained show that streamflow forecasting using empirical and conceptual models and incorporating QPFs performs better than the methodology used by ONS. Reduction in the forecast errors relative to the ONS method was about 20% when using QPFs provided by ETA model, and greater than 50% when using the perfect precipitation forecast. Although the latter can never be achieved in practice, these results suggest that improving QPFs would lead to better forecasts of reservoir inflows. Long-range precipitation forecast was also estimated by an empirical model based on artificial neural networks and using climate indices as input variables. The output variable is the summer (DJF) precipitation over the Furnas watershed. It was estimated using climate indices related to climatic phenomena such as El Niño - Southern Oscillation and the Pacific Decadal Oscillation and modes of climate variability, such as the North Atlantic Oscillation and the Southern Annular Mode. Despite of ANN has been applied in several problems of hydrometeorological areas, the application of such technique for long-range precipitation forecast is still rare. The results obtained demonstrate how the methodology for seasonal precipitation forecast based on ANN can be particularly helpful, with the use of available time series of climate indices. Reductions in the forecast errors achieved by using only the climatological mean as forecast were considerable, being at least of 50% and reaching values close to 75% in several tests. A performance measure based on the use of contingency tables was developed taking into account the utility of the forecast. This performance measure was calculated based on the results of the use of the forecasts by a reservoir operation model, and not only by comparing streamflow observed and forecast. The performed tests show that there is no unequivocal relationship between quality and utility of the forecasts. However, when the forecast has a particular behavior, trends were found in the relationship between utility and quality of the forecast, such as models that generate streamflow forecast with lags in comparison to the observed values. In these models, the utility of the forecasts tends to enhance as the quality increases. Finally, the ability to distinguish the performance of forecast models having similar quality was one of the main merits of the performance measure developed in this research.
|
322 |
Previsão de vazão usando estimativas de precipitação por satélite e assimilação de dadosQuiroz Jiménez, Karena January 2017 (has links)
Neste estudo, trata-se de avaliar fontes de precipitação baseadas em estimativas por satélite e técnicas de assimilação de dados para previsão de vazões por meio do modelo hidrológico distribuído MGB-IPH. A insuficiente representatividade espacial dos pluviômetros torna difícil a correta representação dos campos de precipitações. Por outro lado, as estimativas de satélite, embora forneçam uma descrição espacial mais consistente, são potencialmente menos acuradas. Sendo assim, procura-se utilizar métodos que combinem os dados de ambas as fontes para gerar um campo de precipitação mais consistente. Neste trabalho, implementaramse dois modelos de combinação pluviômetro-satélite, CHUVSAT e MERGEHQ, através de uma metodologia de interpolação. Por outro lado, as técnicas de assimilação de dados acoplados aos modelos de previsão hidrológica são também de interesse neste estudo, pois minimizam as incertezas associadas ao processo de calibração de parâmetros, às variáveis de estado e dados de entrada do modelo hidrológico. Para esse propósito, escolheu-se a bacia do rio Tocantins e implementou-se particularmente a técnica de assimilação de dados de tipo sequencial chamado na literatura de filtro de partículas, conjuntamente com o método de filtro Kalman por conjunto e o método de assimilação AsMGB atualmente acoplado ao modelo MGB-IPH. O estudo mostra que a precipitação combinada utilizada como dado de entrada na simulação hidrológica permitiu reproduzir adequadamente os hidrogramas observados para o período de calibração e validação. Já para o caso das vazões resultantes, durante a etapa de previsão, a precipitação combinada mostrou-se com melhor desempenho em termos estatísticos que os métodos sem combinar, sobretudo após 24 horas de antecedência. Finalmente, a técnica de assimilação de dados por filtro de partículas conseguiu absorver os erros da simulação melhorando as medidas de desempenho na etapa de previsão sendo superior ao modelo de previsão sem considerar assimilação. / The objective of this study is to evaluate precipitation sources based on satellite estimates and data assimilation techniques for prediction of flows by means of the distributed hydrological model MGB-IPH. The insufficient spatial availability of rain gauges makes difficult to represent precipitation fields appropriately. In contrast, satellite estimates, although providing a more consistent spatial description, are potentially less accurate. Thus, raingauge satellite merging methods that combine data from both sources to generate a more consistent precipitation field are used herein. For this purpose, two models namely CHUVSAT and MERGEHQ were implemented using an interpolation technique. On the other hand, data assimilation techniques coupled with hydrological forecasting models are also assessed in this study. The assimilation process minimizes the uncertainties associated with the parameter calibration procedure, variable state and hydrological input data. In this manner, the sequential data assimilation technique namely particle filter in conjunction with the Kalman filter method and the assimilation method AsMGB, which is currently coupled to the MGBIPH model, were implemented and applied to the Tocantis basin. The obtained results showed that the combined precipitation used as input data in the hydrological simulation allowed reproducing adequately the observed hydrograms for the periods of calibration and validation. In the case of the resulting flows during the forecast stage, the merging precipitation was shown to perform better in statistical terms than the uncombined methods, especially after 24 hours in advance. Finally, the data assimilation technique by particle filter was able to absorb all simulation errors, improving the performance measures in the forecasting stage, thus being superior to the forecasting model without considering assimilation.
