• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 103
  • 67
  • 36
  • 32
  • 20
  • 20
  • 18
  • 6
  • 6
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 341
  • 341
  • 71
  • 65
  • 63
  • 53
  • 53
  • 40
  • 34
  • 33
  • 32
  • 27
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Quantitative Retrieval of Organic Soil Properties from Visible Near-Infrared Shortwave Infrared (Vis-NIR-SWIR) Spectroscopy Using Fractal-Based Feature Extraction.

Liu, Lanfa, Buchroithner, Manfred, Ji, Min, Dong, Yunyun, Zhang, Rongchung 27 March 2017 (has links) (PDF)
Visible and near-infrared diffuse reflectance spectroscopy has been demonstrated to be a fast and cheap tool for estimating a large number of chemical and physical soil properties, and effective features extracted from spectra are crucial to correlating with these properties. We adopt a novel methodology for feature extraction of soil spectroscopy based on fractal geometry. The spectrum can be divided into multiple segments with different step–window pairs. For each segmented spectral curve, the fractal dimension value was calculated using variation estimators with power indices 0.5, 1.0 and 2.0. Thus, the fractal feature can be generated by multiplying the fractal dimension value with spectral energy. To assess and compare the performance of new generated features, we took advantage of organic soil samples from the large-scale European Land Use/Land Cover Area Frame Survey (LUCAS). Gradient-boosting regression models built using XGBoost library with soil spectral library were developed to estimate N, pH and soil organic carbon (SOC) contents. Features generated by a variogram estimator performed better than two other estimators and the principal component analysis (PCA). The estimation results for SOC were coefficient of determination (R2) = 0.85, root mean square error (RMSE) = 56.7 g/kg, the ratio of percent deviation (RPD) = 2.59; for pH: R2 = 0.82, RMSE = 0.49 g/kg, RPD = 2.31; and for N: R2 = 0.77, RMSE = 3.01 g/kg, RPD = 2.09. Even better results could be achieved when fractal features were combined with PCA components. Fractal features generated by the proposed method can improve estimation accuracies of soil properties and simultaneously maintain the original spectral curve shape.
262

Adaptation via des inéqualités d'oracle dans le modèle de regression avec design aléatoire / Adaptation via oracle inequality in regression model with random design

Nguyen, Ngoc Bien 21 May 2014 (has links)
À partir des observations Z(n) = {(Xi, Yi), i = 1, ..., n} satisfaisant Yi = f(Xi) + ζi, nous voulons reconstruire la fonction f. Nous évaluons la qualité d'estimation par deux critères : le risque Ls et le risque uniforme. Dans ces deux cas, les hypothèses imposées sur la distribution du bruit ζi serons de moment borné et de type sous-gaussien respectivement. En proposant une collection des estimateurs à noyau, nous construisons une procédure, qui est initié par Goldenshluger et Lepski, pour choisir l'estimateur dans cette collection, sans aucune condition sur f. Nous prouvons ensuite que cet estimateur satisfait une inégalité d'oracle, qui nous permet d'obtenir les estimations minimax et minimax adaptatives sur les classes de Hölder anisotropes. / From the observation Z(n) = {(Xi, Yi), i = 1, ..., n} satisfying Yi = f(Xi) + ζi, we would like to approximate the function f. This problem will be considered in two cases of loss function, Ls-risk and uniform risk, where the condition imposed on the distribution of the noise ζi is of bounded moment and of type sub-gaussian, respectively. From a proposed family of kernel estimators, we construct a procedure, which is initialized by Goldenshluger and Lepski, to choose in this family a final estimator, with no any assumption imposed on f. Then, we show that this estimator satisfies an oracle inequality which implies the minimax and minimax adaptive estimation over the anisotropic Hölder classes.
263

A distribuição beta generalizada semi-normal / The beta generalized half-normal distribution

