• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 103
  • 67
  • 36
  • 32
  • 20
  • 20
  • 18
  • 6
  • 6
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 341
  • 341
  • 71
  • 65
  • 63
  • 53
  • 53
  • 40
  • 34
  • 33
  • 32
  • 27
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

An Application of an In-Depth Advanced Statistical Analysis in Exploring the Dynamics of Depression, Sleep Deprivation, and Self-Esteem

Gaffari, Muslihat 01 August 2024 (has links) (PDF)
Depression, intertwined with sleep deprivation and self-esteem, presents a significant challenge to mental health worldwide. The research shown in this paper employs advanced statistical methodologies to unravel the complex interactions among these factors. Through log-linear homogeneous association, multinomial logistic regression, and generalized linear models, the study scrutinizes large datasets to uncover nuanced patterns and relationships. By elucidating how depression, sleep disturbances, and self-esteem intersect, the research aims to deepen understanding of mental health phenomena. The study clarifies the relationship between these variables and explores reasons for prioritizing depression research. It evaluates how statistical models, such as log-linear, multinomial logistic regression, and generalized linear models, shed light on their intricate dynamics. Findings offer insights into risk and protective factors associated with these variables, guiding tailored interventions for individuals in psychological distress. Additionally, policymakers can utilize these insights to develop comprehensive strategies promoting mental health and well-being at a societal level.
252

Do More Females In Power Generate Economic Growth? : Panel data analysis of female parliamentary representation and economic growth in the West, Russia and Central Asia

Skog, Viktor, Dahl, Marcus January 2024 (has links)
The purpose of this paper was to analyze the effect of representation of women in parliamentsand economic growth in three different regions. The regions which were analyzed wereEurope, Latin America, Russia and Central Asia. Based on previous research’s results, thequestion whether women in parliamentary settings affect economic growth and wealth wasexamined. A regression model adapted to panel data analysis was used on data obtained fromreliable sources like the World Bank and the UN. The variables used in the regression modelwere real GDP per capita, real GDP per capita growth, share of females in parliamentarypositions, trade, investment and Women, Business and the Law index (WBL). Justification ofthe variables are based in previous research which alludes to theoretical economicalframeworks. This study contributes to the institutional variable of the WBL indicator. Due tothe scale of the study, the results have varied across different regions, but the overall relationbetween women in power and economic growth was deemed positive. Explicit normsregarding accessibility to economical, political and judicial institutions have a greater impacton real GDP per capita than female parliamentary representation.
253

Configuring political relationships to navigate host-country institutional complexity: Insights from Anglophone sub-Saharan Africa

Boso, N., Amankwah-Amoah, J., Essuman, D., Olabode, Oluwaseun E., Bruce, P., Hultman, M., Kutsoati, J.K., Adeola, O. 05 December 2022 (has links)
Yes / We examine how ties with multiple host-country political institutions contribute to MNE subsidiary performance in countries with weak formal institutions. We suggest that forging relationships between subsidiaries and host-country government actors, local chieftains, and religious leaders generates regulative, normative, and cultural-cognitive political resources. We integrate institutional and configuration theories to argue that similarity to an ideal configuration of the three political resources contributes to MNE subsidiary performance, and that the more dysfunctional host country institutions, the greater the impact on performance. We test our hypotheses using primary and archival data from 604 MNE subsidiaries in 23 Anglophone sub-Saharan African countries and find support for our hypotheses. In our conclusion we discuss the wider theoretical, managerial, and public policy implications of our findings.
254

Termisk analys av stadsmiljön : En fallstudie av urban värmeöeffekt i Linköping / Thermal analysis of the urban environment : A case study of the urban heat island effect in Linköping

