• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 95
  • Tagged with
  • 194
  • 194
  • 193
  • 30
  • 28
  • 24
  • 21
  • 21
  • 20
  • 19
  • 18
  • 18
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Contrôle de l'interaction polymère/particules dans les membranes à matrice mixte

Nguyen, Tien Binh 05 October 2024 (has links)
Au cours des dernières décennies, la technologie membranaire a montré de grandes performances dans les séparations en phase liquide telles que la production d’eau potable à partir d’eau de mer. Beaucoup d’efforts ont été faits pour étendre son application aux séparations de gaz. La séparation des composants de l’air, des gaz industriels de raffineries, la séparation et la récupération du CO2 du biogaz et du gaz naturel sont des exemples dans lesquels la technologie membranaire est appliquée au niveau industriel. La séparation par membranes a été substituée ou interfacée avec les méthodes conventionnelles telles que la distillation cryogénique pour produire de l’air enrichi en oxygène (fraction molaire >- 30%) qui est injecté dans les brûleurs industriels pour obtenir une température plus élevée, avec moins de consommation de gaz. Il est également possible d’utiliser la technologie membranaire pour capturer et recycler le CO2 émis par les gaz de combustion des centrales électriques et les aciéries pour résoudre le problème des gaz à effet de serre. Les membranes pour la séparation des gaz peuvent être classées en deux catégories principales, basées sur le matériau, polymère et inorganique, dans lesquelles les membranes polymériques sont plus populaires. Par rapport aux matériaux inorganiques, les membranes polymères présentent une meilleure facilité de traitement, une résistance mécanique et une densité de remplissage plus élevée, ce qui les rend appropriées pour des applications à grande échelle. Elles ne peuvent cependant pas supporter des températures élevées ou des agents chimiques agressifs. Leurs propriétés de séparation (perméabilité et sélectivité) peuvent être sévèrement compromises par les hydrocarbures condensables (C2+) lorsqu’elles sont appliquées dans les usines pétrochimiques, les raffineries et le traitement du gaz naturel. Pour améliorer les performances des membranes polymères, le nouveau concept, de membrane à matrice mixte (MMM), a été réalisé en dispersant des particules nanométriques ou microscopiques de matériaux inorganiques dans une matrice polymère. Dans ce travail, nous avons préparé de nouvelles MMMs en utilisant des polymères et des matériaux organo-métalliques (MOF) en tant que phases continue et dispersée, respectivement. Nous avons développé plusieurs techniques pour surmonter la faible adhérence interfaciale entre les deux phases qui diminue typiquement l’efficacité de séparation des MMM. Pour ce faire, dans la première partie de cette thèse (Chapitre 3), nous avons synthétisé des particules de MOF comportant des fonctions -NH2 et une série de polymères décorés de -OH pour la préparation de MMMs. La liaison physique entre les deux groupes fonctionnels s’est avérée améliorer nettement l’adhérence polymère/charge des MMMs obtenues ainsi que leur performance de séparation des gaz. Dans la partie suivante (Chapitre 4), nous avons introduit une modification post-synthétique pour former une liaison chimique entre le polymère et la charge dans les MMMs. Dans des conditions optimisées, un MOF fonctionnalisé portant des groupes réticulables a été amené à réagir avec un polymère déjà synthétisé contenant des extrémités de chaînes réactives pour produire, pour la première fois, des MMMs réticulées. Dans la dernière partie (Chapitre 5), nous avons décrit une nouvelle technique pour obtenir in-situ la liaison chimique polymère-charge pendant la synthèse du polymère. Dans cette technique, les particules de MOF ont été directement introduites dans le milieu de polymérisation. L’importance des liens polymère-charge a été étudiée en fonction du temps de polymérisation. Cette étude a montré une forte relation entre la qualité de l’interaction polymère-charge et les propriétés de séparation des gaz des MMMs. / In recent decades, membrane technology has shown its great performance in liquid phase separations such as production of drinking water from seawater. It has now attracted much scientific attention to expand its application to gas separations. Separation of air components, H2 from refinery industrial gases, separation and recovery of CO2 from biogas and natural gas are some examples in which the membrane technology is potentially applied at industrial level. The membrane based separation was either partially substituted or integrated with conventional methods like cryogenic distillation to product oxygen-enriched air (mole fraction 30% ) that is injected into industrial burners to obtain higher temperature with less gas consumption. It is also possible to use membrane technology to capture and recycle CO2 emitted from flue gas streams of power plants and steel mills in solving the greenhouse effect. The membranes for gas separation can be classified in two main categories, based on material, polymeric and inorganic, in which polymeric membranes are more popular. Compared to the inorganic, the polymer membranes show better processability, mechanical strength and higher packing density, hence, being suitable for large-scale applications. They cannot, however, withstand high temperatures or aggressive chemical agents. Their separation properties (permeability and selectivity) may be severely affected by condensable hydrocarbons (C2+) when they are applied in petrochemical plants, refineries and natural gas treatment. To enhance the performance of polymer membranes, a new concept, mixed matrix membrane (MMM), has been proposed by dispersing nano- or micro-sized particles of inorganic materials into a polymer matrix. In this work, we have prepared novel MMMs using polymers and metal organic framework (MOF) as the continuous and dispersed phases, respectively. We have developed several techniques to overcome the weak interfacial adhesion between the two phases that typically decreases the separation efficiency of MMMs. To do so, in the first part of this thesis (Chapter 3), we have synthesized a -NH2 included MOF particle and a series of -OH decorated polymers for MMM preparation. The physical bonding between the two functional groups was found to clearly improve the polymer/filler adhesion of the obtained MMMs as well as their gas separation performance. Then, in the following part (Chapter 4), we have introduced a post-synthetic modification to form chemical bonding between the polymer and filler within MMMs. Under optimized conditions, a functionalized MOF bearing crosslinkable groups was reacted with an as-synthesized polymer containing reactive chain-ends to produce, for the first time, crosslinked MMMs. In the final part (Chapter 5), we have described a novel technique to obtain in-situ the polymer-filler chemical bonding during the polymer synthesis. In this technique, the MOF particles were directly introduced into the polymerization medium. The extent of the polymer-filler link was studied as a function of polymerization time. This study has shown a strong relationship between the quality of polymer-filler interaction and the gas separation properties of the MMMs.
32

Utilisation de la technique de compoundage par polymérisation pour la préparation de nanocomposite de polyéthylène/montmorillonite

