• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 329
  • 66
  • 44
  • 33
  • 18
  • 14
  • 10
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 670
  • 95
  • 74
  • 71
  • 70
  • 63
  • 63
  • 56
  • 55
  • 55
  • 53
  • 47
  • 44
  • 44
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
611

Nanoparticules pour la réalisation de couches de transport de trous appliquées au photovoltaïque organique / Nanoparticles for application as a hole transporting layer in organic photovoltaics

Bottois, Clément 22 April 2015 (has links)
Dans les cellules photovoltaïques organiques, le matériau utilisé pour le transport de trous entre la couche active et l'électrode, est généralement un polymère dopé, dont la stabilité peut être problématique. L'objectif de cette thèse a été de développer des matériaux inorganiques, a priori plus stables, pour remplacer les couches de polymères de transport de trous, tout en restant compatible avec les méthodes de dépôts par voie liquide. L'utilisation de nanoparticules dispersées en solution a été choisie car cela permet le dépôt à basse température, sans nécessité de conversion vers une couche fonctionnelle, contrairement aux voies sol-gel. Le premier objectif de ce travail a donc été l'obtention de nanoparticules d'oxyde de tungstène, hydraté ou non, et de thiocyanate de cuivre. Une synthèse de chauffage assisté par micro-ondes a été utilisée pour l'oxyde de tungstène, permettant d'obtenir des nanoparticules de 30 nm et monodisperses. Pour le thiocyanate de cuivre, il a été choisi de travailler par broyage. Les paramètres du broyage ont été optimisés pour obtenir des particules avec la plus faible distribution en taille possible. Le dépôt de ces dispersions de nanoparticules a permis l'obtention de couches minces et la caractérisation de leurs propriétés optoélectroniques, et notamment du travail de sortie, qui s'est révélé adapté pour une utilisation en dispositif. Des cellules solaires organiques de structures standard et inverse incorporant ces matériaux ont ensuite été réalisées. De bonnes performances ont été obtenues avec une couche active à base de P3HT, notamment en structure inverse où la possibilité d'utiliser le thiocyanate de cuivre a été démontrée pour la première fois. Le suivi des performances sous éclairement et atmosphère contrôlée a également été effectué et a montré un vieillissement rapide pour ces cellules comparées aux cellules de référence à couche de transport de trous polymère. / In organic solar cells, a doped polymer is the most used material for hole transport between the active layer and the electrode, but his stability can be an important issue. The goal of this PhD thesis was to develop inorganic materials, expected to be more stable, in order to replace polymer based hole transporting layers. Another requirement was to keep the compatibility with solution-based deposition methods. The target was to develop nanoparticle dispersions, deposited at low temperature and giving directly a functional layer, without the need of further treatments which are usually required via sol-gel processes. A first objective of the present work was thus the elaboration of nanoparticles of tungsten oxide, hydrated or non-hydrated, and copper thiocyanate. A microwave-assisted heating synthesis has been used for tungsten oxide, leading to mono-dispersed particles around 30 nm. Concerning copper thiocyanate, a ball milling technique has been chosen. The process parameters have been optimized to obtain nanoparticles to narrow the size distribution as much as possible. The deposition of the nanoparticles has allowed the formation of thin layers and the characterization of their optoelectronic properties, such as work function, which was shown to be a relevant parameter for a use in devices. Organic solar cells with standard or inverted structures have been fabricated using these materials as a hole transporting layer. Good photovoltaic performances have been obtained, especially in the inverted structure, in which the possibility to use copper thiocyanate has been demonstrated for the first time. Ageing experiments under light in a controlled atmosphere have also been carried out and have shown a rapid drop in performances for these cells compared to cells incorporating polymer based hole transport layers.
612

Structural Characterisation, Residual Stress Determination and Degree of Sensitisation of Duplex Stainless Steel Welds

