• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 21
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 74
  • 25
  • 19
  • 14
  • 14
  • 13
  • 12
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Microstructure of absorber layers in CdTe/Cds solar cells

Cousins, Michael Andrew January 2001 (has links)
This work concerns the microstructure of CSS-grown CdTe layers used for CdTe/CdS solar cells. Particular attention is given to how the development of microstructure on annealing with CdCl(_2) may correlate with increases in efficiency. By annealing pressed pellets of bulk CdTe powder, it is shown that microstructural change does occur on heating the material, enhanced by the inclusion of CdCl(_2) flux. However, the temperature required to cause significant effects is demonstrated to be higher than that at which heavy oxidation takes place. The dynamics of this oxidation are also examined. To investigate microstructural evolution in thin-films of CdTe, bi-layers of CdTe and CdS are examined by bevelling, thus revealing the microstructure to within ~1 µm of the interface. This allows optical microscopy and subsequent image analysis of grain structure. The work shows that the grain- size, which is well described by the Rayleigh distribution, varies linearly throughout the layer, but is invariant under CdCl(_2) treatment. Electrical measurements on these bi-layers, however, showed increased efficiency, as is widely reported. This demonstrates that the efficiency of these devices is not dictated by the bulk microstructure. Further, the region within 1 µm of the interface, of similar bi-layers to above, is examined by plan-view TEM. This reveals five-fold grain-growth on CdCl(_2) treatment. Moreover, these grains show a considerably smaller grain size than expected from extrapolating the linear trend in the bulk. These observations are explained in terms of the pinning of the CdTe grain size to the underlying CdS, and the small grain size this causes. A simple model was proposed for a link between the grain-growth to the efficiency improvement. The study also examines the behaviour of defects within grains upon CdCl(_2) treatment provided the first direct evidence of recovery on CdCl(_2) treatment in this system. Finally, a computer model is presented to describe the evolution of microstructure during growth. This is shown to be capable of reproducing the observed variation in grain size, but its strict physical accuracy is questioned.
42

Luminescence spectroscopy of CdTe/CdS based photovoltaic devices and associated materials

Potter, Mark David George January 2000 (has links)
This thesis contains primarily a study of CdTe/CdS heterojunction solar cells^ chiefly using photoluminescence spectroscopy. These solar cells show a good potential for commercial power generation in the near Aiture and are of interest to several major companies. A vital but little understood step in the manufacturing process is: annealing the cells in the presence of chlorine prior to back contact application. Studies are performed on a selection of thin film CdTe/CdS cells subjected to CdCl(_2) anneals of different duration. A chemical bevel etch was used to study the spectra at different depths into the sample and laser intensity arid sarhple temperature variations to identify the mechanisms behind the observed photoluminescence peaks. Evidence was found for the CdCl(_2) anneal promoting sulphur diffusion and subsequent grain boundary passivation in the CdTe, leading to increased minority carrier lifetimes and device efficiencies Attempts to obtain electroluminescence from the CdTe/CdS solar cells were madei By using current pulses electroluminescence was obtained in the 780-850nm range with discernible spectral features. Photoluminescence (PL) studies were also performed on a single crystal of CdTe grown to an unprecedented size of approx. 5 cm diameter at Durham university by a multi-tube seeded vapour method of crystal growth. Much higher resolution spectra were: obtained for this than for the solar cells. Several peaks were identified arid the mechanisms responsible were theorised. By taking slices of the crystal boule the PL spectra at different points-throughout the bulk of the crystal were determined. A series of high quality ion-implanted CdTe crystals were also studied! by intensity and temperature dependent PL in order to obtain a better understanding of the effects of known concentrations of known impurities on the PL spectra of CdTe. Specific PL features associated with certain dopants were observed.
43

Part A: Nanoscale semiconductors through electrodeposition Part B: Mechanistic studies of the copper-catalyzed reactions /

Chévere-Trinidad, Néstor Luis, January 2009 (has links)
Thesis (Ph. D.)--University of Massachusetts Amherst, 2009. / Includes bibliographical references (p. 153-161). Print copy also available.
44

Hall effect and photoconductivity lifetime studies of GaN, InN, and Hg₁-[subscript x]Cd[subscript x]Te

Swartz, Craig H. January 2005 (has links)
Thesis (Ph. D.)--West Virginia University, 2005. / Title from document title page. Document formatted into pages; contains ix, 72 p. : ill. Includes abstract. Includes bibliographical references (p. 68-72).
45

The feasibility of liquid phase electroepitaxial growth of cadmium zinc telluride.