Gaboune, Asmaa 11 April 2018 (has links)
Le compoundage par polymérisation est une nouvelle approche qui a été appliquée avec succès sur différents types de renforts classiques afin de préparer des matériaux composites. Cette technique consiste à greffer un composé identique à la phase continue (matrice) sur la surface du substrat solide utilisé comme renfort pour améliorer sa dispersion dans la phase continue. Dans la présente étude, nous avons essayé d'étendre son application sur des renforts de dimensions nanométriques tels que les nanoplaquettes d'argile utilisées pour élaborer des nanocomposites à matrice polyéthylène à haute densité (HDPE). Deux types d'argile ont été utilisés, d'une part la montmorillonite sodique (CNa+ ) et d'autre part la montmorillonite intercalée par un ammonium quaternaire (C30B). Le greffage s'effectue sur des nanoplaquettes des deux montmorillonites qui, par la suite seront utilisées pour préparer des nanocomposites à matrice polyéthylène. Des analyses thermogravimétrique (TGA), de diffraction de rayon X (XRD) et de microscopie électronique à transmission (TEM) montrent que seule la (C30B) greffée donne des nancomposites intercalés/partiellement exfoliés. Suite à cela, les propriétés mécaniques et rhéologiques de ces nanocomposites ont été envisagées afin d'étudier l'influence du greffage sur leurs comportements vis-à-vis des différentes déformations subites.
33

Sustainable hydrogen production via glycerol steam reforming with and without in-situ CO2 removal : materials development and application