Gideon Abdullah, Mohammed Abdul Fatah, barrygideon@hotmail.com January 2009 (has links)
Welding of duplex stainless steel pipeline material for the oil and gas industry is now common practice. To date, research has been conducted primarily on the parent material and heat affected zones in terms of its susceptibility to various forms of corrosion. However, there has been little research conducted on the degree of sensitisation of the various successive weld layers, namely the root, fill and cap layers. The focus of this research study was to: (i) provide an in-depth microstructural analysis of the various weld passes, (ii) study the mechanical properties of the weld regions; (iii) determine degree of sensitisation of the various weld passes; and (iv) investigate the residual stress levels within the various regions/ phases of the welds. Four test conditions were prepared using manual Gas Tungsten Arc Welding with 'V' and 'U' bevel configuration. Structural analysis consisted of (i) optical microscopy, scanning electron microscopy and magnetic force microscopy; (ii) ferrite determination using Magna-Gauge, Fischer Ferrite-scope and Point Count method. Mechanical testing consisted of Vickers hardness measurements, Charpy impact studies and transverse tensile testing. The degree of sensitisation was determined by three test methods: a modified ASTM A262, ASTM A923 and a modified Double Loop Electrochemical Potentiodynamic Reactivation (DL-EPR) test. Residual stress levels were determined using two neutron diffraction techniques: a reactor source and a time of flight spallation source. Microstructure observed by optical microscopy and magnetic force microscopy shows the formation of both fine and coarse structures within the weld metal. There was no evidence of secondary austenite, being present in any of the weld metal conditions examined. In addition, no detrimental intermetallic phases or carbides were present. The DL-EPR test results revealed that the fill layer regions for all four conditions and the base material showed the highest values for Ir/Ia and Qr/Qa. All four test conditions passed the ASTM A262 and A923 qualitative type tests, even under restricted and modified conditions. Residual stress measurements by neutron diffraction conducted at Lucas Heights Hi-Flux Reactor revealed that the ferrite phase stress was tensile in the heat affected zones and weld, and appeared to be balanced by a local compressive austenite phase stresses in the normal and transverse directions. Residual stress measurements by neutron diffraction conducted at Los Alamos Nuclear Science Centre revealed that in the hoop direction, ferrite (211) and austenite (311) exhibit tensile strains in the weld. In the axial and radial direction, the strains for both phases were more compressive. Correlations between the degree of sensitization and microstructural changes / ferrite content were observed. Higher degrees of sensitization (Ir/Ia and Qr/Qa) were associated with reduced ferrite (increased austenite) content. Correlations between the stresses generated, the evolved microstructures and degree of sensitization were evident. Stresses within the cap region were generally shown to be of a tensile nature in the transverse and longitudinal direction. In summary, the study has shown that correlations exist between the weld microstructure, susceptibility to sensitisation and levels / distribution of internal stresses within the weld regions.
613

Laser decontamination and cleaning of metal surfaces : modelling and experimental studies

Leontyev, Anton 08 November 2011 (has links) (PDF)
Metal surface cleaning is highly required in different fields of modern industry. Nuclear industry seeks for new methods for oxidized surface decontamination, and thermonuclear installations require the cleaning of plasma facing components from tritium-containing deposited layer. The laser ablation is proposed as an effective and safe method for metal surface cleaning and decontamination. The important factor influencing the laser heating and ablation is the in-depth distribution of laser radiation. The model of light propagation in a scattering layer on a metal substrate is developed and applied to analyse the features of light distribution. To simulate the contaminated surfaces, the stainless steel AISI 304L was oxidized by laser and in a furnace. Radioactive contamination of the oxide layer was simulated by introducing europium and/or sodium. The decontamination factor of more than 300 was demonstrated with found optimal cleaning regime. The decreasing of the corrosion resistance was found after laser cleaning. The ablation thresholds of ITER-like surfaces were measured. The cleaning productivity of 0.07 m2/hour∙W was found. For mirror surfaces, the damage thresholds were determined to avoid damage during laser cleaning. The possibility to restore reflectivity after thin carbon layer deposition was demonstrated. The perspectives of further development of laser cleaning are discussed.
614

Multifunctionalities Of Telllurite And Borate Based Glasses Comprising Nano/Micro Crystals Of Tetragonal Tungsten Bronze-Type Ferroelectric Oxides