|
323 |
Geração da série histórica de vazão por meio do modelo SMAP: subsídio para o plano de manejo da bacia do Rio Grande de Ubatuba. / Generating streamflow records through the smap model: a contribution for the elaboration of the management plan for the Rio Grande watershed, Ubatuba.Viviane Coelho Buchianeri 13 April 2004 (has links)
A bacia hidrográfica do Rio Grande de Ubatuba (26Km2) encontra-se quase que totalmente recoberta com vegetação nativa da Mata Atlântica, e grande parte está inserida no interior do Parque Estadual da Serra do Mar. O Rio Grande é um manancial estratégico para o município, pois abastece 88% da população, que recebe água tratada de serviço público. Com o propósito de conhecer a potencialidade hídrica do manancial de forma a subsidiar tecnicamente a elaboração do Plano de Manejo para a bacia, o presente estudo foi conduzido para gerar a série histórica de vazão, usando o Modelo SMAP (Soil Moisture Accounting Procedure) e analisar o balanço entre a disponibilidade e a demanda de água. Com apenas quatro anos incompletos de dados fluviométricos e com a série histórica de 67 anos de dados de precipitação, foi possível calibrar os parâmetros e validar o modelo com uma correlação de 0,838 entre as vazões estimada e observada e por último gerar a serie histórica de vazão. Com a série histórica de vazão gerada foi feita a análise temporal do balanço entre a disponibilidade e demanda que permitiram identificar a insuficiência hídrica para atender a demanda para abastecimento público ou para manutenção dos processos ecológicos do manancial, considerando três aspectos: a flutuação da população, a ocorrência de anos hídricos secos e, mesmo nos anos hídricos normais, ocorrência de períodos de meses secos prolongados. Com base na análise conjunta dos resultados, algumas ações consideradas compatíveis para a prevenção de possível escassez de água no futuro foram formuladas, visando proporcionar melhor qualidade de vida à população. / The Rio Grande Watershed of Ubatuba (26km2 ) is almost completely covered with native Atlantic Rainforest vegetation, and a large part is within the bounds of the Serra do Mar State Park. The Rio Grande is a strategic water source for the municipality, supplying 88% of the population demand with treated water via a public service. In order to analyse the water potential of the source and to acquire technical information for the preparation of the Watershed Management Plan, this study was carried generate streamflow historic data, using the SMAP (Soil Moisture Accounting Procedure) model. This, in turn, permitted to analyse the balance between demand and availability of water.With only 4 years of incomplete streamflow data and 67 years of rainfall data, it was possible to calibrate the parameters and validate the model with a correlation of 0.838 between the estimated and observed flows, and finally produce a streamflow history.To produce the streamflow history, a time analysis was carried out with the balance between availability and demand, which allowed the identification of water shortages for public supply, as well as for the maintenance of the stream ecological processes, considering the following three aspects: population fluctuations, the occurrence of drought years and, even in normal years, the occurrence of extended periods of drought.