Shokrollahi Yancheshmeh, Marziehossadat 15 April 2024 (has links)
Au cours des dernières décennies, l'hydrogène a beaucoup attiré l'attention en tant que vecteur d'énergie verte. Actuellement, plus de 95% d'hydrogène est produit à partir de combustibles fossiles, ce qui a été remis en question par l'épuisement des ressources et l'augmentation des émissions de gaz à effet de serre. Par conséquent, les ressources renouvelables neutres en carbone telles que la biomasse et les produits chimiques dérivés de la biomasse suscitent un intérêt croissant comme alternative pour la production d'hydrogène. En tant que sous-produit principal du processus de fabrication du biodiesel, le glycérol est devenu une source prometteuse de production d’hydrogène. Bien que le reformage à la vapeur («steam reforming», SR) soit reconnu comme une approche prometteuse pour convertir le glycérol en hydrogène, le procédé est confronté à un certain nombre de défis, notamment la présence de réactions limitées par l’équilibre chimique et la nécessité d'un système couteux de purification en aval. Pour remédier ces problèmes, une solution prometteuse est l’application du procédé de reformage à la vapeur couplé à la sorption spécifique in-situ (« sorption enhanced steam reforming», SESR), dans lequel les réactions de reformage, la réaction du gaz à l’eau («water gas shift», WGS) et la capture du CO2 se produisent simultanément en utilisant un catalyseur de reformage et un sorbant solide pour le CO2. Dans ce procédé, l'élimination du CO2 se produit simultanément à la réaction de reformage, décalant la réaction du WGS vers la production d'hydrogène et produisant un flux de gaz enrichi en hydrogène en une seule étape. Les facteurs clés du succès de cette technologie sont principalement (i) les catalyseurs de reformage et les sorbants de CO2 pouvant fonctionner efficacement dans les conditions difficiles du procédé SESR et (ii) le moyen d’associer le catalyseur au matériau sorbant. Cette thèse porte sur le développement de catalyseurs et de matériaux bifonctionnels catalyseur-sorbant efficaces pour la production durable d'hydrogène par le SR et le SESR duglycérol (SRG et SESRG). Plus spécifiquement, ce travail fait l’objet de quatre directions principales: (i) l’étude de l’effet de l’addition de vapeur pendant la carbonatation ou la calcination sur les performances du sorbant Ca9Al6O18-CaO lors de la capture du CO2, (ii) le développement des matériaux bifonctionnels Ca9Al6O18−CaO/xNiO (x = 15, 20et 25% en poids) et Ca9Al6O18−CaO/20NiO−yCeO2 (y = 5, 10 et 15% en poids) et l’étude de l’effet du CeO2 sur la stabilité des matériaux en fonctionnement cyclique SESRG/régénération, (iii) le développement d’une nouvelle méthode de synthèse duspinelle NiAl2O4 plus facilement réductible et l’étude de l'effet de l'addition de CeO2 sur ses performances catalytiques, et (iv) le développement d’une nouvelle méthode de synthèse de deux matériaux bifonctionnels catalyseur-sorbant à base de Ni-CaO pour obtenir une distribution très uniforme des sites actifs catalytiques. (i) Les performances du sorbant Ca9Al6O18-CaO pour la capture du CO2 ont été étudiées en présence de 2.3 et 9.5% en volume de vapeur. Les résultats obtenus ont révélé que la réactivité du sorbant était remarquablement améliorée pour les deux concentrations de vapeur injectée lors de l'étape de carbonatation. Dans le cas de l'addition de vapeur pendant la calcination, la performance de la capture a été influencée négativement ou positivement en fonction de la concentration de vapeur: pour 2.3%, la réactivité du sorbant a été diminuée, tandis que la présence de 9.5% a entraîné une augmentation de la capacité de capture pendant les 9 premiers cycles. (ii) Deux séries de matériaux bifonctionnels catalyseur-sorbantont été développées pour la production d’hydrogène de haute pureté par SESRG. L'utilisation des matériaux Ca9Al6O18-CaO/xNiO (x = 15, 20 et 25% en poids) pendant cinq cycles SESRG/régénération a révélé que leur réactivité diminuait rapidement, principalement à cause du frittage duCaO et du dépôt de coke. De ce fait, la période de pre-breakthroughet le rendement en hydrogène ont diminué de façon notable pendant l’opération cyclique. Il est intéressant de noter que l’ajout de CeO2 au matériau le plus efficace (Ca9Al6O18−CaO/20NiO) a permis d’améliorer considérablement sa stabilité. Le matériau bifonctionnel activé avec 10% (en poids) de CeO2 a démontré les meilleures performances: pureté et rendement en H2de 98% et 91%, respectivement, pendant 20 cycles SESRG/régénération. (iii) Une nouvelle méthode impliquant la calcination en une ou deux étapes d'un alcoolate de métal mixte Ni-Al(«Ni-Al mixed-metal alkoxide», (Ni-Al)-Glycerate) a été développée pour la synthèse de spinelle de NiAl2O4. À des fins de comparaison, le spinelle de NiAl2O4 a également été synthétisépar la méthode classique de co-précipitation suivie de la technique de calcination en deux étapes. Les résultats de la caractérisation des matériaux ont révélé que la synthèse de spinelle de NiAl2O4 parla calcination de (Ni-Al)-Glycérateen deux étapesa conduit à la formation d'un catalyseur plus facilement réductible et d'une structure poreuse plus développée. Cet échantillon représentait le rendement en H2le plus élevé (76.38%) et la conversion du glycérolen produits gazeux (95.42%) par rapport aux autres échantillons. Afin de réduire ou éviter la formation de coke, CeO2 (10% en poids) a été incorporé dans l’échantillon préparé parla calcination de (Ni-Al)-Glycérateen deux étapes. L'analyse thermogravimétrique du catalyseur promu par CeO2 après la réaction de reformage a révélé que la formation de coke était presque complètement supprimée. (iv) La méthode développée pour la synthèse despinelle de NiAl2O4 dans les travaux précédents a été combinée autraitement du sorbant à base de CaO avec une solution d’éthanol/eau afin de synthétiser deux nouveaux matériaux bifonctionnels catalyseur-sorbant à base de Ni-CaO pour la production d'hydrogène via SESRG. Les expériences effectuées en opération cycliques SESRG/régénération ont montré une activité et une stabilité supérieures pour le matériau bifonctionnel Ca3Al2O6-CaO/NiO-CeO2 (pureté de l’H2 d’environ 96% pendant 10 cycles), par rapport à NiAl2O4-CaO/NiAl2O4-CeO2 (pureté de l’H2 d’environ 90% pendantles 6 premiers cycles, diminuant à 86% au cours des 4 derniers cycles). En conclusion, les résultats présentés dans cette thèse montrent que le SESRG peut être une approche très prometteuse pour la production d’hydrogène de haute pureté en une seule étape, à condition que les matériaux bifonctionnels catalyseur-sorbantutilisés possèdent une distribution uniforme des sites actifs catalytiques et à sorption à l’échelle nanométrique et une résistance élevée au frittage de CaO et formation de coke. Pour préparer des matériaux bifonctionnels catalyseur-sorbant présentant ces caractéristiques, deux approches principales ont été utilisées dans ce travail: (i) le développement de nouvelles méthodes de synthèse permettant une distribution homogène des éléments ciblés (Ca, Ni, Alet Ce dans cette étude) et (ii) l'utilisation de CeO2 comme promoteur prometteur pour réduire ou supprimer la formation de coke et améliorer la stabilité cyclique des particules de CaO. / Over the past few decades, hydrogen has attracted a great deal of attention as a green energy carrier. Currently, more than 95 % of hydrogen is produced from fossil fuels, which has been questioned by the depletion of resources andincrease of greenhouse gas emissions. Therefore, renewable, carbon-neutral resources such as biomass and biomass-derived chemicals has been receiving a growing interest as an option to produce hydrogen. As a main by product in the biodiesel manufacturing process, glycerol has emerged as a promising source for hydrogen production. Although steam reforming (SR) is being recognized as a promising approach for converting glycerol to hydrogen, this process faces a number of challenges including the presence of equilibrium-limited reactions and the need of an expensive downstream purification system. To alleviate these problems, a promising alternative is sorption enhanced steam reforming (SESR) process, in which steam reforming, water gas shift (WGS), and CO2 capture reactions occur simultaneously using areforming catalyst and a CO2solid sorbent. In this process, CO2 removal occurs simultaneously with the reforming reaction, shifting the WGS reaction towards hydrogen production and producing a hydrogen-enriched gas stream in a single step. The key factors in the successful application of this technology are mainly: (i) reforming catalysts and CO2 sorbents that can work efficiently under the harsh conditions of SESR process and (ii) mixing pattern of catalyst and sorbent. This thesis focuses on the development of efficient catalyst and catalyst-sorbent bifunctional materials for sustainable hydrogen production by SR and SESR of glycerol (SRG and SESRG). More specifically, four main objectives of our workare: (i) investigating the influence of steam addition during either carbonation or calcination on the CO2 capture performance of Ca9Al6O18-CaO sorbent, (ii) developing Ca9Al6O18−CaO/xNiO (x = 15, 20, and 25 wt.%) and Ca9Al6O18−CaO/20NiO−yCeO2(y = 5, 10, and 15 wt %) catalyst-sorbent bifunctional materials and studying the influence of CeO2 on the material stability incyclic SESRG/regeneration operation, (iii) proposing a new method for the synthesis of a more readily reducible NiAl2O4 spinel and studying the influence of CeO2 addition on its catalytic performance, and (iv) novel synthesis of two Ni-CaO-based catalyst-sorbent bifunctional materials with highlyuniform distribution of catalytic active sites. (i) CO2 capture performance of Ca9Al6O18-CaO sorbent was investigated in the presence of two concentrations of steam, 2.3 and 9.5 vol. %.The obtained results revealed that the sorbent reactivity was remarkably enhanced for both concentrations of steam injected during carbonation step. In the case of steam addition during calcination, the CO2 capture performance was influenced negatively or positively depending on the concentration of steam. For 2.3 vol.% steam, the sorbent reactivity was worsened, while the presence of 9.5 vol.% steam led to an increase in the CO2capture capacity during 9 initial cycles.(ii) Two series of catalyst-sorbent bifunctional materials were developed for the sustainable production of high-purity hydrogen by SESRG. Using Ca9Al6O18−CaO/xNiO (x = 15,20, and 25 wt.%) materials during five SESRG/regeneration cycles revealed that their reactivity was rapidly deteriorated mainly due to CaO sintering and coke deposition. As a result, the pre-breakthrough time and hydrogen yield decreased notably over five cycles. Interestingly, the addition of CeO2 to the most efficient catalyst (Ca9Al6O18−CaO/20NiO) led to a significant enhancement in material stability during cyclic operation. The bifunctional material promoted with 10 wt.% of CeO2 demonstrated the best performance, with a stable H2purity of ∼98% and H2yield of ∼91% over 20SESRG/regeneration cycles. (iii) A novel method, involving one-or two-step calcination of Ni-Al mixed-metal alkoxide((Ni-Al)-Glycerate), was developed for the synthesis of NiAl2O4 spinel. For comparison purposes, the NiAl2O4 spinel was also synthesized throughthe conventional co-precipitation method followed by two-step calcination technique. The characterization results revealed that the synthesis of NiAl2O4 spinel through two-step calcination of (Ni-Al)-Glycerateresulted in the formation of a more easily reducible catalyst and a more developed porous structure. This sample showed the highest H2yield (76.38 %) and glycerol conversion into gaseous products (95.42 %) when compared to other two samples. In order to avoid or reduce coke formation, 10 wt.% of CeO2 was incorporated into the sample prepared by two-step calcination of (Ni-Al)-Glycerate. The thermogravimetric analysis of the CeO2-promoted catalyst after SRG reaction revealed that the coke formation was almost completely suppressed. The method developed for the synthesis of NiAl2O4 spinel in the previous work was combined with the ethanol/water treatment of CaO-based sorbents to synthesistwo new NiCaO-based catalyst-sorbent bifunctional materials for hydrogen production via SESRG. Cyclic SESRG/regeneration experiments showed that the Ca3Al2O6-CaO/NiO-CeO2 bifunctional material possessed higher activity and stability when compared to NiAl2O4-CaO/NiAl2O4-CeO2. The former one exhibited a high constant H2 purity of around 96% over 10 cycles, while the latter showed a H2 purity of approximately 90% over the first 6 cycles, followed by the further decrease to 86 % over the last 4 cycles. In conclusion, the results presented in this thesis show that SESRG can be a very promising approach for high-purity hydrogen production in a single step, providing that the employed catalyst-sorbent bifunctional materials possess uniform distribution of catalytic and sorption active sites on nanoscale and high resistance against CaO sintering and coke formation. To prepare catalyst-sorbent bifunctional materials with these characteristics, two main approaches were employed in this work: (i) developing new synthesis methods that provide a homogeneous distribution of targeted elements (Ca, Ni, Al, and Ce in this study) and (ii) using CeO2 as a promising promoter to reduce or suppress coke formation and enhance the cyclic stability of CaO particles.
34