Karlsson, Linda January 2024 (has links)
Different environments exhibit varying temperatures, where generally areas with high amounts of vegetation, and consequently significant shading, tend to be cooler than regions dominated by dark buildings and black roofs. As a result, urban areas are generally expected to have higher temperatures in comparison to rural areas or forests. This phenomenon, known as urban heat island effect, can be visualized as a dome-shaped area of hot air that concentrates pollution and can influence the precipitation patterns of a region. This study aimed to examine the urban heat island effect in Linköping from 1984 to 2023, with a focus on analyzing the correlation between the prevalence of impermeable materials and changes in surface temperature using remote sensing and geographic information systems. The study also explored the potential for predicting surface temperatures in 2034 with spatial regression. The results indicated a close relationship between the extent of impermeable materials (indicative of urban land use) and the surface temperatures in Linköping over the study period. Both urban land use and areas with high surface temperatures increased from 1984 to 2023, independent of rising air temperatures. The geographic locations of high urban heat island values have remained largely unchanged over time, but their spatial distibution expanded from 1984 to 2023. The predictive analysis has demonstrated the possibility to predict surface temperatures in 2034, with emphasis on the pivotal role of the model and its explanatory variables. The final predictive model indicates a continuing upward trend in surface temperatures. This study has in summary added an extensive overview of the urban temperature changes in Linköping, identifying potential areas with particularly high surface temperatures historically and provided possible models for predicting trends in the future. / Olika miljöer uppvisar varierande temperaturer, där generellt områden med mycket vegetation, och därmed betydande skuggning, tenderar att vara svalare än regioner dominerade av mörka byggnader med svarta tak. Följaktligen förväntas urbana områden generellt ha högre temperaturer jämfört med landsbygdsområden eller skogsområden. Detta fenomen, känt som urban värmeöeffekt, kan förklaras som ett kupolformat område med förhöjda temperaturer som koncentrerar föroreningar, och som kan påverka regionala nederbördsmönster.  Denna studie syftade till att undersöka den urbana värmeöeffekten i Linköping från 1984 till 2023, med fokus på att analysera korrelationen mellan förekomsten av ogenomträngliga ytor och förändringar i yttemperatur med hjälp av fjärranalys och geografiska informationssystem. Landsat-satellitbilder har använts för att erhålla data för markanvändning/marktäcke, samt för markytans temperaturer under studieperioden. Studien undersökte också möjligheten att förutsäga yttemperaturer år 2034 med hjälp av två enkla prediktiva modeller i programvaran ArcGIS Pro: Multiskalig Geografiskt Viktad Regression (MGWR) och Forest-baserad Forecast.  Resultatet visade en nära relation mellan omfattningen av ogenomträngliga ytor (indikerade som urban markanvändning) och yttemperaturen i Linköping under studieperioden. Både urban markanvändning och områden med höga yttemperatur ökade från 1984 till 2023, oberoende av ökade lufttemperaturer. De geografiska positionerna för höga värmeövärden förblev i stort sett oförändrade över tid, men deras rumsliga fördelning expanderade från 1984 till 2023. Den prediktiva analysen visade att MGWR-modellen uppvisade begränsningar med de valda variablerna och dess samband till varandra. Däremot gav Forest-baserad Forecast-modellen ett mer tillförlitligt resultat, genom att utnyttja historiska yttemperaturer och data om markanvändning och marktäcke. Yttemperaturkartan för 2034 som generades av den senare modellen förutspår en ökning av områden med höga yttemperaturer (mellan 41 och 45 grader Celsius), och en bredare fördelning av temperaturer mellan 31 och 40 grader Celsius. Den prediktiva modellen indikerar en fortsatt uppåtgående trend i yttemperaturer. Sammanfattningsvis ger denna studie en omfattande översikt över urbana temperaturförändringar i Linköping, och identifierar potentiella områden med särskilt höga yttemperaturer historiskt och ger förslag för möjliga metoder för att förutsäga trender i framtiden.
255

跨國新產品銷售預測模式之研究-以電影為例 / Models Comparing for Forecasting Sales of a New Cross-National Product - The Case of American Hollywood Motion Pictures