Ahamad, M Niyaz 10 1900 (has links)
Transparent glasses embedded with TTB structured ferroelectric nano/micro crystals (K3Li2Nb5O15, Ba5Li2Ti2Nb8O30) were fabricated in various tellurite and borate based glass matrices and characterized for their physical properties. Nanocrystals of K3Li2Nb5O15 were successfully grown inside tellurite glass matrix via conventional heat-treatment route. Eventhough, tellurite glasses preferentially crystallize only on the surface, bulk uniform crystallization was achieved in the (100-x) TeO2 - x(1.5K2O-Li2O-2.5Nb2O5) system. Heat capacity studies revealed them to be thermodynamically less fragile than any other tellurite glasses ever reported in the literature. Pyroelectric and ferroelectric effects as well as second harmonic generation were demonstrated for the heat treated (glass nanocrystal composites) samples in this system. The conventional method of melt-quenching of constituent oxides could not yield Ba5Li2Ti2Nb8O30 crystallites. So, Ba5Li2Ti2Nb8O30 microcrystals were successfully formed in tellurite glass matrix by mixing pre-reacted Ba5Li2Ti2Nb8O30 ceramic powders with TeO2. The glass transition temperature was found to be the highest ever reported and this system was kinetically strong based on the fragility parameter. Dielectric studies revealed a frequency and temperature independent nature of the dielectric constant and very low dielectric loss. The SHG measurement which was carried out as a function of temperature demonstrated the incidence of blue second harmonic generation in the microcrystals present in the glass matrix. Ba5Li2Ti2Nb8O30 nanocrystals were successfully crystallized in the transparent glass system (100-x)Li2B4O7 – x(Ba5Li2Ti2Nb8O30). Dielectric constant increased while the dielectric loss decreased with the increase in Ba5Li2Ti2Nb8O30 content. Nuclear magnetic resonance spectroscopic studies were carried out to have an insight into the structure of this system. Transmission studies and refractive index measurements were performed and various optical parameters were calculated. Dielectric and transport properties were studied for the glasses and glass nano/microcrystal composites of all the systems reported in this thesis. Li+ ion was found to be responsible for conduction in all these systems. Evolution of self-organized nanopatterns of K3Li2Nb5O15 crystals has been demonstrated in the glass system (100-x) TeO2 - x(1.5K2O-Li2O-2.5Nb2O5) by excimer laser irradiation. The second harmonic signal observed by the Maker fringe technique has been attributed to the presence of well-aligned nano-sized grating structures in the glass system. Glasses belonging to the systems TeO2-K3Li2Nb5O15, TeO2-Ba5Li2Ti2Nb8O30 and V2Te2O9 undergo spinodal decomposition on exposing to KrF pulsed excimer laser. The spinodally phase separated structures were observed on all the surfaces of the samples. Ring shaped patterns were observed on several locations of the samples at higher frequency of laser pulses probably owing to the shock waves produced by the high intense laser beam. Line shaped patterns were found to originate on the sample surfaces when irradiated for longer periods.
615