Gold cyanidation : gold associated with silver minerals embedded within base-metal sulphide matrices

Khalid, Muhammad 02 July 2024 (has links)
Les problématiques dans le traitement des minerais aurifères deviennent de plus en plus significatives avec la déplétion des gisements à haute teneur autour du monde. L’or est trouvé principalement sous forme métallique dans la nature et est fréquemment associé avec des minéraux d’argent ou des sulfures métalliques. Dans la présente thèse, le rôle des minéraux d’argent sur la cyanuration de l’or au sein de sulfures métalliques est étudié en détail relativement aux interactions galvaniques et aux phénomènes de passivation de surface. Puisque les contacts galvaniques permanents naturellement présents à l’intérieur des grains des minéraux sont difficiles à répliquer en utilisant des montages standards d’électrodes à disques rotatifs ou de la pulpe de minerais riches en sulfures, une stratégie utilisant un réacteur à lit fixe (PBR) a été adoptée afin d’isoler et de quantifier les contributions des interactions galvaniques et des réactions de passivation sur les taux de lixiviation de l’or et de l’argent au sein de sulfures métalliques. Des mélanges d’or, de minéraux d’argent et d’autres sulfures métalliques ont été placés dans le réacteur à lit fixe afin de créer des contacts galvaniques inter-particules permanents parmi les constituants. La pyrite, la sphalérite et la stibnite ont été choisis comme sulfures métalliques modèles. De l’argent métallique (Ag), de l’acanthite Ag₂S) et de la pyrargyrite (Ag₃SbS₃) sont pour leur part les minéraux d’argent qui ont été étudiés. Les interactions galvaniques entre l’or, l’argent et la pyrite ainsi que la sphalérite ont résulté en un comportement complexe de la lixiviation de l’or et de l’argent sous l’impact direct des contacts galvaniques ainsi que sous l’impact des effets de passivation. Les minéraux d’argent ont pour leur part démontré un effet amoindrissant pour la lixiviation de l’or dans de la chalcopyrite et de la stibnite. Des stratégies ont été investiguées pour améliorer la cinétique de lixiviation de l’or en présence de minéraux d’argent et de sulfures métalliques. Des solutions de cyanure contant des sels de plomb ont augmenté la récupération de l’or et ont permis une neutralisation des effets négatifs issus de la présence des sulfures métalliques, particulièrement dans le cas de la chalcopyrite. De plus, l’addition de plomb a augmenté les cinétiques de lixiviation de l’or de manière significative pour l’or et l’argent associé à de la pyrite, de la chalcopyrite et de la sphalérite. Un prétraitement à l’aide d’une solution alcaline d’acétate de plomb a été étudié pour les mêmes couples de minéraux et il a été démontré que cette stratégie augmente la récupération de l’or dans le cas de la pyrite, de la chalcopyrite et de la sphalérite. D’autre part, la stibinite a démontré un effet net de réduction de la dissolution de l’or avec des minéraux d’argent. Des films recouvrant la surface des particules d’or dans le cas de la cyanuration de l’or en présence des sulfures métalliques ont aussi été observés dans le cas de la chalcopyrite et de la stibnite. / Numerous non-idealities in gold processing are becoming increasingly significant with the depletion of free-milling oxide ores around the globe. Gold is mostly found in nature in metallic form and is associated with silver minerals and bae-metal sulphides. In the present thesis work, the role of silver minerals on gold cyanidation with base-metal sulphides was elucidated in detail on the relative importance of galvanic interactions and passivation phenomena. As the permanent galvanic contacts, inherently present within the ore grains, are hard to achieve between gold rotating disk electrode and slurried base-metal sulphide-rich ores, a packed-bed reactor (PBR) strategy was thus adopted to single out and quantify the virtual contributions of galvanic interaction and passivation effect on the gold and silver leaching rates during gold cyanidation with silver minerals and base-metal sulphides. The mixtures of gold, silver-minerals and sulphides were filled in the PBR to ensure the permanent particle-particle micro-electrical contacts among all ore constituents. Pyrite, chalcopyrite, sphalerite and stibnite were the sulphidic minerals investigated in the present gold-silver cyanidation study. Metallic silver (Ag), acanthite (Ag₂S) and pyrargyrite (Ag₃SbS₃), were the silver-minerals taken into account. Galvanic interactions were found to alleviate the leaching of gold and silver to various extents, for gold and silver minerals associated with pyrite and sphalerite, both under galvanic and passivation impact from the sulphide minerals. Silver minerals were found retarding to the gold leaching for chalcopyrite and stibnite minerals. Strategies were investigated to enhance the gold leaching kinetics in the presence of silver minerals and base-metal sulphides. Lead containing cyanide solution enhanced gold recovery and was found to neutralize significantly the negative effect of sulphidic minerals, particularly for chalcopyrite. Moreover, lead addition enhanced gold leaching kinetics significantly for gold and silver minerals associated with pyrite, chalcopyrite and sphalerite. Pre-treatment with alkaline lead acetate tested on sulphide associated mixtures of gold and silver minerals affirmed enhanced gold recovery in case of pyrite, chalcopyrite and sphalerite minerals. Stibnite found severely retarding towards gold dissolution with silver minerals. Surface obstructing films were observed on gold particles for gold cyanidation with silver minerals and base-metal sulphides in case of chalcopyrite and stibnite.
35

Contribution to the modeling of packed bed reactors under plugging conditions in single and two phase trickle flow