|
324 |
Subsídios à operação de reservatórios baseada na previsão de variáveis hidrológicasBravo, Juan Martín January 2010 (has links)
Diversas atividades humanas são fortemente dependentes do clima e da sua variabilidade, especialmente aquelas relacionadas ao uso da água. A operação integrada de reservatórios com múltiplos usos requer uma série de decisões que definem quanta água deve ser alocada, ao longo do tempo para cada um dos usos, e quais os volumes dos reservatórios a serem mantidos. O conhecimento antecipado das condições climáticas resulta de vital importância para os operadores de reservatórios, pois o insumo dos reservatórios é a vazão dos rios, que por sua vez é dependente de condições atmosféricas e hidrológicas em diferentes escalas de tempo e espaço. A pesquisa trata sobre três importantes elementos de subsídio à tomada de decisão na operação de reservatórios baseada na previsão de variáveis hidrológicas: (a) as previsões de vazão de curto prazo; (b) as previsões de precipitação de longo prazo e (c) as medidas de desempenho das previsões. O reservatório de Furnas, localizado na bacia do Rio Grande, em Minas Gerais, foi selecionado como estudo de caso devido, principalmente, à disponibilidade de previsões quantitativas de chuva e pela importância desse reservatório na região analisada. A previsão de curto prazo de vazão com base na precipitação foi estimada com um modelo empírico (rede neural artificial) e a previsão de precipitação foi obtida pelo modelo regional ETA. Uma metodologia de treinamento e validação da rede neural artificial foi desenvolvida utilizando previsões perfeitas de chuva (considerando a chuva observada como previsão) e utilizando o maior número de dados disponíveis, favorecendo a representatividade dos resultados obtidos. A metodologia empírica alcançou os desempenhos obtidos com um modelo hidrológico conceitual, mostrando-se menos sensitiva aos erros na previsão quantitativa de precipitação nessa bacia. Os resultados obtidos mostraram que as previsões de vazão utilizando modelos empíricos e conceituais e incorporando previsões quantitativas de precipitação são melhores que a metodologia utilizada pelo ONS no local de estudo. A redução dos erros de previsão relativos à metodologia empregada pelo ONS foi em torno de 20% quando usadas previsões quantitativas de precipitação definidas pelo modelo regional ETA e superiores a 50% quando usadas previsões perfeitas de precipitação. Embora essas últimas previsões nunca possam ser obtidas na prática, os resultados sugerem o quanto o incremento do desempenho das previsões quantitativas de chuva melhoraria as previsões de vazão. A previsão de precipitação de longo prazo para a bacia analisada foi também estimada com um modelo empírico de redes neurais artificiais e utilizando índices climáticos como variáveis de entrada. Nesse sentido, foram estimadas previsões de precipitação acumulada no período mais chuvoso (DJF) utilizando índices climáticos associados a fenômenos climáticos, como o El Niño - Oscilação Sul e a Oscilação Decadal do Pacífico, e a modos de variabilidade climática, como a Oscilação do Atlântico Norte e o Modo Anular do Hemisfério Sul. Apesar das redes neurais artificiais terem sido aplicadas em diversos problemas relacionados a hidrometeorologia, a aplicação dessas técnicas na previsão de precipitação de longo prazo é ainda rara. Os resultados obtidos nesse trabalho mostraram que consideráveis reduções dos erros da previsão relativos ao uso apenas da média climatológica como previsão podem ser obtidos com a metodologia utilizada. Foram obtidas reduções dos erros de, no mínimo 50%, e chegando até um valor próximo a 75% nos diferentes testes efetuados no estudo de caso. Uma medida de desempenho da previsão foi desenvolvida baseada no uso de tabelas de contingência e levando em conta a utilidade da previsão. Essa medida de desempenho foi calculada com base nos resultados do uso das previsões por um modelo de operação de reservatório, e não apenas na comparação de vazões previstas e observadas. Nos testes realizados durante essa pesquisa, ficou evidente que não existe uma relação unívoca entre qualidade das previsões e utilidade das previsões. No entanto, em função de comportamentos particulares das previsões, tendências foram encontradas, como por exemplo nos modelos cuja previsão apresenta apenas defasagem. Nesses modelos, a utilidade das previsões tende a crescer na medida que a qualidade das mesmas aumenta. Por fim, uma das grandes virtudes da medida de desempenho desenvolvida nesse trabalho foi sua capacidade de distinguir o desempenho de modelos que apresentaram a mesma qualidade. / Several human activities are strongly dependent on climate and its variability, especially those related to water use. The operation of multi-purpose reservoirs systems defines how much water should be allocated and the reservoir storage volumes to be maintained, over time. Knowing in advance the weather conditions helps the decision making process, as the major inputs to reservoirs are the streamflows, which are dependent on atmospheric and hydrological conditions at different time-space scales. This research deals with three important aspects towards the decision making process of multi-purpose reservoir operation based on forecast of hydrological variables: (a) short-term streamflow forecast, (b) long-range precipitation forecast and (c) performance measures. The Furnas reservoir on the Rio Grande basin was selected as the case study, primarily because of the availability of quantitative precipitation forecasts from the Brazilian Center for Weather Prediction and Climate Studies and due to its