Electrochemical Reactions in Polymer Electrolyte Fuel Cells

Wesselmark, Maria January 2010 (has links)
The polymer electrolyte fuel cell converts the chemical energy in a fuel, e.g. hydrogen or methanol, and oxygen into electrical energy. The high efficiency and the possibility to use fuel from renewable sources make them attractive as energy converters in future sustainable energy systems. Great progress has been made in the development of the PEFC during the last decade, but still improved lifetime as well as lowered cost is needed before a broad commercialization can be considered. The electrodes play an important role in this since the cost of platinum used as catalyst constitutes a large part of the total cost for the fuel cell. A large part of the degradation in performance can also be related to the degradation of the porous electrode and a decreased electrochemically active Pt surface. In this thesis, different fuel cell reactions, catalysts and support materials are investigated with the aim to investigate the possibility to improve the activity, stability and utilisation of platinum in the fuel cell electrodes. An exchange current density, i0, of 770 mA cm-2Pt was determined for the hydrogen oxidation reaction in the fuel cell with the model electrodes. This is higher than previously found in literature and implies that the kinetic losses on the anode are very small. The anode loading could therefore be reduced without imposing too high potential losses if good mass transport of hydrogen is ensured. It was also shown that the electrochemically active surface area, activity and stability of the electrode can be affected by the support material. An increased activity was observed at higher potentials for Pt deposited on tungsten oxide, which was related to the postponed oxide formation for Pt on WOx. An improved stability was seen for Pt deposited on tungsten oxide and on iridium oxide. A better Pt stability was also observed for Pt on a low surface non-graphitised support compared to a high surface graphitised support. Pt deposited on titanium and tungsten oxide, displayed an enhanced electrochemically active surface area in the cyclic voltammograms, which was explained by the good proton conductivity of the metal oxides. CO-stripping was shown to provide the most reliable measure of the electrochemically active surface area of the electrode in the fuel cell. It was also shown to be a useful tool in characterization of the degradation of the electrodes. In the study of oxidation of small organic compounds, the reaction was shown to be affected by the off transport of reactants and by the addition of chloride impurities. Pt and PtRu were affected differently, which enabled extraction of information about the reaction mechanisms and rate determining steps. The polymer electrolyte fuel cell converts the chemical energy in a fuel, e.g. hydrogen or methanol, and oxygen into electrical energy. The high efficiency and the possibility to use fuel from renewable sources make them attractive as energy converters in future sustainable energy systems. Great progress has been made in the development of the PEFC during the last decade, but still improved lifetime as well as lowered cost is needed before a broad commercialization can be considered. The electrodes play an important role in this since the cost of platinum used as catalyst constitutes a large part of the total cost for the fuel cell. A large part of the degradation in performance can also be related to the degradation of the porous electrode and a decreased electrochemically active Pt surface. In this thesis, different fuel cell reactions, catalysts and support materials are investigated with the aim to investigate the possibility to improve the activity, stability and utilisation of platinum in the fuel cell electrodes. An exchange current density, i0, of 770 mA cm-2Pt was determined for the hydrogen oxidation reaction in the fuel cell with the model electrodes. This is higher than previously found in literature and implies that the kinetic losses on the anode are very small. The anode loading could therefore be reduced without imposing too high potential losses if good mass transport of hydrogen is ensured. It was also shown that the electrochemically active surface area, activity and stability of the electrode can be affected by the support material. An increased activity was observed at higher potentials for Pt deposited on tungsten oxide, which was related to the postponed oxide formation for Pt on WOx. An improved stability was seen for Pt deposited on tungsten oxide and on iridium oxide. A better Pt stability was also observed for Pt on a low surface non-graphitised support compared to a high surface graphitised support. Pt deposited on titanium and tungsten oxide, displayed an enhanced electrochemically active surface area in the cyclic voltammograms, which was explained by the good proton conductivity of the metal oxides. CO-stripping was shown to provide the most reliable measure of the electrochemically active surface area of the electrode in the fuel cell. It was also shown to be a useful tool in characterization of the degradation of the electrodes. In the study of oxidation of small organic compounds, the reaction was shown to be affected by the off transport of reactants and by the addition of chloride impurities. Pt and PtRu were affected differently, which enabled extraction of information about the reaction mechanisms and rate determining steps. / Polymerelektrolytbränslecellen omvandlar den kemiska energin i ett bränsle, exv. vätgas eller metanol, och syrgas  till elektrisk energi. Den höga verkningsgraden samt möjligheten att använda bränsle från förnyelsebara källor gör dem attraktiva som energiomvandlare i framtida hållbara energisystem. En enorm utveckling har skett under det senaste årtiondet men för att kunna introducera polymerelektrolytbränslecellen på marknaden i en större skala måste livstiden öka och kostnaden minska. Elektroderna har en central del i detta då den platina som används som katalysator står för en stor del av kostnaden för bränslecellen. En stor del av prestandaförsämringen med tiden hos bränslecellen kan också relateras till en degradering av den porösa elektroden och en minskad elektrokemiskt aktiv platinayta. I denna avhandling studeras olika bränslecellsreaktioner samt olika katalysatorer och supportmaterial med målet att undersöka möjligheten att förbättra platinakatalysatorns aktivitet, stabilitet och utnyttjandegrad i bränslecellselektroder. Utbytesströmtätheten, i0, för vätgasoxidationen i bränslecell bestämdes till 770 mA cm-2Pt genom försök med modellelektroderna. Denna var högre än vad som framkommit tidigare i litteratur, vilket visar att de kinetiska förlusterna på anoden är mycket små. Katalysatormängden på anoden borde därför kunna minskas utan några större potentialförluster så länge masstransporten av vätgas är tillräcklig. Den elektrokemiskt aktiva ytan, aktiviteten och stabiliteten hos elektroden visade sig kunna påverkas av supportmaterialet. Platina deponerad på volfram oxid hade en högre aktivitet vid höga potentialer vilket relaterades till den förskjutna oxidbildningen på ytan. Elektroder med platina på volframoxid och iridiumoxid var mer stabila än elektroder med platina på kol. Det var även platina på ett icke grafitiserat kol med låg yta jämfört med platina på grafitiserade kol med en hög yta. Platina på metalloxidskikt av volfram och titan visade en högre elektrokemiskt aktiv yta i de cykliska voltamogrammen än platina på kol, vilket förklarades med att båda metalloxiderna har en bra protonledningsförmåga. CO-stripping gav det säkraste måttet på den elektrokemiskt aktiva ytan i en elektrod i bränslecell. CO-stripping visade sig även vara användbart för karaktärisering av degraderingen av en elektrod. Oxidationen av små organiska föreningar påverkades av borttransporten av intermediärer samt av kloridföroreningar. Pt aoch PtRu påverkades olika vilket gjorde det möjligt att få fram information om reaktionsmekanismer och hastighetsbestämmande steg. / QC 20101014
616