Pescim, Rodrigo Rossetto 29 January 2010 (has links)
Uma nova família de distribuições denominada distribuição beta generalizada semi-normal, que inclui algumas distribuições importantes como casos especiais, tais como as distribuições semi-normal e generalizada semi-normal (Cooray e Ananda, 2008), é proposta neste trabalho. Para essa nova família de distribuições, foi realizado o estudo da função densidade probabilidade, função de distribuição acumulada e da função de taxa de falha (ou risco), que não dependeram de funções matemáticas complicadas. Obteve-se uma expressão formal para os momentos, função geradora de momentos, função densidade da distribuição de estatística de ordem, desvios médios, entropia, contabilidade e para as curvas de Bonferroni e Lorenz. Examinaram-se os estimadores de máxima verossimilhança dos parâmetros e deduziu- se a matriz de informação esperada. Neste trabalho é proposto, também, um modelo de regressão utilizando a distribuição beta generalizada semi-normal. A utilidade dessa nova distribuição é ilustrada através de dois conjuntos de dados, mostrando que ela é mais flexível na análise de dados de tempo de vida do que outras distribuições existentes na literatura. / A new family of distributions so-called beta generalized half-normal distribution, which includes some important distributions as special cases, such as the half-normal and generalized half-normal (Cooray and Ananda, 2008) distributions, is proposed in this work. For this new family of distributions, we studied the probability density function, cumulative distribution function and failure rate function (or hazard function), which did not depend on complicated mathematical functions. We obtained a formal expression for the moments, moment generating function, density function of order statistics distribution, mean deviation, entropy, reliability and Bonferroni and Lorenz curves. We examined maximum likelihood estimation of parameters and provided the information matrix. This work also proposed a regression model using the beta generalized half-normal distribution. The usefulness of the new distribution is illustrated through two data sets by showing that it is quite °exible in analyzing lifetime data instead other distributions in the literature.
264

Modelos preditivos para LGD / Predictive models for LGD

Silva, João Flávio Andrade 04 May 2018 (has links)
As instituições financeiras que pretendem utilizar a IRB (Internal Ratings Based) avançada precisam desenvolver métodos para estimar a componente de risco LGD (Loss Given Default). Desde a década de 1950 são apresentadas propostas para modelagem da PD (Probability of default), em contrapartida, a previsão da LGD somente recebeu maior atenção após a publicação do Acordo Basileia II. A LGD possui ainda uma literatura pequena, se comparada a PD, e não há um método eficiente em termos de acurácia e interpretação como é a regressão logística para a PD. Modelos de regressão para LGD desempenham um papel fundamental na gestão de risco das instituições financeiras. Devido sua importância este trabalho propõe uma metodologia para quantificar a componente de risco LGD. Considerando as características relatadas sobre a distribuição da LGD e na forma flexível que a distribuição beta pode assumir, propomos uma metodologia de estimação da LGD por meio do modelo de regressão beta bimodal inflacionado em zero. Desenvolvemos a distribuição beta bimodal inflacionada em zero, apresentamos algumas propriedades, incluindo momentos, definimos estimadores via máxima verossimilhança e construímos o modelo de regressão para este modelo probabilístico, apresentamos intervalos de confiança assintóticos e teste de hipóteses para este modelo, bem como critérios para seleção de modelos, realizamos um estudo de simulação para avaliar o desempenho dos estimadores de máxima verossimilhança para os parâmetros da distribuição beta bimodal inflacionada em zero. Para comparação com nossa proposta selecionamos os modelos de regressão beta e regressão beta inflacionada, que são abordagens mais usuais, e o algoritmo SVR , devido a significativa superioridade relatada em outros trabalhos. / Financial institutions willing to use the advanced Internal Ratings Based (IRB) need to develop methods to estimate the LGD (Loss Given Default) risk component. Proposals for PD (Probability of default) modeling have been presented since the 1950s, in contrast, LGDs forecast has received more attention only after the publication of the Basel II Accord. LGD also has a small literature, compared to PD, and there is no efficient method in terms of accuracy and interpretation such as logistic regression for PD. Regression models for LGD play a key role in the risk management of financial institutions, due to their importance this work proposes a methodology to quantify the LGD risk component. Considering the characteristics reported on the distribution of LGD and in the flexible form that the beta distribution may assume, we propose a methodology for estimation of LGD using the zero inflated bimodal beta regression model. We developed the zero inflated bimodal beta distribution, presented some properties, including moments, defined estimators via maximum likelihood and constructed the regression model for this probabilistic model, presented asymptotic confidence intervals and hypothesis test for this model, as well as selection criteria of models, we performed a simulation study to evaluate the performance of the maximum likelihood estimators for the parameters of the zero inflated bimodal beta distribution. For comparison with our proposal we selected the beta regression models and inflated beta regression, which are more usual approaches, and the SVR algorithm, due to the significant superiority reported in other studies.
265