importance in the Brazilian hydropower generation system. Short-term streamflow forecasts were estimated by an empirical model (artificial neural network – ANN) and incorporating forecast of rainfall. Quantitative precipitation forecasts (QPFs), defined by the ETA regional model, were used as inputs to the ANN models. A methodology for training and validating the ANN models was developed using perfect precipitation forecasts (i.e., using the observed precipitation as if it was a forecast) and considering the largest number of available samples, in order to increase the representativeness of the results. The empirical methodology achieved the performance obtained with a conceptual hydrological model and seemed to be less sensitive to precipitation forecast error relative to the conceptual hydrological model. Although limited to one reservoir, the results obtained show that streamflow forecasting using empirical and conceptual models and incorporating QPFs performs better than the methodology used by ONS. Reduction in the forecast errors relative to the ONS method was about 20% when using QPFs provided by ETA model, and greater than 50% when using the perfect precipitation forecast. Although the latter can never be achieved in practice, these results suggest that improving QPFs would lead to better forecasts of reservoir inflows. Long-range precipitation forecast was also estimated by an empirical model based on artificial neural networks and using climate indices as input variables. The output variable is the summer (DJF) precipitation over the Furnas watershed. It was estimated using climate indices related to climatic phenomena such as El Niño - Southern Oscillation and the Pacific Decadal Oscillation and modes of climate variability, such as the North Atlantic Oscillation and the Southern Annular Mode. Despite of ANN has been applied in several problems of hydrometeorological areas, the application of such technique for long-range precipitation forecast is still rare. The results obtained demonstrate how the methodology for seasonal precipitation forecast based on ANN can be particularly helpful, with the use of available time series of climate indices. Reductions in the forecast errors achieved by using only the climatological mean as forecast were considerable, being at least of 50% and reaching values close to 75% in several tests. A performance measure based on the use of contingency tables was developed taking into account the utility of the forecast. This performance measure was calculated based on the results of the use of the forecasts by a reservoir operation model, and not only by comparing streamflow observed and forecast. The performed tests show that there is no unequivocal relationship between quality and utility of the forecasts. However, when the forecast has a particular behavior, trends were found in the relationship between utility and quality of the forecast, such as models that generate streamflow forecast with lags in comparison to the observed values. In these models, the utility of the forecasts tends to enhance as the quality increases. Finally, the ability to distinguish the performance of forecast models having similar quality was one of the main merits of the performance measure developed in this research.
|
325 |
Calibração do modelo hidrossedimentológico SWAT na bacia hidrográfica do córrego Samambaia, Goiânia - GO / Hydrosedimentological SWAT model calibration in the watershed of Fern creekVeiga, Aldrei Marucci 19 August 2014 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-10-31T10:58:58Z
No. of bitstreams: 2
Dissertação - Aldrei Marucci Veiga - 2014.pdf: 5268745 bytes, checksum: 0e3ad5ec1cc47d54396dd6386dfc2034 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-10-31T13:53:40Z (GMT) No. of bitstreams: 2
Dissertação - Aldrei Marucci Veiga - 2014.pdf: 5268745 bytes, checksum: 0e3ad5ec1cc47d54396dd6386dfc2034 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-10-31T13:53:40Z (GMT). No. of bitstreams: 2
Dissertação - Aldrei Marucci Veiga - 2014.pdf: 5268745 bytes, checksum: 0e3ad5ec1cc47d54396dd6386dfc2034 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2014-08-19 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / This research paper focus on the analysis of SWAT model calibration in terms of flow and sediment in Samambaia River Basin, a small watershed (32.78 km2) located at Goiânia, Brazil. Streamflow and suspended sediment daily measurements have been carried out by February to December 2013 and climatic data were obtained form a weather station located inside the basin. Terrain data such as Digital Elevation Model (DEM), soil types, and land use were on the SWAT autocalibration too as well as on SWAT-CUP software, which is a specific too for automatic calibration. Initially, the simulation run in SWAT overestimated values of runoff peak and underestimated minimum discharges. However, the peaks were minimized and minimum discharges were adjusted to the observed flows after sensitivity analysis. By using different optimization schemes (GLUE, PARASOL and SUFI-2) in SWAT-CUP, an automatic calibration analysis has been done, which presented a better fit to the observed values (start with streamflow, than move to sediment). Statistical analysis using the coefficient of Nash-Sutcliff efficiency (COE) resulted in 0.80 and 0.88 for runoff and suspended sediment, respectively, which are considered good fits between simulated and observed values. The CN parameter, which is related to soil type, land use, and infiltration, showed the highest sensitivity in the calibration. After that, the alpha factor of base flow was another which showed