李心嵐, Lee, Hsin-Lan Unknown Date (has links)
現今市場競爭愈來愈激烈,迫使廠商紛紛至海外尋求產品消費市場,在跨國銷售的背景之下,需要有更多可以確定國家選擇、預測銷售及估計需求的方法。而其中可以滿足這些需求的方法之中,就是研究產品跨國擴散型態,藉以瞭解後進國家與領先國家中新產品如何擴散且會如何互相影響 (Douglas and Craig, 1992)。 在眾多的跨國產品中,本研究選擇好萊塢電影做為實證分析的對象。 經由集群分析,本研究發現(一)台灣高首週票房且口碑佳的電影,會遇到假日人潮、有很高的美國總票房、以及很高的美國首週票房;(二)美國影片在美國及台灣映演的每週票房趨勢有差異存在;(三)片商沒有做好影片在台灣映演的檔期歸劃;(四)三群電影中,在影片類型沒有明顯地區別。 經由十二個新產品銷售預測模型的建立:對數線性迴歸模式(LN-Regression Model)(不考慮新產品領先國擴散經驗)(以OLS估計)、卜瓦松迴歸模式(Poisson Regression Model) (不考慮新產品領先國擴散經驗)(以MLE估計)、負二項分配迴歸模式(Negative Binomial Distribution Regression Model) (不考慮新產品領先國擴散經驗)(以MLE估計)、Exponential Decay模式(以OLS估計)+迴歸方程式體系(不考慮新產品領先國擴散經驗)(以SUR估計)、Exponential Decay模式(以OLS估計)+迴歸方程式體系(考慮新產品領先國擴散經驗)(以SUR估計)、Exponential Decay模式+層級貝氏迴歸模式(考慮新產品領先國擴散經驗)、Bass連續型擴散模式(以NLS估計)+迴歸方程式體系(不考慮新產品領先國擴散經驗(以SUR估計)、Bass連續型擴散模式(以NLS估計)+迴歸方程式體系(考慮新產品領先國擴散經驗(以SUR估計)、Bass離散型擴散模式(以OLS估計)+迴歸方程式體系(不考慮新產品領先國擴散經驗)(以SUR估計)、Bass離散型擴散模式(以OLS估計)+迴歸方程式體系(考慮新產品領先國擴散經驗)(以SUR估計)、層級貝氏BASS離散型擴散模式+迴歸方程式體系(不考慮新產品領先國擴散經驗)(以SUR估計)、層級貝氏BASS離散型擴散模式+迴歸方程式體系(考慮新產品領先國擴散經驗)(以SUR估計)。本研究發現:(一)在考慮影響後進國的新產品擴散速度時,領先國的擴散經驗為絕對必要的考慮因子;(二)必須使用Bass連續型擴散模式做為建構新產品銷售預測模型的基礎;(三)必須使用Bass連續型擴散模式的NLS估計法估計Bass模型的創新係數p、模仿係數q及市場潛量m。
256

Effects of formal credit market and decisions to participate in off-farm activities on agricultural production of Small Farmers in Chile / Die Auswirkungen des formellen Kreditmarktes und der Entscheidung für die Teilnahme an Außer-landwirtschaftlichen Tätigkeiten auf die landwirtschaftliche Produktion von Kleinbauern in Chile

Saldias, Rodrigo 28 January 2008 (has links)
No description available.
257

台灣股市中下市公司之預測–歷史事件研究法

蘇凡晴 Unknown Date (has links)
本論文主要目地是在研究財務比率對上市公司發生下市事件之預測。我們運用歷史事件研究法和Cox迴歸模型去研究上市公司發生下市事件之原因。同時,我們也針對Cox迴歸模型和Logit模型在發現對下市事件有顯著影響的財務比率作比較。 / This study applies the event history analysis and the Cox regression model to examine the causes of firm delisting, and also compares the performance of the Cox regression model with that of the logit model in detecting factors that have a statistically significant impact on the delisting event. The empirical results show that the hazard rate of firm delisting increases with the ratio of current liabilities to current assets, a binary variable indicating if the total liabilities of a firm is greater than its total assets, and a binary variable indicating if the net income of a firm was negative for the last two quarters, while the hazard rate of firm delisting decreases with increases in the firm size and the ratio of funds provided by operations to total liabilities.
258