Modelos de regressão beta inflacionados / Inflated beta regression models

Ospina Martinez, Raydonal 04 April 2008 (has links)
Nos últimos anos têm sido desenvolvidos modelos de regressão beta, que têm uma variedade de aplicações práticas como, por exemplo, a modelagem de taxas, razões ou proporções. No entanto, é comum que dados na forma de proporções apresentem zeros e/ou uns, o que não permite admitir que os dados provêm de uma distribuição contínua. Nesta tese, são propostas, distribuições de mistura entre uma distribuição beta e uma distribuição de Bernoulli, degenerada em zero e degenerada em um para modelar dados observados nos intervalos [0, 1], [0, 1) e (0, 1], respectivamente. As distribuições propostas são inflacionadas no sentido de que a massa de probabilidade em zero e/ou um excede o que é permitido pela distribuição beta. Propriedades dessas distribuições são estudadas, métodos de estimação por máxima verossimilhança e momentos condicionais são comparados. Aplicações a vários conjuntos de dados reais são examinadas. Desenvolvemos também modelos de regressão beta inflacionados assumindo que a distribuição da variável resposta é beta inflacionada. Estudamos estimação por máxima verossimilhança. Derivamos expressões em forma fechada para o vetor escore, a matriz de informação de Fisher e sua inversa. Discutimos estimação intervalar para diferentes quantidades populacionais (parâmetros de regressão, parâmetro de precisão) e testes de hipóteses assintóticos. Derivamos expressões para o viés de segunda ordem dos estimadores de máxima verossimilhança dos parâmetros, possibilitando a obtenção de estimadores corrigidos que são mais precisos que os não corrigidos em amostras finitas. Finalmente, desenvolvemos técnicas de diagnóstico para os modelos de regressão beta inflacionados, sendo adotado o método de influência local baseado na curvatura normal conforme. Ilustramos a teoria desenvolvida em um conjuntos de dados reais. / The last years have seen new developments in the theory of beta regression models, which are useful for modelling random variables that assume values in the standard unit interval such as proportions, rates and fractions. In many situations, the dependent variable contains zeros and/or ones. In such cases, continuous distributions are not suitable for modeling this kind of data. In this thesis we propose mixed continuous-discrete distributions to model data observed on the intervals [0, 1],[0, 1) and (0, 1]. The proposed distributions are inflated beta distributions in the sense that the probability mass at 0 and/or 1 exceeds what is expected for the beta distribution. Properties of the inflated beta distributions are given. Estimation based on maximum likelihood and conditional moments is discussed and compared. Empirical applications using real data set are provided. Further, we develop inflated beta regression models in which the underlying assumption is that the response follows an inflated beta law. Estimation is performed by maximum likelihood. We provide closed-form expressions for the score function, Fishers information matrix and its inverse. Interval estimation for different population quantities (such as regression parameters, precision parameter, mean response) is discussed and tests of hypotheses on the regression parameters can be performed using asymptotic tests. We also derive the second order biases of the maximum likelihood estimators and use them to define bias-adjusted estimators. The numerical results show that bias reduction can be effective in finite samples. We also develop a set of diagnostic techniques that can be employed to identify departures from the postulated model and influential observations. To that end, we adopt the local influence approach based in the conformal normal curvature. Finally, we consider empirical examples to illustrate the theory developed.
266

Regressão logística com erro de medida: comparação de métodos de estimação / Logistic regression model with measurement error: a comparison of estimation methods