Armour, Neil Alexander 18 November 2008 (has links)
No description available.
46

Caracterização óptica e elétrica de materiais fotocondutores e fotorrefrativos / Optical and electrical characterization of photoconductive and photorefractive materials

Pereira, Renata Montenegro 26 February 2007 (has links)
Orientador: Jaime Frejlich Sochaczewsky / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-08T07:16:03Z (GMT). No. of bitstreams: 1 Pereira_RenataMontenegro_M.pdf: 1833986 bytes, checksum: f8a736d33723868af878beb3568ddc63 (MD5) Previous issue date: 2006 / Resumo: O objetivo desta tese foi a caracterização de materiais fotocondutores e fotorrefrativos utilizando técnicas ópticas e elétricas. A propriedade mais importante nestes materiais é a fotocondutividade e por isso nos centramos na medida dessa quantidade. Um dos materiais mais estudados em nosso laboratório, o Bi12TiO20, é pouco fotocondutor e por isso, a técnica clássica, que utiliza uma lâmpada "branca" seguida de um monocromador, para selecionar o comprimento de onda com que a amostra vai ser iluminada, mostrou-se pouco sensível. Para melhorar a sensibilidade da medida, desenvolvemos um sistema baseado num conjunto de LEDs (light-emitting diodes) quase monocromáticos, de diferentes comprimentos de onda, capazes de fornecer maior intensidade de luz do que o sistema clássico. Também propomos uma sistemática diferente para a coleta e processamento dos dados, que leva em consideração, a distribuição exponencial da luz no interior da amostra, devido à absorção¸ característica de cada material. Os resultados mostraram que o novo instrumento e o novo método de processamento de dados permitem obter mais informações sobre os materiais analisados do que seria possível utilizando a técnica clássica. A nova técnica foi aplicada ao estudo de amostras de Bi12TiO20 puro e dopado assim como de Bi12GaO20 e CdTe. Os resultados, junto com outras informações disponíveis por outras técnicas (holografia e fotocorrente modulada), permitiram detectar alguns estados localizados dentro da banda proibida destes materiais, o que é muito importante no estudo da fotocondutividade / Abstract: The objective of this work was the characterization of photoconductive and photo-refractive materials using optical and electrical techniques. The most important property of these materials is photoconductivity so that we concentrated in the measurement of this quantity. One of the most studied materials in our laboratory, Bi12TiO20, is poorly photoconductive and, because of that, the standard technique using a white lamp followed by a monochromator, to select the illumination wavelength on the sample, has shown a very poor sensistivity. In order to improve the measurement we have therefore developed a system based on an array of almost monochromatic LEDs (Light-Emitting Diodes) with different wavelengths, which are able to provide with greater light intensity than with the classical system. We also propose a different system for the data collection and processing, which considers the exponential distribution of light along the sample¿s thickness, due to the characteristic bulk absorption of these materials. Our results have shown that the new instrument and the new data processing method allow us to obtain much more information about the materials under analysis than would be possible with the classical method. The new technique was applied to the study of pure and doped B i12TiO20, as well as Bi12Ga O20 and CdTe. The results, together with further information obtained from other techniques (holography and modulated photocurrent), have allowed us to detect some localized states inside the bandgap of the materials and therefore get a better insight of their structure that is very important for the understanding of their photoconductivity properties / Mestrado / Propriedades Óticas e Espectroscopia da Matéria Condensada / Mestre em Física
47

Derivados aromáticos de selênio e telúrio: aplicação da biocatálise na preparação de selenetos e teluretos aromáticos enantiomericamente enriquecidos / Aromatic compounds containing Selenium and Tellurium: application of biocatalysis for preparation of enatiomerically enriched aromatic selenides and tellurides