higher sensitivity. The higher value obtained for the Manning roughness coefficient allows runoff to be damped. With regard to sediment calibration, parameters of sediment from landscape (USLE_P and USLE_C) as well as parameters of sediment from channel (SPCON and SPEXP) have been used in the calibration, once that they have shown higher sensibility. / O objetivo desta pesquisa é fazer a análise da calibração do modelo SWAT em termos de fluxo e sedimentos na bacia do Córrego Samambaia, uma microbacia (32,78km2), localizada em Goiânia, Brasil. Medições diárias de vazões e sedimentos foram realizadas em Fevereiro a Dezembro de 2013, e os dados climáticos foram obtidos a partir de uma estação meteorológica localizada no interior da bacia. Dados do terreno, tais como Elevação Digital do Terreno (MDT), tipos de solos e usos da terra foram obtidos do Sistema de Informação e Estatística de Goiás (SIEG). Análises foram realizadas na ferramenta autocalibração do SWAT, bem como no software SWAT-CUP, que é uma ferramenta específica para a calibração automática. Inicialmente, a execução da simulação no SWAT superestimou os valores de pico do escoamento e subestimou as vazões mínimas. No entanto, os picos foram minimizados e as vazões mínimas foram ajustadas para os fluxos observados após análise de sensibilidade. Ao utilizar diferentes esquemas de otimização (GLUE, ParaSol e Sufi-2) no SWAT-CUP, uma análise de calibração automática foi feito, que apresentou um melhor ajuste aos valores observados (começando pela vazão a qual altera o sedimento). A análise estatística do coeficiente de eficiência de Nach-Sutcliffe (COE) resultou em 0,80 e 0,88 para o escoamento superficial e sedimentos em suspensão, respectivamente, que são considerados bons ajustes entre os valores simulados e observados. O parâmetro CN, que está relacionado com o tipo de solo, uso da terra e infiltração, apresentou maior sensibilidade na calibração. Depois disso, o fator alfa de fluxo de base foi outra que mostrou maior sensibilidade. Quanto maior for o valor obtido para o coeficiente de rugosidade de Manning permite que o escoamento seja amortecido. No que diz respeito a calibração dos sedimentos, os parâmetros de sedimentos de paisagem (USLE_P e USLE_C), bem como os parâmetros de sedimentos a partir do canal (SPCON e SPEXP) tem sido utilizados na calibração, uma vez que eles mostraram maior sensibilidade.
|
326 |
Máquinas desorganizadas para previsão de séries de vazões / Unorganized machines to seasonal streamflow series forecastingSiqueira, Hugo Valadares, 1983- 24 August 2018 (has links)
Orientadores: Christiano Lyra Filho, Romis Ribeiro de Faissol Attux / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-24T05:06:09Z (GMT). No. of bitstreams: 1
Siqueira_HugoValadares_D.pdf: 10867937 bytes, checksum: 512652380d6dd25b8717bfd5c8f5f0f8 (MD5)
Previous issue date: 2013 / Resumo: Este trabalho explora a possibilidade de aplicação de arquiteturas de redes neurais artificiais - redes neurais de estado de eco (ESN) e máquinas de aprendizado extremo (ELM) - aqui denominadas coletivamente por máquinas desorganizadas (MDs), para a previsão de séries de vazões. A previsão de vazões é uma das etapas fundamentais no planejamento da operação dos sistemas de energia elétrica com predominância hidráulica, como é o caso brasileiro. Os modelos mais comumente utilizados para previsão de vazões pelo Setor Elétrico Brasileiro (SEB) são baseados na metodologia Box & Jenkins, lineares, sobretudo modelos periódicos auto-regressivos (PAR). Todavia, técnicas mais abrangentes, que alcancem melhores desempenhos, vêm sendo investigadas. Destacam-se as redes neurais artificiais, sobretudo arquiteturas do tipo perceptron de múltiplas camadas (MLP), muito conhecidas por serem aproximadores universais com elevada capacidade de aprendizado e mapeamento não-linear, características desejáveis para solução do problema em questão. Por outro lado, as máquinas desorganizadas têm apresentado resultados promissores na previsão de séries temporais. Estes modelos têm um processo de treinamento simples, baseado em encontrar os coeficientes de um combinador linear; em particular, não precisam fazer ajuste dos pesos de sua camada intermediária, ao contrário das redes MLP. Por isso, este trabalho investigou as MDs do tipo ESN e ELM, versões recorrente e não-recorrente, respectivamente, para previsão de vazões médias mensais. Serão avaliadas também três técnicas para retirada da componente sazonal característica destas séries ¿ médias móveis, padronização e diferenças sazonal ¿ além da exploração de técnicas de seleção de variáveis do tipo filtro e wrapper, no intuito de melhorar performance dos modelos preditores. Na maioria dos casos estudados, os resultados obtidos pelas MDs na previsão das séries associadas a importantes usinas hidrelétricas brasileiras - Furnas, Emborcação e Sobradinho - em cenários com horizontes variados, mostraram-se de melhor qualidade do que os obtidos pelo modelo PAR e as redes neurais MLPs / Abstract: This work explores the possibility of application of neural network architectures ¿ echo state networks (ESN) and extreme learning machines (ELM) ¿ collectively referred as unorganized machines (UMs), to seasonal streamflow series forecasting. Streamflow forecasting is one of the key steps in the planning of operation of power systems with hydraulic predominance, as in the Brazilian case. The models most commonly used to streamflow prediction by the Brazilian Electric Sector are based on the Box & Jenkins methodology, with linear and especially periodic autoregressive models. However, more extensive techniques that achieve better