Rodrigues, Agatha Sacramento 27 June 2013 (has links)
Neste trabalho estudamos o modelo de regressão logística com erro de medida nas covariáveis. Abordamos as metodologias de estimação de máxima pseudoverossimilhança pelo algoritmo EM-Monte Carlo, calibração da regressão, SIMEX e naïve (ingênuo), método este que ignora o erro de medida. Comparamos os métodos em relação à estimação, através do viés e da raiz do erro quadrático médio, e em relação à predição de novas observações, através das medidas de desempenho sensibilidade, especificidade, verdadeiro preditivo positivo, verdadeiro preditivo negativo, acurácia e estatística de Kolmogorov-Smirnov. Os estudos de simulação evidenciam o melhor desempenho do método de máxima pseudoverossimilhança na estimação. Para as medidas de desempenho na predição não há diferença entre os métodos de estimação. Por fim, utilizamos nossos resultados em dois conjuntos de dados reais de diferentes áreas: área médica, cujo objetivo está na estimação da razão de chances, e área financeira, cujo intuito é a predição de novas observações. / We study the logistic model when explanatory variables are measured with error. Three estimation methods are presented, namely maximum pseudo-likelihood obtained through a Monte Carlo expectation-maximization type algorithm, regression calibration, SIMEX and naïve, which ignores the measurement error. These methods are compared through simulation. From the estimation point of view, we compare the different methods by evaluating their biases and root mean square errors. The predictive quality of the methods is evaluated based on sensitivity, specificity, positive and negative predictive values, accuracy and the Kolmogorov-Smirnov statistic. The simulation studies show that the best performing method is the maximum pseudo-likelihood method when the objective is to estimate the parameters. There is no difference among the estimation methods for predictive purposes. The results are illustrated in two real data sets from different application areas: medical area, whose goal is the estimation of the odds ratio, and financial area, whose goal is the prediction of new observations.
267

Modelos de regressão beta com erro nas variáveis / Beta regression model with measurement error

Carrasco, Jalmar Manuel Farfan 25 May 2012 (has links)
Neste trabalho de tese propomos um modelo de regressão beta com erros de medida. Esta proposta é uma área inexplorada em modelos não lineares na presença de erros de medição. Abordamos metodologias de estimação, como máxima verossimilhança aproximada, máxima pseudo-verossimilhança aproximada e calibração da regressão. O método de máxima verossimilhança aproximada determina as estimativas maximizando diretamente o logaritmo da função de verossimilhança. O método de máxima pseudo-verossimilhança aproximada é utilizado quando a inferência em um determinado modelo envolve apenas alguns mas não todos os parâmetros. Nesse sentido, dizemos que o modelo apresenta parâmetros de interesse como também de perturbação. Quando substituímos a verdadeira covariável (variável não observada) por uma estimativa da esperança condicional da variável não observada dada a observada, o método é conhecido como calibração da regressão. Comparamos as metodologias de estimação mediante um estudo de simulação de Monte Carlo. Este estudo de simulação evidenciou que os métodos de máxima verossimilhança aproximada e máxima pseudo-verossimilhança aproximada tiveram melhor desempenho frente aos métodos de calibração da regressão e naïve (ingênuo). Utilizamos a linguagem de programação Ox (Doornik, 2011) como suporte computacional. Encontramos a distribuição assintótica dos estimadores, com o objetivo de calcular intervalos de confiança e testar hipóteses, tal como propõem Carroll et. al.(2006, Seção A.6.6), Guolo (2011) e Gong e Samaniego (1981). Ademais, são utilizadas as estatísticas da razão de verossimilhanças e gradiente para testar hipóteses. Num estudo de simulação realizado, avaliamos o desempenho dos testes da razão de verossimilhanças e gradiente. Desenvolvemos técnicas de diagnóstico para o modelo de regressão beta com erros de medida. Propomos o resíduo ponderado padronizado tal como definem Espinheira (2008) com o objetivo de verificar as suposições assumidas ao modelo e detectar pontos aberrantes. Medidas de influência global, tais como a distância de Cook generalizada e o afastamento da verossimilhança, são utilizadas para detectar pontos influentes. Além disso, utilizamos a técnica de influência local conformal sob três esquemas de perturbação (ponderação de casos, perturbação da variável resposta e perturbação da covariável com e sem erros de medida). Aplicamos nossos resultados a dois conjuntos de dados reais para exemplificar a teoria desenvolvida. Finalmente, apresentamos algumas conclusões e possíveis trabalhos futuros. / In this thesis, we propose a beta regression model with measurement error. Among nonlinear models with measurement error, such a model has not been studied extensively. Here, we discuss estimation methods such as maximum likelihood, pseudo-maximum likelihood, and regression calibration methods. The maximum likelihood method estimates parameters by directly maximizing the logarithm of the likelihood function. The pseudo-maximum likelihood method is used when the inference in a given model involves only some but not all parameters. Hence, we say that the model under study presents parameters of interest, as well as nuisance parameters. When we replace the true covariate (observed variable) with conditional estimates of the unobserved variable given the observed variable, the method is known as regression calibration. We compare the aforementioned estimation methods through a Monte Carlo simulation study. This simulation study shows that maximum likelihood and pseudo-maximum likelihood methods perform better than the calibration regression method and the naïve approach. We use the programming language Ox (Doornik, 2011) as a computational tool. We calculate the asymptotic distribution of estimators in order to calculate confidence intervals and test hypotheses, as proposed by Carroll et. al (2006, Section A.6.6), Guolo (2011) and Gong and Samaniego (1981). Moreover, we use the likelihood ratio and gradient statistics to test hypotheses. We carry out a simulation study to evaluate the performance of the likelihood ratio and gradient tests. We develop diagnostic tests for the beta regression model with measurement error. We propose weighted standardized residuals as defined by Espinheira (2008) to verify the assumptions made for the model and to detect outliers. The measures of global influence, such as the generalized Cook\'s distance and likelihood distance, are used to detect influential points. In addition, we use the conformal approach for evaluating local influence for three perturbation schemes: case-weight perturbation, respose variable perturbation, and perturbation in the covariate with and without measurement error. We apply our results to two sets of real data to illustrate the theory developed. Finally, we present our conclusions and possible future work.
268