Ortiz-Arroyo, Arturo 11 April 2018 (has links)
Les réacteurs à lit fixe arrosé vers le bas en régime ruisselant se comportent comme des filtres en profondeur quand des liquides contaminés entrent en contact avec le lit. La rétention des solides de petite taille occasionne une augmentation progressive de la perte de charge. Éventuellement, l’opération du réacteur doit être interrompue et le lit colmaté est écarté, même si le matériel catalytique qui le constitue demeure encore actif occasionnant de la sorte des pertes économiques importantes. Cet ouvrage propose des méthodes et des modèles pour la simulation du colmatage du lit fixe avec des écoulements mono et biphasiques. Deux niveaux d’analyse sont présentés. Au niveau du lit complet, le modèle Eulérien-Eulérien, qui est une procédure de la mécanique des fluides numérique (CFD), permet l’inclusion des équations de fermeture pour le transfert de masse et de quantité de mouvement dans le contexte de la filtration en profondeur (deep bed filtration, DBF).. A l’échelle d’un seul élément de garnissage, l’analyse de trajectoire est couramment acceptée pour l’étude du taux de capture de particules dans le cadre de la filtration en profondeur dans le lit fixe. Dans le cas de l’écoulement monophasique, la capture de particules est calculée par l’expression de Rajagolapan & Tien (1976). L’insertion de cette expression dans le code CFD fourni des informations utiles à propos du comportement de la colonne en état transitoire. Dans le cas de l'écoulement biphasique en régime ruisselant, aucune procédure d’analyse de trajectoire n'est connue. En conséquence, une toute nouvelle adaptation de cette méthodologie est proposée. En utilisant un modèle de film pour représenter le réacteur à lit arrosé, l'analyse de TA est accomplie dans les cas suivants; monophasique et biphasique avec déposition monocouche et multicouche. Les tendances de TA concordent avec l'analyse de Rajagopalan et Tien (1976) démontrant que les mécanismes de capture sont du même type que ceux qui se présentent dans l'écoulement monophasique et qu’ils sont modifiés uniquement par la présence de la phase gazeuse. Les résultats ont été comparés aux données expérimentales de Gray et al. (2002). La rétention liquide statique (SLH) est un paramètre qui, selon des observations expérimentales, affecte sensiblement la capture en conditions multiphasiques. Une collection presque exhaustive des données de la SLH a été construite à partir de la littérature expérimentale disponible. Avec ces données de SLH et avec l'utilisation d'un algorithme considérant un minimum d'énergie de ménisque, des angles de contact moyennés pour une gamme de liquides et de garnissages ont été obtenus. En réinsérant les angles de contact calculés dans un logiciel de réseaux neuronaux, une corrélation qui surpasse toutes les corrélations disponibles a été obtenue. À l’avenir, il serait souhaitable que la rétention liquide statique soit incluse dans le modèle de colmatage, ou à tout le moins dans l’analyse des trajectoires. / Trickle bed reactors (TBR) behave as deep bed filtration (DBF) units when the liquid feedstock is contaminated with fine particles. Solid retention causes an ever increasing pressure drop in the bed that leads to eventual halting of the installation. Industry response has been so far to change the plugged, but still active, catalytic bed with a fresh catalyst packing causing important profit losses of the process. In this work two levels of analysis are proposed for the DBF in single and two phase trickle flow conditions. At bed scale, an Eulerian-Eulerian CFD approach is used that provides the framework for the insertion of closure equations for the mass transfer in DBF. At pore scale, Trajectory Analysis (TA) is used as is an accepted procedure for the analysis of Deep Bed Filtration (DBF) in single-phase aqueous systems. In single phase flow through packed beds, the known TA based expression of Rajagolapan and Tien (1976) is used. By inserting this expression in the CFD approach it becomes possible to obtain valuable information about the transient structure and development of plugging. Benchmarking was obtained with the work of Narayan et al. (1997). In two phase trickle flow, no TA approach is known so far and an all new extension of this methodology is proposed in this work. Using a film model to represent the trickle bed reactor, TA analysis is performed in single phase, one-layer and multilayer deposition in TBR conditions. TA tendencies were akin to the analysis of Rajagopalan and Tien (1976) demonstrating that deposition mechanisms are of the same kind as in the single phase flow only modified by the presence of the gas phase. Results were compared with the data of Gray et al. (2002). Static liquid hold-up (SLH) is a parameter that, according to experimental observations, affects significantly solid deposition in multiphase conditions. An almost exhaustive collection of SLH values was constructed from the available experimental literature. With the SLH data and with the use of a minimum energy algorithm, average contact angles for a wide range of liquids and packing were obtained. Reinserting the calculated contact angles in neural network software, a correlation was obtained which outperforms all the available correlations. It is hoped that in future work, this last parameter, the SLH, will be included in the plugging model or at least in the trajectory analysis at the collector scale.
36

Fractionnement et analyse de fluides biologiques stimulant la prolifération des myoblastes humains

Chaabane, Hanan 23 April 2018 (has links)
Une des thérapies cellulaires pour le traitement de la Dystrophie Musculaire de Duchenne consiste à greffer aux patients des myoblastes provenant de donneurs sains. Ces myoblastes doivent être cultivées dans un milieu contenant du sérum fœtal bovin (FBS), or, cet additif n'est pas souhaitable dans le cadre d'une thérapie cellulaire. En effet, la présence de FBS dans le milieu de culture présente un problème de sécurité pour la santé humaine. Par ailleurs, les protéines qui composent le FBS sont très nombreuses et se trouvent dans des proportions extrêmement déséquilibrées. Identifier les protéines responsables de l’activité du FBS constitue donc un défi de taille. L’objectif global de ce projet est de mettre au point une série de méthodes de fractionnement de fluides biologiques, le FBS et le colostrum bovin, dans l’espoir de découvrir des fractions définies stimulant la croissance des myoblastes. Dans cette étude, les procédures de fractionnement du FBS choisies sont de trois types: l’électrodialyse sur membrane d’ultrafiltration, ainsi que deux méthodes affinitaires. D’autre part, du colostrum bovin dénommé, LP1.5, provenant de la société Métanature, a été testé pour son effet sur la prolifération des myoblastes. Les résultats montrent que le fractionnement du FBS a été réalisé avec succès. Néanmoins, les fractions obtenues n’ont pas montré d’effet significatif sur la croissance des myoblastes. En ce qui concerne les travaux avec le colostrum bovin, les fractions obtenues ont montré un effet stimulant sur la croissance des myoblastes, en présence d’une concentration réduite en FBS.
37