performances have been investigated to this task. We highlight artificial neural networks, especially architectures such as multilayer perceptron (MLP), known to be universal approximators with high learning ability skills ability to perform nonlinear mapping, desirable characteristics for the solution of this problem. On the other hand, unorganized machines have shown promising results in time series forecasting. These models have a simple training process, based on finding the coefficients of a linear combiner; they do not require adjustments in the weights of the hidden layer, which are necessary with MLP architecture. Therefore, this study investigated the UMs such as ESN and ELM, recurrent and nonrecurrent versions, respectively, to seasonal streamflow series forecasting. Three techniques to remove the seasonal component of streamflow series will also be evaluated - moving averages, standardization and seasonal differences. In addition, In order to improve the performance of predictive models techniques for variable selection, such as filters and wrappers, will also be explored. In the most cases, the computational results obtained by the UMs in streamflow series forecasting associated to important Brazilian hydroelectric plants - Furnas, Emborcação and Sobradinho - with scenarios including several horizons, presented better performance when compared to forecasting obtained with PAR models and MLPs / Doutorado / Energia Eletrica / Doutor em Engenharia Elétrica
|
327 |
Patterns of water table dynamics and runoff generation in a watershed with preferential flow networksAnderson, Axel Edward 05 1900 (has links)
Our understanding of subsurface flow depends on assumptions of how event characteristics and spatial scale affect the relationships between subsurface water velocity, discharge, water table dynamics, and runoff response. In this thesis, three chapters explore some of these patterns for a hillslope and small watershed in coastal British Columbia. In the first chapter, tracers were applied under natural and steady state conditions to determine the relationship between lateral tracer velocities and various hillslope and event characteristics; such as hillslope subsurface flow, rainfall intensity, water table level, hillslope length, and antecedent condition. The results showed that preferential flow made up a large percentage of the subsurface flow from the gauged hillslope. Flow velocities as measured by tracers were affected by slope length and boundary conditions. The flow velocity was most closely related to the rainfall intensity, and changes in flow velocity were large compared to the changes in the water table. In the second chapter, the preferential flow features that transmitted water during steady state were investigated by staining the soil with a food dye solution and excavating the soil. These data were used to explore the link between the topographical factors (slope and contributing area), the network of preferential features and soil properties. The contributing area appeared to be an indicator of the size of the preferential features and their connectivity. In the final manuscript chapter, water table level and stream discharge measurements were used to determine if areas within a watershed with runoff dominated by preferential flow could be grouped based on the observable physical information such as slope, contributing area, distance to stream, and vegetation. Preferential flow made the water table responses dynamic and thus, distinct zones could not be identified. Models of the water table – runoff were not able to predict the water table response for other sites with similar physical characteristics. Even though there was high variability in the results, the patterns and relationships revealed in this thesis conform to existing conceptual models of hillslope subsurface preferential flow. These patterns and relationships may be useful in developing or validating numerical models. / Forestry, Faculty of / Graduate
|
328 |
Hydroclimatological Modeling Using Data Mining And Chaos TheoryDhanya, C T 08 1900 (has links) (PDF)
The land–atmosphere interactions and the coupling between climate and land surface hydrological processes are gaining interest in the recent past. The increased knowledge in hydro climatology and the global hydrological cycle, with terrestrial and atmospheric feedbacks, led to the utilization of the climate variables and atmospheric tele-connections in modeling the hydrological processes like rainfall and runoff. Numerous statistical and dynamical models employing different combinations of predictor variables and mathematical equations have been developed on this aspect. The relevance of predictor variables is usually measured through the observed linear correlation between the predictor and the predictand. However, many predictor climatic variables are found to have been switching the relationships over time, which demands a replacement of these variables. The unsatisfactory performance of both the statistical and dynamical models demands a more authentic method for assessing the dependency between the climatic variables and hydrologic processes by taking into account the nonlinear causal relationships and the instability due to these nonlinear interactions.
The most obvious cause for limited predictability in even a perfect model with high resolution observations is the nonlinearity of the hydrological systems [Bloschl and Zehe, 2005]. This is mainly due to the chaotic nature of the weather and its sensitiveness to initial conditions [Lorenz, 1963], which restricts the predictability of day-to-day weather to only a few days or weeks.