Determinantes da variação geográfica da biomassa flo restal no sul do Brasil: a contribuição de Floresta com Araucária

Rosenfield, Milena Fermina 21 February 2011 (has links)
Submitted by Mariana Dornelles Vargas (marianadv) on 2015-03-26T14:22:21Z No. of bitstreams: 1 determinantes_variacao.pdf: 908319 bytes, checksum: 62b3232a58e65bb0e1abb6ef44b5c2bc (MD5) / Made available in DSpace on 2015-03-26T14:22:21Z (GMT). No. of bitstreams: 1 determinantes_variacao.pdf: 908319 bytes, checksum: 62b3232a58e65bb0e1abb6ef44b5c2bc (MD5) Previous issue date: 2011-02-21 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Uma variedade de fatores ambientais e bióticos afeta a produtividade florestal e determina o acúmulo de biomassa. Em ecossistemas florestais, o aumento da produtividade primária propicia o aumento da biomassa vegetal e consequentemente o aumento do carbono orgânico estocado. Dentre os fatores que influenciam a produção de biomassa, podemos citar temperatura, pluviosidade, tipo de solo, composição florística e regime de distúrbios. Nesse sentido, há o consenso entre pesquisadores de que o aumento da temperatura, a homogeneidade do regime de chuvas e solos férteis aumentam a produtividade e possibilitam um maior acúmulo de biomassa. Além disso, diversos autores propõem que riqueza e diversidade de espécies teriam efeito positivo sobre a biomassa, pois aumentariam a eficiência no uso dos recursos. Os objetivos deste estudo foram avaliar as variáveis que afetam a biomassa florestal viva acima do solo (BAS) na região subtropical do sul do Brasil, além de analisar a distribuição espacial das estimativas de biomassa em escala regional. O estudo foi realizado em Florestas Subtropicais Úmidas do sul do Brasil, classificadas como Florestas Latifoliadas (FL) e Florestas Mistas de Coníferas e Latifoliadas (FM). Um total de 38 parcelas de 1 ha foram selecionadas e todas as árvores com DAP ≥ 9,5 cm foram incluídas para as estimativas de biomassa. Valores de BAS foram obtidos utilizando equações alométricas já publicadas na literatura. As variáveis ambientais (altitude, precipitação, temperatura e tipo de solo) foram obtidas da literatura e as variáveis bióticas (densidade e diversidade) foram calculadas a partir da base de dados. Para o conjunto total de dados, a BAS média foi de 194,3 ± 116,8 Mg ha-1 (média ± DP) e a densidade média de carbono foi de 97,2 ± 58,4 MgC ha-1. As estimativas entre tipos florestais diferiram entre si (t= -4,598; p<0,001): a BAS média foi inferior em FL (AGBFL = 118,0 ± 58,4 Mg ha-1) quando comparada a FM (AGBFM = 249,8 ± 118,1 Mg ha-1). A análise de componentes principais executou de forma satisfatória a redução da base de dados de clima e de solo. A regressão múltipla explanatória explicou 49,8% da variação na BAS (Ylog biomassa = 0,03(0,49)xraiz densidade + 0,11(0,36)x eixo latitudinal - 0,22(-0,85)xeixo altitudinal - 0,03(-0,36)xdiversidade - 0,09(-0,35)xeixo matéria orgânica + 1,66; F5,32=8,34; p<0,001; r2=0,498). A altitude contribuiu mais para o modelo do que qualquer outra variável. Não foi encontrada dependência espacial entre as parcelas. Os resultados do nosso estudo mostram uma relação negativa entre biomassa acima do solo e altitude. Assim, valores elevados de BAS estão localizados em altitudes mais elevadas e sujeitos a temperaturas amenas e frequentes chuvas mensais. Parece haver uma contribuição importante da conífera Araucaria angustifolia nas parcelas de FM, visto que árvores de grande porte da espécie foram encontradas em inúmeras unidades amostrais. Florestas subtropicais