用戶別售電量與電費收入之研究:台電公司實證案例 / A Study on Customer-by-Category Energy Sales and Power Sales Revenue Model: The Case of Taiwan Power Company

蔡佩容 Unknown Date (has links)
本文旨在檢定台電公司現行季節電價月份劃分之合理性,並探討影響用戶別售電量與電費收入之經濟因素。為達成此目的,本文先就負載觀點與成本觀點進行群集分析,以檢定季節電價是否具統計意義之正當性;其次建立經濟計量模型,分別採用戶別之總售電量與總電費收入做為被解釋變數,運用民國88年1月至民國91年12月之月資料進行實證分析。本文建立之經濟模型有二,分別為時間序列以及複迴歸方程式模型。經檢定分析後,本文就各實證參數之經濟意涵加以闡示,最後並提出結論以及未來研究之方向。 本文透過月資料之群集分析,顯示夏月相對於非夏月之群集差異與台電公司現行季節電價夏月與非夏月之月份相一致,證實台電公司季節電價月份劃分之合理性。其次,透過ARIMA時間序列建立之短期電力需求預測模型,經實證結果顯示:電燈與電力用戶別之售電量均逐年增加,預測民國93年1月至民國99年12月,電燈用戶之年售電量平均成長率為3.33%、電力用戶為3.23%。再者,利用複迴歸模型進行實證分析之結果發現:(一)影響售電量之主要變數為溫度。惟因電燈用戶每隔兩月抄表一次,與電力用戶按月抄表之作業方式不同,故電燈用戶每月售電量係受前期(月)溫度影響,而電力用戶則受當期(月)溫度影響。(二)各用戶別之總電費收入與售電量有明顯相關,且經估算出各月售電量之電費收入彈性顯示:電燈用戶約為0.5,電力用戶約為1。由於總電費收入為總售電量與平均電價之乘積,故電燈用戶之電費收入增加1% 時,其售電量僅增加0.5%,顯示總電費的收入增加係有部分來自於平均電價的提高;換言之,就電燈用戶別而言,其電費收入增減變化之百分比除了會受到售電量增減幅度之影響外,亦反映了平均電價變化的情形。同理,對電力用戶來說,其各月售電量之電費收入彈性接近於1,表示電費收入變化1% 時,售電量亦增加1%,即電費收入之增減變化比例主要受到售電量之同向等幅變化所影響。 至於各用戶別之電費收入方面,電燈與電力兩類用戶自民國88年初至91年底四年期間均有逐年增加之趨勢,惟電力用戶之年增加幅度有隨時間遞減之現象,且歷年大抵以7-10月份較高,2月份最低。此外,影響用戶別電費收入之解釋變數中,各類用戶之售電量最為顯著,其參數值係隱示每增加一度售電量對其電費收入之影響。其中,電燈用戶之估計參數值為2.69,而電力用戶則為1.35。再者,由其電費收入之售電量彈性係數可以發現:電燈用戶約為1.2,電力用戶約為0.7,顯示電燈用戶總售電量增加1%時,總電費收入增加的幅度大於1%,而電力用戶則相反。推估電力用戶此一彈性係數較電燈用戶低之原因在於:電力用戶與電燈用戶之電價結構不同,前者係採需量電費與能量電費之兩部電價制,而後者僅包含流動電費之一部電價。最後,實證結果亦顯示電力系統之尖峰負載與負載率會影響電費收入,惟其影響幅度不大。 / A Study on Customer-by-Category Energy Sales and Power Sales Revenue Model: The Case of Taiwan Power Company Abstract The main purposes of this study are to examine the rationality of the seasonal pricing scheme defined by summer and non-summer months and to identify economic factors influencing customer-by-category energy sales and power sales revenue, utilizing the data of Taiwan Power Company (Taipower) as an empirical case. In order to achieve this objective, the cluster analysis from the perspective of load pattern and cost pattern are examined respectively to see if the seasonal pricing scheme has statistical meaning in its pattern differences in terms of summer vs. non-summer season. Second, two economic models including time-series analysis and multiple regression equations are formulated for the empirical case study. The subtotal energy sales and the subtotal power sales revenue by different type of customer categories, i.e. lighting and industrial customers, are set to be the explained variables. Data from January 1999 to December 2002 are collected for modeling simulation tests. The economic meanings and policy implications of the modeling results are elaborated on. And conclusions with directions for further research are presented. Through the cluster analysis utilizing monthly data within the time frame mentioned above, empirical research results on the grouping cluster of summer vs. non-summer months shows a consistent trend with those defined by Taipower’s present seasonal pricing scheme. Second, the empirical results of ARIMA time-series model show that the forecasted energy sales of both lighting and industrial customers will be gradually increasing through January 2004 to December 2010, and the average annual growth rate of energy sales for the lighting customer is 3.33%, and for the industrial customer is 3.23%. On the other hand, the empirical research results through the multiple regression equations show that the main factor affecting the energy sales is temperature. Due to the different time schedules for reading electricity meters between the lighting customer and the