The present thesis deals with developing association rules to extract the causal relationships between the climatic variables and rainfall and to unearth the frequent predictor patterns that precede the extreme episodes of rainfall using a time series data mining algorithm. The inherent nonlinearity and uncertainty due to the chaotic nature of hydrologic processes (rainfall and runoff) is modeled through a nonlinear prediction method. Methodologies are developed to increase the predictability and reduce the predictive uncertainty of chaotic hydrologic series.
A data mining algorithm making use of the concepts of minimal occurrences with constraints and time lags is used to discover association rules between extreme rainfall events and climatic indices. The algorithm considers only the extreme events as the target episodes (consequents) by separating these from the normal episodes, which are quite frequent and finds the time-lagged relationships with the climatic indices, which are treated as the antecedents. Association rules are generated for all the five homogenous regions of India (as defined by Indian Institute of Tropical Meteorology) and also for All India by making use of the data from 1960-1982. The analysis of the rules shows that strong relationships exist between the extreme rainfall events and the climatic indices chosen, i.e., Darwin Sea Level Pressure (DSLP), North Atlantic Oscillation (NAO), Nino 3.4 and Sea Surface Temperature (SST) values. Validation of the rules using data for the period 1983-2005, clearly shows that most of the rules are repeating and for some rules, even if they are not exactly the same, the combinations of the indices mentioned in these rules are the same during validation period with slight variations in the representative classes taken by the indices.
The significance of treating rainfall as a chaotic system instead of a stochastic system for a better understanding of the underlying dynamics has been taken up by various studies recently. However, an important limitation of all these approaches is the dependence on a single method for identifying the chaotic nature and the parameters involved. In the present study, an attempt is made to identify chaos using various techniques and the behaviour of daily rainfall series in different regions. Daily rainfall data of three regions with contrasting characteristics (mainly in the spatial area covered), Malaprabha river basin, Mahanadi river basin and All India for the period 1955 to 2000 are used for the study. Auto-correlation and mutual information methods are used to determine the delay time for the phase space reconstruction. Optimum embedding dimension is determined using correlation dimension, false nearest neighbour algorithm and also nonlinear prediction methods. The low embedding dimensions obtained from these methods indicate the existence of low dimensional chaos in the three rainfall series considered. Correlation dimension method is repeated on the phase randomized and first derivative of the data series to check the existence of any pseudo low-dimensional chaos [Osborne and Provenzale, 1989]. Positive Lyapunov exponents obtained prove the exponential divergence of the trajectories and hence the unpredictability. Surrogate data test is also done to further confirm the nonlinear structure of the rainfall series.
A limit in predictability in chaotic system arises mainly due to its sensitivity to the infinitesimal changes in its initial conditions and also due to the ineffectiveness of the model to reveal the underlying dynamics of the system. In the present study, an attempt is made to quantify these uncertainties involved and thereby improve the predictability by adopting a nonlinear ensemble prediction. A range of plausible parameters is used for generating an ensemble of predictions of rainfall for each year separately for the period 1996 to 2000 using the data till the preceding year. For analyzing the sensitiveness to initial conditions, predictions are made from two different months in a year viz., from the beginning of January and June. The reasonably good predictions obtained indicate the efficiency of the nonlinear prediction method for predicting the rainfall series. Also, the rank probability skill score and the rank histograms show that the ensembles generated are reliable with a good spread and skill. A comparison of results of the three regions indicates that although they are chaotic in nature, the spatial averaging over a large area can increase the dimension and improve the predictability, thus destroying the chaotic nature.