Hydrodynamics of trickle bed reactors : steady- and nonsteady-state operations

Aydin, Bora 13 April 2018 (has links)
Parmi les réacteurs triphasiques gaz-liquide-solide utilisés dans la pratique industrielle, les réacteurs catalytiques à lit fixe arrosé à cocourant de gaz et de liquide vers le bas, i.e., trickle bed reactors (TBR), sont très répandus en particulier dans divers processus de transformation à hautes température et pression. Les travaux expérimentaux se poursuivent depuis plus de quatre décennies sur la quantification des paramètres hydrodynamiques (transition des régimes d'écoulement, perte de pression biphasique, rétention liquide, efficacité de mouillage, etc.) pour cette configuration de réacteurs. Différentes approches ont été mises en œuvre par un grand nombre d’équipes de recherche pour mesurer ces paramètres hydrodynamiques dans le but de construire des outils de prédiction et de description par rapport aux conditions réelles d’opération des processus à l’échelle industrielle. La présente contribution se propose de répondre à la question suivante : Dans quelle mesure les connaissances accumulées à partir d’observations à l’échelle laboratoire dans les conditions ambiantes sont-elles fiables pour opérer un TBR à pression et température élevées? Une question sous-jacente à la précédente concerne le comportement hydrodynamique avec la température lorsque le réacteur est alimenté par un liquide non-newtonien. L'intensification des procédés est une approche en vogue et prometteuse pour continuer à apporter des perfectionnements (gains en économie et en efficacité) au réacteur TBR. Aussi, l’induction artificielle d’impulsions est-elle envisagée dans cette étude en tant que méthode d'intensification de processus pour des températures et pressions non-ambiantes. Le présent travail tentera de démontrer les avantages de plusieurs variantes de l'opération périodique sur l'hydrodynamique des TBR pour des systèmes coalescent, non-newtonien et moussant à des températures et pressions augmentées. / Trickle bed reactor (TBR) is one of the most widely used three-phase reactors in various processes mostly operated at high temperature and high pressure. The ongoing experimental work on the hydrodynamic parameters (flow regime transition, pressure drop, liquid holdup, wetting efficiency etc.) of this packed bed reactor configuration goes to early 1960’s. Different techniques were applied by different researchers for the measurement of these hydrodynamic parameters which let the comparison and the decision of more convenient method by means of doing investigations at conditions near to that of industrial processes. Process intensification is considered to be a leading approach for the ongoing research on the economic reduction and reactor efficiency enhancement. Artificial induction of pulses is pronounced as one of the methods for the process intensification in TBRs. As trickle bed reactor is also used in biochemical processes, and the initial liquid behaving like a Newtonian fluid could turn into a non-Newtonian fluid after various biochemical processes; it is emphatic to study TBR hydrodynamics with non-Newtonian systems. Despite large amount of work exists in the literature for steady state hydrodynamics of TBR operating at high pressure; the hydrodynamic behavior of TBR at high temperature has been left as a concealed issue. Additionally none of the experimental work performed to demonstrate the advantages of periodic operation on TBR hydrodynamics dealt with the effects of increased temperature and pressure. This study illustrates the hydrodynamics of TBR at increased temperature and pressure under constant throughput flow and cyclic operation.
38

Novel strategies to develop efficient titanium dioxide and graphitic carbon nitride-based photocatalysts

Nguyen, Chinh Chien 07 May 2024 (has links)
Afin de résoudre les problèmes environnementaux et énergétiques modernes, ces dernières années ont vu le développement de catalyseurs photocataytiques capables d’utiliser la lumière solaire. En effet, les possibles applications des semiconducteurs présentant des propriétés photocatalytiques dans les domaines de la production d’hydrogène ou la dégradation de polluants organiques ont généré un grand intérêt de la part de la communauté scientifique. Actuellement, les photocatalyseurs à base de dioxyde de titane (TiO₂) et de nitrure de carbone graphitique (g-C₃N₄) sont considérés comme les matériaux les plus étudiés pour leurs faibles coûts et leurs propriétés physico-chimiques exceptionnelles. Cependant, la performance photocatalytique de ces matériaux reste encore limitée, à cause de la recombinaison rapide des porteurs de charge et et d'une absorption limitée de la lumière. En générale, malgré des caractéristiques exceptionnelles, ces matériaux ne contribuent pas significativement à la séparation de charge et l’absorption de la lumière lorsqu’ils sont produits par des méthodes conventionnelles. L'objectif de cette thèse est de développer de nouvelles voies pour la production de matériaux efficaces basés sur TiO₂ et g-C₃N₄). Nous avons d'abord préparé de la triazine (CxNy) qui fonctionne comme un co-catalyseur d'oxydation ce qui facilite la séparation des paires «électron-trou» dans le système du photocatalyseur creux de type Pt-TiO₂-CxNy. La présence simultanée de Pt et de CxNy, qui servent comme co-catalyseurs de réduction et d'oxydation, respectivement, a permis une amélioration remarquable des performances photocatalytiques du TiO₂. De plus, nous avons développé une nouvelle approche, en utilisant un procédé de combustion de sphère de carbone assisté par l’air, pour préparer du C/Pt/TiO₂ . Ce matériau possède de nombreuses propriétés uniques qui contribuent de manière significative à augmenter la séparation « électron-trou », et en conséquence, à améliorer la performance photocatalytique. Dans le but de développer un matériau qui soit capable de fonctionner sous les rayons du soleil et dans l'obscurité, nous avons développé un photocatalyseur creux à double enveloppes : le Pt-WO₃/TiO₂-Au. Ce matériau a montré non seulement une forte absorption de la lumière solaire, mais aussi une séparation des charges élevée et une haute capacité de stockage d'électrons. Par conséquent, ce type de photocatalyseurs a montré une dégradation efficace des polluants organiques, à la fois sous la lumière visible (λ ≥ 420 nm) et dans l'obscurité. En ce qui concerne le g-C₃N₄, nous avons exploité la relation entre les lacunes d’azote et les propriétés plasmoniques des nanoparticules d’or (Au). Ce type de photocatalyseur du Au/g-C₃N₄ a été préparé en présence d’alcali suivi par une post calcination. En effet, les lacunes d’azote ainsi produites permettent le renforcement des interactions entre l’or et le g-C₃N₄ et des propriétés plasmoniques de l’or. Ces caractéristiques exceptionnelles renforcent l'utilisation efficace de l’énergie solaire ainsi que la séparation des paires « électron-trou », ce qui contribuent à la performance photocatalytique pour la production d'hydrogène du photocatalyseur. Afin d’améliorer la capacité d’absorption de la lumière visible de g-C₃N₄, une nouvelle voie de synthèse dénommée « poly-alcaline » a été développée. La possibilité d’ajouter du polyéthylèneimine (PEI) et de l’hydroxyde de potassium (KOH) pour générer de nombreux centres lacunaires en azote ainsi que des groupes hydroxyles dans la structure du matériau, a été explorée afin d’optimiser l’efficacité du matériau. De telles modifications ont démontré leurs capacités à réduire la bande interdite et à provoquer plus facilement la séparation de charges améliorant ainsi les propriétés photocatalytiques du photocatalyseur vis-à-vis de la production d’hydrogène. Cette méthode ouvre donc une nouvelle voie d’avenir pour préparer des photocatalyseurs nanocomposites efficaces possédant à la fois, une forte d’absorption de la lumière et une bonne séparation de charges. / The utilization of solar light-driven photocatalysts has emerged as a potential approach to deal with the serious current energy and environmental issues. Over the past decades, semiconductor-based photocatalysis has attracted an increasing attention for diverse applications including hydrogen production and the decomposition of organic pollutants. Currently, titanium dioxide (TiO₂) and graphitic carbon nitride (g-C₃N₄)-based photocatalysts have been considered as the most investigated materials because of their low cost, outstanding physical and chemical properties. However, their photocatalytic performances are still moderate owing to the fast charge carrier recombination and limited light absorption. The main target of the research presented in this thesis is to develop novel routes to prepare efficient materials based on TiO₂ and g-C₃N₄. These materials possess prominent features, which contribute to address the fast charge separation and light absorption problems. We firstly have prepared triazine (CxNy) acting as an oxidation co-catalyst, which efficiently facilitates electron-hole separation in a Pt-TiO₂-CxNy hollow photocatalyst system. The co-existence of Pt and CxNy functioning as the reduction and oxidation co-catalysts, respectively, has remarkably enhanced the photocatalytic performance of TiO₂. Next, we have also developed a new approach employing the air- assisted carbon sphere combustion process in preparing C/Pt/TiO₂. This material possesses many salient properties that significantly boost the electron-hole separation leading to enhanced photocatalytic performance. In an attempt to design a material that can operate under sunlight and in darkness, we have introduced Pt-WO₃/TiO₂-Au double shell hollow photocatalyst. The material has shown not only strong solar light absorption but also efficient charge separation and electron storage capacity. As a result, this type of photocatalyst exhibits a high activity performance for the degradation of organic pollutants both under visible light (λ ≥ 420 nm) and in the dark. Regarding to g-C₃N₄, we have explored the relationship between nitrogen vacancies and the plasmonic properties of Au nanoparticles employing alkali associated with the post-calcination method to prepare Au/g-C₃N₄. In fact, the produced nitrogen vacancies in the structure of g-C₃N₄ essentially enhance the interaction at Au/g-C₃N₄ interface and the plasmonic properties of Au nanoparticles. These outstanding features contribute to enhance the utilization of solar light and electron-hole separation that prompt the photocatalytic performance towards hydrogen production. Finally, we have employed a novel poly-alkali route to prepare a strong visible light absorption photocatalyst-based g-C₃N₄. The co-existence of PEI and KOH, which induces numerous nitrogen vacancies and incorporated hydroxyl groups in the structure of the resulted material, has been explored for the first time. These modifications have been proved to narrow the bandgap and facilitate the charge separation leading to enhance the solar light-driven hydrogen production. This method also opens up a new approach to prepare efficient nanocomposite photocatalysts possessing both strong light absorption and good charge separation.
39