Alvaro Takeo Omori 16 June 2005 (has links)
A primeira parte desta tese consiste na preparação de compostos aromáticos contendo átomos de selênio e de telúrio. Quatro metodologias foram utilizadas para essa finalidade, a saber: orto-metalação de compostos contendo oxigênio, troca metal-halogênio em haletos aromáticos substituídos, reação de substituição eletrofílica aromática entre tetracloreto de telúrio e compostos aromáticos ativados e reação de sais de diazônio com disselenetos e diteluretos orgânicos. Alguns dos teluretos preparados foram usados em reações de acoplamento com alcinos terminais catalisada por Paládio, em reações de troca telúrio-lítio e em reações de oxidação de Te (II) a Te(IV). A segunda parte da tese consiste no uso de calcogenetos de arila em reações biocatalisadas. Inicialmente foram estudadas biotransformações em substratos não contendo átomo de selênio e de telúrio. Reações de redução de carbonila e de desracemização de álcoois foram observadas por ação de fungos e de raízes de plantas. Meta e para organosseleno acetofenonas foram reduzidas aos organosseleno feniletanóis correspondentes por ação de fermento de pão, células íntegras de fungos e por Daucus carota com conversões e excessos enantioméricos que chegaram a >99%. Orto organosseleno e metiltio feniletanóis foram resolvidos em seus isômeros R e S por ação de lipase imobilizada (Novozyme 435) em presença de acetato de vinila com excessos enantioméricos acima de 99% . / The first part of this thesis shows the preparation of organic compounds containing selenium or tellurium. For this purpose, four methodologies were applied: ortho-metallation of 1-phenylethanol, metal-halogen exchange involving aromatic halides, electrophilic aromatic substitution using tellurium tetrachloride and reactions with aryldiazonium salts and diselenides or ditellurides. Next, the aryl tellurides were applied in Palladium catalyzed coupling reactions with terminal alkynes, tellurium-lithium exchange reactions and oxidation of Te(II) to Te(IV). The second part of this thesis consists in the inverstigation of biocatalyzed reactions. Biotransformations of substrates without Se or Te atoms were initially investigated. Carbonyl reduction reactions and deracemization of secondary alcohols were observed by means of whole fungal cells and plants. Meta and para organoseleno acetophenones were then reduced with baker´s yeast, whole fungal cells and Daucus carota, yielding the corresponding organoseleno phenylethanols optically pure with enantiomeric excess up to >99%. Ortho organoseleno e methylthio phenylethanols were resolved in both enantiomeric forms by reacting them with immobilized lipase (Novozyme 435) and vinyl acetate in hexane. High values of enantiomeric excess (>99%) were obtained.
48

Novel precursors for chalcogenide materials

Oyetunde, Temidayo Timothy January 2011 (has links)
Metal chalcogenides (sulfides, selenides and tellurides) are materials of current interest due to their peculiar properties such as optoelectronic, magnetooptic, thermoelectric and piezoelectric displays. These semiconducting materials have potential applications in solar cell devices, infrared detectors and ambient thermoelectric generators. Previously, these materials have been deposited by multiple-source precursor route with several problems associated with this technique. This work describes the synthesis of metal complexes (Zn, Cd, Fe, Ni, Pd, Pt) using the imidodichalcogenodiphosphinate ligand (Woollins ligand). Their thermal decomposition together with structural and spectroscopy analysis was carried out. The complexes were used as single source precursors for the deposition of cadmium selenide, cadmium phosphide, cadmium sulfide, zinc selenide, iron selenide and the tellurides of nickel, palladium, platinum and iron as thin films and powders. These were deposited by AACVD and pyrolysis. The deposited thin films and powders were characterised by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive analysis of X-rays (EDAX), X-ray photoelectron spectroscopy (XPS) and superconducting quantum interference device (SQUID). The cadmium complexes [Cd{iPr2P(Se)NP(Se)iPr2}2] and [Cd{iPr2P(S)NP(Se)iPr2}2] deposited the mixture of hexagonal CdSe and monoclinic Cd2P3 films at the flow rate of 160 sccm at 475 and 500 °C. At the flow rate of 240 sccm, only hexagonal CdSe was deposited from [Cd{iPr2P(Se)NP(Se)iPr2}2] at all temperatures. Hexagonal CdS and the mixture of orthorhombic Cd6P7/cubic Cd7P10 were deposited from [Cd{iPr2P(S)NP(S)iPr2}2]. The zinc complexes [Zn{iPr2P(Se)NP(Se)iPr2}2] and [Zn{iPr2P(S)NP(Se)iPr2}2] both deposited cubic ZnSe at all temperatures with the flow rates of 160 and 240 sccm. The iron complexes [Fe{(SePPh2)2N}2] and [Fe{(SePPh2NPPh2S)2N}2] deposited orthorhombic FeSe2 mixed with monoclinic Fe3Se4 by pyrolysis at 500 and 550 °C. An unresolved pattern was observed from the complex [Fe{(SePPh2NPPh2S)2N}2] at 550 °C. XPS analysis of the deposited FeSe2 showed the surface oxidation of the material, while the magnetic measurements on the sample using SQUID confirmed its ferromagnetic properties. The telluride complexes of nickel, palladium, platinum and iron deposited the metal telluride respectively as: hexagonal NiTe, hexagonal PdTe, hexagonal PtTe2 (mixed with rhombohedral PtTe) and hexagonal FeTe2. Conductivity studies on NiTe and PdTe revealed them to be insulators, while the magnetic measurements on FeTe2 indicated its antiferromagnetic behaviour.
49