parecem ser de grande interesse para o sequestro de carbono, especialmente em áreas de Florestas Mistas. No Brasil, a espécie de conífera ameaçada de extinção A. angustifolia compõe florestas com alta diversidade (Florestas com Araucária), com grande potencial de acúmulo de biomassa e sequestro de carbono, enfocando ainda mais a importância de conservação deste ecossistema. / A variety of environmental and biotic factors affect forest productivity and determines biomass accumulation. In forest ecosystems, the increase in primary productivity results in an increase in plant biomass and consequently elevates storage of organic carbon. Among the factors that influence biomass production, we should mention temperature, rainfall, soil type, floristic composition and disturbance regimes. It is widely accepted among researchers that increasing temperature, rainfall homogeneity and fertile soils increase productivity and enable higher biomass accumulation. Moreover, many authors indicate that species richness and diversity have a positive effect on biomass, because of the higher efficiency on resource use. The objectives of the study were to evaluate the variables affecting live aboveground forest biomass (AGB) in Subtropical Southern Brazil and analyze the spatial distribution of biomass estimates. The study was performed in Subtropical Moist Forests of Southern Brazil, classified as Broadleaf Forests (BF) and Mixed Coniferous-Broadleaf Forests (MF). A total of 38 1-ha plots were selected and all trees with DBH ≥ 9.5 cm were included for biomass estimation. Values for AGB were obtained using published alometric equations. Environmental variables (elevation, rainfall, temperature and soils) were obtained from the literature and biotic variables (density and diversity) were calculated from the data set. For the total number of plots, mean AGB was 194.3 ± 116.8 Mg ha-1 (mean ± SD) and mean carbon density 97.2 ± 58.4 MgC ha-1. Estimates differed between forest types (t= -4.598; p<0.001): mean AGB was lower in BF (AGBBF = 118.0 ± 58.4 Mg ha-1) when compared to MF (AGBMF = 249.8 ± 118.1 Mg ha-1). Principal component analysis performed well in summarizing climate and soil data sets. The explanatory multiple regression explained 49.8% of the variation in AGB (Ylog biomass = 0.03(0.49)xsqroot density + 0.11(0.36)x latitudinal axis - 0.22(-0.85)xelevation axis ? 0.03(-0.36)xdiversity - 0.09(-0.35)xorganic matter axis + 1.66; F5,32=8.34, p<0.001; r2=0.498). Elevation contributed more to the model than any other variable. There was no spatial dependency found between plots. The results from our study showed a negative relationship between aboveground biomass and elevation. Therefore, higher values of AGB are located at higher altitudes and subjected to cooler temperatures and frequent monthly rainfall. There seems to be an important contribution of the coniferous species Araucaria angustifolia in MF plots, since large trees of this species were found in many of the samples. Subtropical forests appear to be of great interest for carbon sequestration, especially in areas of Mixed Coniferous-Broadleaf Forests. In Brazil, the endangered coniferous species A. angustifolia is part of a high diversity forest (Araucaria Forest), with great potential for biomass accumulation and carbon sequestration, emphasizing the importance in conserving this ecosystem.
269

Predição de fator de simultaneidade através de modelos de regressão para proporções contínuas / Prediction of simultaneity factor using regression models for continuous proportions.