Offline and online characterization of polymer/polymer systems by fluorescence technique

Fang, Haixia 13 April 2018 (has links)
La première partie de cette thèse est consacrée à l'étude de la miscibilité de trois systèmes de polymères [styrène-anhydride maléique (SMA)/(styrène-acrylonitrile (SAN 17 et SAN29)) et SMA/poly(méthyl méthacrylate) (PMMA)l en utilisant les techniques de la calorimétrie différentielle (DSC) et de la fluorescence. Les deux copolymères styrèneacrylonitrile (SAN 17 et SAN29) ont respectivement 17 et 29% en poids d'acrylonitrile. Le traceur de fluorescence utilisé est un SMA marqué à l'anthracène (SMA-An). Les résultats ont montré que l'intensité du signal de fluorescence du système SMA/SAN17 varie en fonction de la composition presque linéairement entre celles des composants purs SMA et SAN 17, ce qui est une caractéristique d'un système miscible. Cependant, pour le système SMA/SAN29, l'intensité du signal de fluorescence est plus élevée que celles des composants purs SMA et SAN29, une caractéristique d'un système immiscible. Cette immiscibilité mène à une accumulation du traceur SMA-An dans la phase SMA et par conséquent à une augmentation de l'intensité de fluorescence du système SMA/SAN29. La miscibilité du système SMA/PMMA a été caractérisée dans ce travail par des mesures d'extinction de fluorescence de l'anthracène en présence d'anhydride succinique et ainsi que par l'usage des fonctions acide succinique greffées sur la chaîne moléculaire même de SMA. La seconde partie de cette thèse est consacrée à l'étude de la miscibilité de trois systèmes de polymères [SMA8 (8wt% de MA)/polystyrène (PS), SMA 14 (14wt% de MA)/SAN et PMMA/ poly(méthyl méthacrylate-co-éthyl acrylate)(PMMAEA)] dans une extrudeuse bi-vis (TSE) en se basant sur la distribution des temps de séjour (RTD) caractérisée par la technique de fluorescence. Deux traceurs de fluorescence ont été utilisés dans cette étude, SMA8-An et SMA 14-An. La RTD donne non seulement l'histoire des temps de séjours des composants du mélange à l'intérieur de la TSE, mais également leur degré de malaxage. Le temps de séjour moyen (t ), le nombre de Peclet (Pe) et l'intensité du signal de fluorescence ont été caractérisés en fonctions de la composition des trois systèmes ci-dessus. Pour les deux systèmes miscibles, SMA14/SAN et PMMA/PMMAEA, t est dépendant de la composition des deux systèmes alors qu'il ne l'est pas pour le système immiscible, SMA8/PS. Le nombre de Pe, qui est une mesure de la qualité de la dispersion le long de Textrudeuse, présente une déviation négative par rapport à la règle d'additivité pour le système miscible (c-à-d, un meilleur malaxage) et une déviation positive pour le système immiscible (c-à-d, moins de malaxage). L'effet de la réaction d'imidization partielle du SMA8 avec de l'aniline (SMI est le produit de la réaction) sur sa miscibilité avec le poly(vinyl méthyl éther) (PVME) et le PMMA a aussi été étudié. Il a été observé que les systèmes SMI/PVME et SMI/PMMA possèdent une température de solution critique inférieure (LCST). L'imidization du SMA8 augmente la température de séparation de phases du mélange de SMA/PVME et diminue celle du système SMA/PMMA. La dernière partie de cette thèse concerne la caractérisation en ligne du taux de greffage du polypropylène (PP) greffé anhydride maléique (PP-g-MAH) par le procédé d'extrusion réactive. En premier temps, l'extinction de fluorescence des pluorophores phénanthrène (Ph) et anthracène (An) par l'anhydride maléique et l'anhydride n-octadécenylsuccinique (ODSA) a été étudiée à l'état solide dans des films de PP et en solution dans le chloroforme. L'ODSA a été choisi comme composé modèle pour le PP-g-MAH car l'émission en fluorescence Ph dans les films de PP est atténuée plus efficacement par l'ODSA que par le MAH. Ceci peut être relié à la plus grande miscibilité du Ph avec l'ODSA qu'avec le MAH. La mesure en-ligne du taux de greffage de réaction PP-g-MAH a été ensuite réalisée sur une extrudeuse bi-vis. Un autre traceur, le fluoranthene (FA), a été choisi pour les raisons suivantes: (a) sa basse efficacité d'extinction par le MAH, (b) il ne présente aucune réaction avec le MAH, (c) il possède une intensité d'émission plus élevée que celle du Ph. La mesure a été fondée sur l'hypothèse que l'émission de fluorescence du FA a été éteinte par la molécule résiduelle et libre de MAH mais pas éteinte par le MAH greffé dans l'écoulement le long de l'extrudeuse.
40