industrial customer, i.e. the time interval for reading the meter of lighting customers is every two months and for industrial customers is every month, the monthly energy sales of the lighting customer are directly related to the temperature of the previous month, while the monthly sales of the industrial customer are directly related to the temperature of the present month. In addition, for each type of customers, there is an obvious correlation between the total power sales revenue and the total energy sales. Furthermore, the estimated elasticity of the total power sales revenue versus total energy sales is about 0.5 for the lighting customer, and about 1 for the industrial customer. Since the total power sales revenue is the product of total energy sales times the average electricity price, when the total power sales revenue increases 1% with the total energy sales only increases 0.5%, it implies that the increase of total power sales revenue not just only comes from the increase of energy sales, but also partially affected by the increase of average electricity price. Similarly, for the industrial customer, when the elasticity of their monthly total power sales revenue versus total energy sales is close to 1, it implies that when the total power sales revenue increases 1%, the total energy sales also increase about 1%. In other words, the change of percentage of the total power sales revenue is mostly attributed to the variation of total energy sales, not because of the average electricity price. As for the simulation results of the total power sales revenue, those of the lighting and industrial customers are both gradually increasing between the years 1999 to 2002. However, the increasing pace of the industrial customer tended to slow down. Moreover, both types of the customers possess a similar trend that their total power sales are higher in statistical meaning for the months from July to October, and lower for February, for those above three years. Besides, among the variables affecting each type of customer’s power sales revenue, the energy sales is the most significant one, its parameter implies that whenever the total energy sales increases one unit, i.e. one kwh, it would affect the total power sales revenue by that amount equivalent to the figure of the parameter. According to the empirical results, the estimated parameter mentioned-above of the lighting customer is 2.69, and 1.35 of the industrial customer respectively. That implies one kwh unit price for the lighting customer is 2.69 N.T. dollars, and 1.35 N.T. dollars for the industrial customer. Moreover, from the elasticity of the total energy sales versus the total power sales revenue, it shows that the elasticity of the lighting customer is around 1.2, and the elasticity of the industrial customer is around 0.7. The underlining reason of the difference between the two figures could be that the electricity pricing structure of the lighting and industrial customers are quite different. The industrial customer is charged by two-part tariff including a demand charge for the capacity use and an energy charge for the kwh use. While the lighting customer is charged simply by a single rate, i.e. the energy use. Finally, the empirical results also show that the magnitude of the peak load and the load factor of the whole electricity system also affect the total power sales revenue of each type of the customer, though with much less effect.
259