Development Of High Performance Active Materials For Microbolometers

Eroglu, Numan 01 September 2011 (has links) (PDF)
This thesis reports the development of Vanadium Tungsten Oxide (VWO) film as an active detector material for uncooled infrared detectors by using the reactive DC magnetron co-sputtering method. VWO is a doped form of the Vanadium Oxide (VOx) which is known as a prominent material for uncooled infrared detectors with its high TCR, low resistivity, and low noise properties. VOx is a widely preferred material for commercialized uncooled infrared detectors along with its drawbacks. Fabrication is fairly difficult due to its unstable material properties and the need for low process temperatures for a monolithic, CMOS compatible surface micromachining process. Hence, a new material with high performance and easier fabrication is needed. This thesis is the first study at METU on the development of high-performance VWO as an active detector material for uncooled infrared detectors. Deposition studies of VWO primarily started by measuring the effects of deposition parameters upon the magnetron sputtering system. Because the high effectiveness of the tungsten doping has been obtained for the doping level below 10% according to literary information, maximum vanadium (V) deposition rate together with minimum tungsten (W) deposition rate has been initially aimed. TCR of the VWO films has been measured between -2.48 %/K and -3.31 %/K, and the variation of noise corner frequency from 0.6 kHz to 8 kHz has been observed. In addition to these results of VWO, a favorable VOx recipe which has the highest performance done at METU in terms of resistance, TCR, noise and uniformity has also attained during the studies. Structural characterization of VWO is achieved using XPS, XRD, and AFM characterization techniques. Other than the sputtering parameters, post-annealing process and oxygen plasma exposure was examined as well. A general observation of the post-annealing is that it decreases not merely the TCR but also the noise of the deposited film. A short-period oxygen plasma exposure has a constructive effect on the noise behavior. Fabricated vanadium tungsten oxide with sandwich type resistor structure shows very close but better bolometric properties when compared with the yttrium barium copper oxide (YBCO), which is another material being studied in scope of other theses at METU. XPS, XRD and AFM characterization methods have been used for the structural characterization of vanadium-tungsten-oxide.
617

Characterization of impact initiation of reactions in aluminum-based, intermetallic-forming reactive materials