The predictability of the chaotic daily rainfall series is improved by utilizing information from various climatic indices and adopting a multivariate nonlinear ensemble prediction. Daily rainfall data of Malaprabha river basin, India for the period 1955 to 2000 is used for the study. A multivariate phase space is generated, considering a climate data set of 16 variables. The redundancy, if any, of this atmospheric data set is further removed by employing principal component analysis (PCA) method and thereby reducing it to 8 principal components (PCs). This multivariate series (rainfall along with 8 PCs) are found to exhibit a low dimensional chaotic nature with dimension 10. Nonlinear prediction is done using univariate series (rainfall alone) and multivariate series for different combinations of embedding dimensions and delay times. The uncertainty in initial conditions is thus addressed by reconstructing the phase space using different combinations of parameters. The ensembles generated from multivariate predictions are found to be better than those from univariate predictions. The uncertainty in predictions is reduced or in other words, the predictability is improved by adopting multivariate nonlinear ensemble prediction. The restriction on predictability of a chaotic series can thus be reduced by quantifying the uncertainty in the initial conditions and also by including other possible variables, which may influence the system. Even though, the sensitivity to initial conditions limit the predictability in chaotic systems, a prediction algorithm capable of resolving the fine structure of the chaotic attractor can reduce the prediction uncertainty to some extent. All the traditional chaotic prediction methods are based on local models since these methods model the sudden divergence of the trajectories with different local functions. Conceptually, global models are ineffective in modeling the highly unstable structure of the chaotic attractor [Sivakumar et al., 2002a]. This study focuses on combining a local learning wavelet analysis (decomposition) model with a global feedforward neural network model and its implementation on phase space prediction of chaotic streamflow series. The daily streamflow series at Basantpur station in Mahanadi basin, India is found to exhibit a chaotic nature with dimension varying from 5-7. Quantification of uncertainties in future predictions are done by creating an ensemble of predictions with wavelet network using a range of plausible embedding dimension and delay time. Compared with traditional local approximation approach, the total predictive uncertainty in the streamflow is reduced when modeled with wavelet networks for different lead times. Localization property of wavelets, utilizing different dilation and translation parameters, helps in capturing most of the statistical properties of the observed data. The need for bringing together the characteristics of both local and global approaches to model the unstable yet ordered chaotic attractor is clearly demonstrated.
|
329 |
Hydrological modeling as a tool for sustainable water resources management: a case study of the Awash River BasinTessema, Selome M. January 2011 (has links)
The growing pressure on the world‘s fresh water resources is enforced by population growth that leads to conflicts between demands for different purposes. A main concern on water use is the conflict between the environment and other purposes like hydropower, irrigation for agriculture and domestic and industry water supply, where total flows are diverted without releasing water for ecological conservation. As a consequence, some of the common problems related to water faced by many countries are shortage, quality deterioration and flood impacts. Hence, utilization of integrated water resources management in a single system, which is built up by river basin, is an optimum way to handle the question of water. However, in many areas, when planning for balancing water demands major gaps exist on baseline knowledge of water resources. In order to bridge these gaps, hydro-logical models are among the available tools used to acquire adequate understanding of the characteristics of the river basin. Apart from forecasting and predicting the quantity and quality of water for decision makers, some models could also help in predicting the impacts of natural and anthropogenic changes on water resources and also in quantifying the spatial and temporal availability of the resources. However, main challenges lie in choosing and utilizing these models for a specific basin and managerial plan. In this study, an analysis of the different types of models and application of a selected model to characterize the Awash River basin, located in Ethiopia, is presented. The results from the modeling procedure and the performance of the model are discussed. The different possible sources of uncertainties in the modeling process are also discussed. The results indicate dissimilar predictions in using different methods; hence proper care must be taken in selecting and employing available methods for a specific watershed prior to presenting the results to decision makers. / QC 20110516
|
330 |
Effects of HRU Size on PRMS Performance in 30 Western U.S. BasinsSteele, Madeline Olena 18 April 2013 (has links)
Semi-distributed hydrological models are often used for streamflow forecasting, hydrological climate change impact assessments, and other applications. In such models, basins are broken up into hydrologic response units (HRUs), which are assumed to have a relatively homogenous response to precipitation. HRUs are delineated in a variety of ways, and the procedure used may impact model performance. HRU delineation procedures have been researched, but it is still not clear how important these subdivision schemes are or which delineation methods are most effective. To start addressing this knowledge gap, this project investigated whether or not HRU size has a significant effect on streamflow simulation at the mouth of a watershed. To test this, 30 gaged, relatively unimpaired western U.S. basins were each modeled with 6 HRU sets of different sizes using the Precipitation Runoff Modeling System (PRMS). To isolate size as a variable, HRUs were delineated using stream catchments. For each basin, streams were defined with 6 different threshold levels, producing HRUs of differing sizes. Nineteen model parameters were derived for each HRU using nationally consistent GIS datasets, and all other model parameters were left at default values. Climate inputs were derived from a national 4-km2 gridded daily climate dataset. After calibration, 4 goodness-of-fit metrics were calculated for daily streamflow for each HRU set. Uncalibrated model performance was generally poor for a variety of reasons, but comparison of the models was still informative. Results for the 30 basins across the 6 HRU size classes showed that HRU size did not significantly impact model performance across all basins. However, in basins that had less total precipitation and higher elevation, sensitivity of model performance to HRU subdivision levels was slightly greater, though not significantly so. Findings indicate that, in most basins, little subdivision may be required for good model performance, allowing for desirable simplicity and fewer degrees of freedom without sacrificing runoff simulation accuracy.
|
Page generated in 0.1089 seconds