台灣有線電視系統業者經營效率之探討 / A Study of Efficiency of Cable System Operators in Taiwan

張美惠, chang , mei-hui Unknown Date (has links)
本研究依據2003年「行政院新聞局廣播電視白皮書」、「公開上市、上櫃資訊觀測網站有線電視系統業者財務報告書」等文獻資料,先以資料包絡分析法評估個別系統業者的技術效率,再應用Tobit截斷迴歸方法,探討影響台灣有線電視系統業者經營效率的因素。 評估結果顯示,造成個別有線電視系統業者經營技術無效率的因素,主要歸咎於浪費資源所造成之無效率,而非因生產規模不適當所造成之無效率,迴歸結果發現,營業收入與技術效率間具正向關係,而頻道數、廣告密集度、經營區面積、集團化及業務集中度對技術效率間具負向關係。 / Based on the information of 2003 “The Broadcasting television paper of Government Information Office of Executive Yuan” and “Finance Statements of The Cable System Operators of Listed Companies and OTC Listed Companies from Market Observation Post System in Taiwan”, this study first uses DEA to assess technical efficiency of cable system operators, and then applies the Tobit censored regression technique to investigate the determinants of technical efficiency. The efficiency-evaluating result shows that the main factor, which causes inefficient management, is an ineffective use of resource; an improper production scale has less impact on it. The regression result also shows that the revenue has a positive impact on technical efficiency, but the number of channels, Area, the density of advertisement, conglomeration, and business focus has negative impacts on technical efficiency.
260

多期邏輯斯迴歸模型應用在企業財務危機預測之研究 / Forecasting corporate financial distress:using multi-period logistic regression model

卜志豪, Pu, Chih-Hao Unknown Date (has links)
本研究延續Shumway (2001) 從存活分析(Survival Analysis)觀點切入,利用離散型風險模型(Discrete-time Hazard Model)──亦即Shumway 所稱之多期邏輯斯迴歸模型(Multi-period Logistic Regression Model),建立企業財務危機預警模型。研究選取1986 年至2008 年間718 家上市公司,其中110 家發生財務危機事件,共計6,782 公司/年資料 (firm-year)。有別於Shumway 提出的Log 基期風險型式,本文根據事件發生率圖提出Quadratic 基期風險型式,接著利用4組(或基於會計測量,或基於市場測量)時間相依共變量 (Time-dependent Covariate)建立2 組離散型風險模型(Log 與Quadratic),並與傳統僅考量單期資料的邏輯斯迴歸模型比較。實證結果顯示,離散型風險模型的解釋變數與破產機率皆符合預期關係,而傳統邏輯斯迴歸模型則有時會出現不符合預期關係的情況;研究亦顯示離散型風險模型預測能力絕大多數情況下優於傳統邏輯斯迴歸模型,在所有模型組合中,以Quadratic 基期風險型式搭配財務變數、市場變數的解釋變數組合而成的離散型風險模型,擁有最佳預測能力。 / Based on the viewpoint of survival analysis from Shumway (2001), the presentthesis utilizes discrete-time hazard model, also called multi-period logistic regression model, to forecast corporate financial distress. From 1986 to 2008, this research chooses 718 listed companies within, which includes 110 failures, as the subjects, summing to 6,782 firm-year data. Being different from Shumway’s log baseline hazard form,we proposed to use quadratic baseline hazard form according to empirical evidence. Then, four groups of time-dependent covariates, which are accounting-based measure or market-based measure, are applied to build two sets of discrete-time hazard model, which is compared with the single-period logistic regression model. The results show that there exists the expected relationship between covariates and predict probability in discrete-time hazard model, while there sometimes lacks it in single-period logistic regression model. The results also show that discrete-time hazard model has better predictive capability than single-period logistic regression model. The model, which combines quadratic baseline hazard form with market and accounting variables, has the best predictive capability among all models.

Page generated in 0.0315 seconds