Continuous production of porous hollow fiber mixed matrix membranes for gas separation

Razzaz, Zahir 12 April 2024 (has links)
Ce travail présente une nouvelle méthode sans solvant pour la production de membranes à fibres creuses pour la séparation des gaz. La technologie repose sur une extrusion continue suivie de l’étirage de polyéthylène expansé présentant une densité cellulaire élevée et une distribution uniforme de la taille des cellules. Pour atteindre cet objectif, une optimisation expérimentale et systématique a été appliquée afin de produire une morphologie de mousse riche et uniforme pour développer une structure adaptée aux performances de la membrane pour la séparation des gaz. À partir des échantillons obtenus, un ensemble complet de caractérisations comprenant les propriétés morphologique, mécanique, physique et de transport gazeux a été réalisé. En particulier, les performances de séparation ont été étudiées pour différents gaz (CO₂, CH₄, N₂, O₂ et H₂). La première étape a consisté à combiner du polyéthylène linéaire de basse densité (LLDPE) avec un agent d'expansion chimique (azodicarbonamide, CBA) afin d'optimiser le procédé en termes de la concentration en CBA et du profil de température, ainsi que la vitesse d'étirage. Les résultats ont confirmé que des échantillons avec une densité cellulaire plus élevée peuvent améliorer les propriétés de perméation des gaz des membranes. La deuxième partie a examiné l’ajout de polyéthylène de basse densité (LPDE) afin d’améliorer la structure cellulaire grâce à une densité cellulaire plus importante et à une vitesse d’étirement plus élevée. Il a été constaté qu'un mélange LLDPE/LDPE (70/30) augmentait de 10 fois la densité cellulaire et réduisait également l'épaisseur de la mousse de 50% par rapport aux mousses de LLDPE seul. Dans la troisième partie, l’addition de nanoparticules a été étudiée et s’est révélée être une stratégie très efficace pour améliorer encore plus la structure cellulaire via un effet de nucléation hétérogène. Les résultats ont montré que l'introduction de zéolithe poreuse (5A) comme agent de nucléation cellulaire/modificateur de perméation des gaz améliorait considérablement la densité cellulaire de la mousse (1,2×10⁹ cellules/cm³) tout en réduisant les tailles moyennes de cellules (30 μm). Les propriétés membranaires de cette membrane moussée à matrice mixte optimisée (MMFM) ont également été considérablement améliorées, en particulier avec l’ajout de 15% en poids de zéolithe car la perméance de l’hydrogène ainsi que la sélectivité H₂/CH₄ et H₂/N₂ ont été augmentées d’un facteur 6,9, 3,8 et 5,9 respectivement, par rapport à la matrice seule (sans zéolithe) et non moussée. Par conséquent, une combinaison de l'addition de particules (structure cellulaire), d'étirement (surface interne) et de moussage (porosité) a conduit à la production d'une structure multi-poreuse à l'intérieur des membranes afin d'améliorer les propriétés de transport des gaz. On s'attend à ce que ces MMFM puissent être efficaces et rentables en termes de vitesse de production (méthode continue), en particulier pour l'industrie pétrolière où la séparation H₂/CH₄ et H₂/N₂ est essentielle pour la purification de l’hydrogène. / This work presents a novel solvent-free method to produce hollow fiber membranes for gas separation. The technology is based on continuous extrusion followed by stretching of foamed polyethylene having a high cell density and uniform cell size distribution. To achieve this objective, a systematic experimental optimization was applied to produce a rich and uniform foam morphology and to develop a suitable structure for gas separation membrane performance. From the samples obtained, a complete set of characterizations including morphological, mechanical, physical and gas transport was performed. In particular, the separation performances were investigated for different gases (CO₂, CH₄, N₂, O₂ and H₂). The first step was to combine linear low density polyethylene (LLDPE) with a chemical blowing agent (azodicarbonamide, CBA) to optimize the processing in terms of CBA content and temperature profile along with stretching velocity. The results confirmed that samples with a higher cell density can improve the membrane gas permeation properties.The second part investigated the addition of low density polyethylene (LPDE) to improve the cellular structure by having a higher cell density and using higher stretching speed. It was found that a LLDPE/LDPE (70/30) blend increased the cell density by a factor of 10 times and also decreased the foam thickness by 50% compared to neat LLDPE foams. In the third part, nanoparticle addition was investigated and found to be a very effective strategy to further improve the cellular structure via a heterogeneous nucleation effect. The results showed that the introduction of porous zeolite (5A) as a cell nucleation agent/gas permeation modifier, substantially improved the foam cell density (1.2×10⁹ cells/cm³) while decreasing the average cell size (30 μm). The membrane properties for this optimized mixed matrix foam membrane (MMFM) were also significantly improved, especially at 15 wt.% zeolite as the H2 permeance, as well as H₂/CH₄ and H₂/N₂ selectivity were increased by 6.9, 3.8 and 5.9 times respectively, compared to the unfoamed neat (unfilled) matrix. Hence, a combination of particle addition (cell structure), stretching (internal surface area) and foaming (porosity) led to the production of a multi-porous structure inside the membranes to improve the gas transport properties. It is expected that these MMFM can be efficient and cost-effective in terms of processing rate (continuous method), especially for the petroleum industry where H₂/CH₄ and H₂/N₂ separation are essential for H2 purification.

Page generated in 0.0225 seconds