Zerbinatti, Luiz Fernando Molinari 29 February 2008 (has links)
O fator de simultaneidade é fundamental no planejamento de redes de distribuição de gás natural. Trata-se de um multiplicador entre 0 e 1 que ajusta o consumo total teórico de um número de aparelhos de utilização em condições reais. Em 2005 o Instituto de Pesquisas Tecnológicas (IPT) e a Companhia de Gás de São Paulo (COMGÁS) realizaram um estudo no qual determinou-se o fator de simultaneidade em um conjunto de edificações residenciais. Um modelo de regressão foi proposto para expressar o fator de simultaneidade em termos da potência total instalada. O modelo ajustado pode ser utilizado para predizer o fator de simultaneidade em novas edificações. O modelo em questão é um modelo de regressão linear normal no qual a variável resposta é o logaritmo do fator de simultaneidade. Nesta dissertação, o objetivo é investigar outras possibilidades de modelos de regressão adequados aos dados obtidos pelo IPT e pela COMGÁS. Especial atenção é dada ao modelo de regressão beta proposto por Ferrari e Cribari-Neto (Journal of Applied Statistics, 2004) por possuir vantagens sobre o modelo de regressão linear normal. O modelo de regressão beta assume que, dadas as covariáveis, a variável resposta possui distribuição beta, sendo adequado para modelar dados observados no intervalo unitário. Desta forma, a transformação na variável resposta - o fator de simultaneidade - é desnecessária. Além disso, é proposta uma nova abordagem para a predição do fator de simultaneidade, diferente de todas as abordagens pesquisadas na literatura, utilizando a técnica de bootstrap. / The simultaneity factor is fundamental in planning gas distribution networks. It is a multiplicator between 0 and 1 that adjusts the theoretical total consumption of a number of devices to realistic conditions. In 2005, the Instituto de Pesquisas Tecnológicas (IPT) and the Companhia de Gás de São Paulo (COMGÁS) performed a study in which the simultaneity factor of gas consumption in a set of residential buildings have been determined. A regression model was proposed to express the simultaneity factor in terms of the total power of installed equipment. The fitted model can be used to predict the simultaneity factor in new buildings. The model they proposed is a normal linear regression model in which the response variable is the logarithm of the simultaneity factor. In the present dissertation, our aim is to investigate other possible regression models suitable to the data obtained by IPT and CONGÁS. Emphasis is given to the beta regression model proposed by Ferrari and Cribari-Neto (Journal of Applied Statistics, 2004) which has a number of advantages over normal linear regression models. The beta regression model assumes that, given the covariates, the response variable has a beta distribution, which is adequate to model data observed in the unit interval. Therefore, no transformation in the response variable, the simultaneity factor, is needed. Additionally, we present a new approach for the prediction of the simultaneity factor, that is different from all the approaches shown in the literature, using the bootstrap technique.
270

Erros não detectáveis no processo de estimação de estado em sistemas elétricos de potência / Undetectable errors in power system state estimation

Fabio, Lizandra Castilho 28 July 2006 (has links)
Na tentativa de contornar os problemas ainda existentes para a detecção e identificação de erros grosseiros (EGs) no processo de estimação de estado em sistemas elétricos de potência (EESEP), realiza-se, neste trabalho, uma análise da formulação dos estimadores aplicados a sistemas elétricos de potência, em especial, o de mínimos quadrados ponderados, tendo em vista evidenciar as limitações dos mesmos para o tratamento de EGs. Em razão da dificuldade de detectar EGs em medidas pontos de alavancamento, foram também analisadas as metodologias desenvolvidas para identificação de medidas pontos de alavancamento. Através da formulação do processo de EESEP como um problema de álgebra linear, demonstra-se o porquê da impossibilidade de detectar EGs em determinadas medidas redundantes, sendo proposto, na seqüência, um método para identificação de medidas pontos de alavancamento. Para reduzir os efeitos maléficos dessas medidas no processo de EESEP verifica-se a possibilidade de aplicar outras técnicas estatísticas para o processamento de EGs, bem como técnicas para obtenção de uma matriz de ponderação adequada. / To overcome the problems still existent for gross errors (GEs) detection and identification in the process of power system state estimation (PSSE), the formulations of the estimators applied to power systems are analyzed, specially, the formulation of the weighted squares estimator. These analyses were performed to show the limitations of these estimators for GEs processing. As leverage points (LP) represent a problem for GEs processing, methodologies for LP identification were also verified. By means of the linear formulation of the PSSE process, the reason for the impossibility of GEs detection in some redundant measurements is shown and a method for LP identification is proposed. To minimize the bad effects of the LP to the PSSE process, the possibility of applying other statistic techniques for GEs processing, as well as techniques to estimate an weighting matrix are also analyzed.

Page generated in 0.0347 seconds