Tucker, Michael D. 29 August 2011 (has links)
The objective of this work is to evaluate the reaction initiation characteristics of quasi-statically compressed intermetallic-forming aluminum-based reactive materials upon impact initiation, consisting of equi-volumetric tantalum-aluminum, tungsten-aluminum, nickel-aluminum, and pure aluminum. A modified Taylor rod-on-anvil setup was employed to determine the reaction initiation threshold kinetic energy and actual energy for plastic deformation and subsequent reaction. Experimental sample remnants were recovered and examined through X-ray diffraction to determine reaction products.The overall results indicate that of the various intermetallic-forming systems investigated, Ta+Al was the most reactive and was the only system where any reaction products were retrieved. While all of the intermetallic systems reacted in air, only Ta+Al and W+Al reacted in vacuum environment suggesting differences in reaction mechanisms influencing the reactivity of intermetallic mixtures. Based on the threshold energy for onset of reaction it appears that the Ta-Al compacts show reaction conditions below those required for reaction of Al in air. This combined with the fact that Ta+Al compacts also react in vacuum implies that the Ta+Al undergoes anaerobic intermetallic reaction while the other systems react with the oxidation of Al. The effect of compact packing density on the kinetic energy threshold for reaction initiation were also evaluated. It was observed more densely packed Ta+Al and Ni+Al powder compacts react more easily than less densely packed samples. While the effect of packing density is not as obvious in the case of pure Al and W+Al powder compacts. Finally, a particle size effect is seen on Ni+Al on samples of < 92% density where coarser (+325 -200 mesh) equal-volumetric powder mixtures were observed to be more reactive than finer Ni+Al (-325 mesh).
618

Aqueous Processing of WC-Co Powders

Andersson, Karin M. January 2004 (has links)
<p>The object of this work is to obtain a fundamentalunderstanding of the principal issues concerning the handlingof an aqueous WC-Co powder suspension.</p><p>The WO3 surface layer on the oxidised tungsten carbidepowder dissolves at pH>3 with the tungsten concentrationincreasing linearly with time. Adding cobalt powder to thetungsten carbide suspension resulted in a significant reductionof the dissolution rate at pH<10. Electrokinetic studiesindicated that the reduced dissolution rate may be related tothe formation of surface complexes; the experiments showed thatCo species in solution adsorb on the oxidised tungsten carbidepowder.</p><p>The surface forces of oxidised tungsten and cobalt surfaceswere investigated using the atomic force microscope (AFM)colloidal probe technique. The interactions at various ionicstrengths and pH values are well described by DLVO theory. Theadsorption of cobalt ions to tungsten oxide surfaces resultedin an additional non-DLVO force and a reduced absolute value ofthe surface potential. It was shown that the adsorption ofpoly(ethylene imine) (PEI) to the WO3 surfaces induces anelectrosteric repulsion.</p><p>The properties of spray-dried WC-Co granules were related tothe WC primary particle size, and the poly(ethylene glycol)(PEG) binder and PEI dispersant content in aqueous WC-Cosuspensions. The granule characterisation includes a new methodfor measuring the density of single granules. The increase inthe fracture strength of granules produced from suspensionsthat were stabilised with PEI was related to a more densepacking of the WC-Co particles.</p><p>The AFM was used to study the friction and adhesion ofsingle spray-dried WC-Co granules containing various amounts ofPEG binder. The adhesion and friction force between two singlegranules (intergranular friction) and between a granule and ahard metal substrate (die-wall friction) have been determinedas a function of relative humidity. The granule-wall frictionincreases with binder content and relative humidity, whereasthe granule-granule friction is essentially independent of therelative humidity and substantially lower than the granule-wallfriction at all PEG contents.</p><p><b>Key words:</b>Hard Metal, Cemented Carbide, WC-Co, TungstenCarbide, Cobalt, Oxidation, Dissolution, Surface Complexation,XPS, AFM, Colloidal Probe, Hamaker Constant, Cauchy, WO3,CoOOH, ESCA, Zeta-Potential, Surface Potential, Poly(ethyleneimine), PEI, Suspension, van der Waals, Steric, Spray-Dried,Poly(ethylene glycol), Strength, Density, Friction, Adhesion,Granule, PEG, Pressing, FFM.</p>
619

New synthetic pathways to mono- and bis-dithiolene compounds of molybdenum and tungsten related to the active sites of the molybdopterin containing oxidases / Neue Synthesewege von Mono- und Bis-dithiolen-Verbindungen von Molybdän und Wolfram als Modelle das aktive Zentrum molybdopterinhaltiger Oxidasen

Zhang, Qingwei 28 June 2007 (has links)
No description available.
620

Synthese und DFT-Studien von Modellkomplexen molybdopterinhaltiger Enzyme / Synthesis and DFT studies of molybdopterin containing model complexes

Starke, Kerstin 30 October 2007 (has links)
No description available.

Page generated in 0.0181 seconds