Neutron Transmutation and Hydrogenation Study of Hg₁₋xCdxTe

Zhao, Wei 12 1900 (has links)
Anomalous Hall behavior of HgCdTe refers to a "double cross-over" feature of the Hall coefficient in p-type material, or a peak in the Hall mobility or Hall coefficient in n-type material. A magnetoconductivity tensor approach was utilized to identify presence of two electrons contributing to the conduction as well as transport properties of each electron in the material. The two electron model for the mobility shows that the anomalous Hall behavior results from the competition of two electrons, one in the energy gap graded region near the CdZnTe/HgCdTe interface with large band gap and the other in the bulk of the LPE film with narrow band gap. Hg0.78Cd0.22Te samples grown by LPE on CdZnTe(111B)-oriented substrates were exposed to various doses of thermal neutrons (~1.7 x 1016 - 1.25 x 1017 /cm2) and subsequently annealed at ~220oC for ~24h in Hg saturated vapor to recover damage and reduce the presence of Hg vacancies. Extensive Magnetotransport measurements were performed on these samples. SIMS profile for impurities produced by neutron irradiation was also obtained. The purpose for this study is to investigate the influence of neutron irradiation on this material as a basis for further study on HgCdTe74Se. The result shows that total mobility is observed to decrease with increased neutron dose and can be fitted by including a mobility inverse proportional to neutron dose. Electron introduction rate of thermal neutron is much smaller than that of fission neutrons. Total recovering of the material is suggested to have longer time annealing. Using Kane's model, we also fitted carrier concentration change at low temperature by introducing a donor level with activation energy changing with temperature. Results on Se diffusion in liquid phase epitaxy (LPE) grown HgCdTe epilayers is reported. The LPE Hg0.78Cd0.22Te samples were implanted with Se of 2.0×1014/cm2 at 100keV and annealed at 350-450oC in mercury saturated vapor. Secondary ions mass spectrometry (SIMS) profiles were obtained for each sample. From a Gaussian fit we find that the Se diffusion coefficient DSe is about one to two orders of magnitude smaller than that of arsenic. The as-implanted Se distribution is taken into account in case of small diffusion length in Gaussian fitting. Assuming a Te vacancy based mechanism, the Arrhenius relationship yields an activation energy 1.84eV. Dislocations introduced in HgCdTe materials result in two energy levels, where one is a donor and one is an acceptor. Hydrogenation treatment can effectively neutralize these dislocation defect levels. Both experimental results and theoretical calculation show that the mobility due to dislocation scattering remains constant in the low temperature range (<77K), and increases with temperature between 77K and 150K. Dislocation scattering has little effect on electrical transport properties of HgCdTe with an EPD lower than 107/cm2. Dislocations may have little effect on carrier concentration for semiconductor material with zinc blende structure due to self compensation.
50

Application of Thermomechanical Characterization Techniques to Bismuth Telluride Based Thermoelectric Materials

White, John B. 08 1900 (has links)
The thermoelectric properties of bismuth telluride based thermoelectric (TE) materials are well-characterized, but comparatively little has been published on the thermomechanical properties. In this paper, dynamic mechanical analysis (DMA) and differential scanning calorimetry data for bismuth telluride based TE materials is presented. The TE materials' tan delta values, indicative of viscoelastic energy dissipation modes, approached that of glassy or crystalline polymers, were greater than ten times the tan delta of structural metals, and reflected the anisotropic nature of TE materials. DMA thermal scans showed changes in mechanical properties versus temperature with clear hysteresis effects. These results showed that the application of DMA techniques are useful for evaluation of thermophysical and thermomechanical properties of these TE materials.

Page generated in 0.0374 seconds