• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 43
  • 13
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 164
  • 52
  • 33
  • 26
  • 19
  • 19
  • 16
  • 15
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Générateurs thermoélectriques imprimés sur substrats souples à base de matériaux hybrides pour des applications autour de la température ambiante / Hybrid thermoelectric generators printed on flexible substrates for applications at near room temperature

Ferhat, Salim 12 June 2018 (has links)
Les dispositifs thermoélectriques, légers et flexibles, peuvent être particulièrement intéressants aujourd’hui dans le contexte de l’émergence de l’informatique ubiquitaire, ainsi que de la crise environnementale liée à la consommation d’énergie électrique. Cependant, beaucoup de problèmes doivent encore être résolus pour rendre les dispositifs de récupération de chaleur commercialement viables. Dans cette thèse nous avons élaboré une méthode de conception et de fabrication par impression jet d’encre de générateurs flexibles à base de semi-conducteurs organiques et hybrides. En premier lieu, les travaux ont été consacrés au développement de matériaux thermoélectriques efficaces, stables et synthétisés par voie liquide. Les stratégies d’optimisation employées reposent sur la modulation de la concentration de porteurs de charge et le contrôle de la morphologie microscopique du matériau. En second lieu, nous avons effectué un travail de conception et de modélisation de dispositifs thermoélectriques ainsi que de leurs paramètres géométriques en utilisant des outils numériques. La modélisation numérique a été réalisée par la méthode des éléments finis 3D et par couplage d’effets physiques multidimensionnels. L’aboutissement de notre projet a été la formulation des matériaux en encres pour la fabrication de générateurs thermoélectriques par la technique de dépôt par impression jet d’encre. Différentes structures et architectures ont été expérimentalement caractérisées et systématiquement comparées aux évaluations numériques. Ainsi, nous présentons une approche intégrale de conception et de fabrication de dispositifs thermoélectriques opérant à des températures proches de l’ambiant. / Flexible lightweight printed thermoelectric devices can become particularly interesting with the advent of ubiquitous sensing and within the context of current energy and environmental issues. However, major drawbacks of state of the art thermoelectric materials must be addressed to make waste heat recovery devices commercially feasible. In this PhD thesis, we’ve elaborated and described a method to fabricate optimized, fully inkjetprinted flexible thermoelectric generators based on organic and hybrid semiconductors. This research project can be divided into three stages: First is the development of effective, stable and solution-processed p-type and n-type thermoelectric materials. Our effort in optimizing thermoelectric materials were based on modulation of charge carrier concentration and on control of morphology. Second, design and modeling of thermoelectric devices and their geometric parameters using numerical simulation methods. Numerical simulations were based on a 3D-finite element analysis and simulation software for coupled physical problems to model and design thermoelectric devices. Finally, formulation of materials into ink in order to produce thermoelectric generators by inkjet printing deposition. Various structures and architectures were experimentally characterized and systematically compared to numerical evaluations. Hence, we produced an extensive study on designing and producing thermoelectric devices operating at near ambient temperature and conditions.
152

Étude et mise en œuvre de couplage thermoélectrique en vue de l'intensification d'échange de chaleur par morphing électroactif / Study and implementation of thermoelectric coupling in order to the heat exchange intensification by electroactive morphing

Amokrane, Mounir 03 July 2013 (has links)
Le développement et l’utilisation de nouveaux matériaux, tel que le carbure de silicium (SiC) et le nitrure de gallium (GaN), a permis un accroissement sensible des densités d’énergie traitées par les nouveaux composants de l’électronique de puissance, assortie d’une augmentation de leur compacité. Parallèlement à ces progrès technologiques, la généralisation de l’électricité en tant que vecteur d’énergie primaire au sein de systèmes de plus en plus répartis, incluant des moyens de traitement de l’information au plus près de la fonction réalisée, ouvre la voie à une nouvelle génération de systèmes mécatroniques hautement intégrés. Or, l’émergence de ces nouvelles fonctions soulève une question critique liée au mode de refroidissement de ces éléments. Cette question est intimement couplée aux aspects énergétiques et à leur impact environnemental, imposant une amélioration significative des rendements énergétiques mesurés à l’échelle de la fonction complète. C’est dans ce contexte que l’étude présentée traite tout d’abord de systèmes de récupération de la chaleur résiduelle dissipée au sein de systèmes électroniques de puissance en vue d’alimenter de manière autonome des capteurs, où autres systèmes fonctionnels, via l’énergie « ambiante » ainsi récupérée. Parmi les consommateurs plus particulièrement ciblés, des fonctions innovantes d’intensification par voie électromécanique des échanges de chaleurs au sein d’échangeurs thermique sont étudiées et mises en œuvre. A terme, l’idée serait ainsi d’alimenter les systèmes d’actionnement assurant l’optimisation des échanges de chaleur au sein du système de refroidissement d’une carte électronique au moyen même de la chaleur qu’elle dissipe, récupérée sous forme d’énergie électrique. A cette fin, les différents procédés de conversion de la chaleur en électricité sont examinés, modélisés et mis en œuvre dans la suite de ce travail. Deux types de conversion d’énergie complémentaires sont tour à tour considérés : La conversion par effet thermoélectrique, utilisant l’effet Seebeck qui a lieu en présence d’un gradient de température et l’effet pyroélectrique qui apparait en présence de variation temporelle de la température. Ces deux phénomènes sont analysés et décrits à l’aide de modélisations physiques et comportementales, incluant une approche expérimentale ayant nécessité la mise en place de bancs d’essai spécifiques. L’électricité récupérée par conversion pyroélectrique est par la suite mise en forme grâce à des systèmes de redressement à faible tension de seuil spécialement développés. La faisabilité de systèmes d’alimentation autonomes de capteurs déportés, où de systèmes d’émission (ponctuelle) de mesure, est alors concrètement démontrée en se basant sur les résultats obtenus. Ouvrant la voie à un concept de refroidissement actif des puces électroniques, tirant directement parti de la chaleur dissipée pour son alimentation grâce aux deux procédés préalablement étudiés, la problématique de l’intensification des transferts de chaleur au sein de boucles de refroidissement mécaniquement activées est abordée dans la dernière partie du mémoire. Cette activation est réalisée à l’aide d’un système d’actionnement multicellulaire réparti à base d’actionneurs piézoélectriques. Développée en étroite collaboration avec des équipes de thermodynamiciens, l’idée est de réaliser un pompage de fluide ainsi qu’une modification des échanges de chaleur au sein d’un système de transfert de chaleur en activant les parois de l’échangeur de chaleur par déformation. Le système d’actionnement préconisé est tout d’abord étudié et simulé par un calcul par éléments finis. Un prototype est construit et caractérisé sous conditions réelles dans un deuxième temps. [...] / The development and use of new materials, such as silicon carbide (SiC) and gallium nitride (GaN) has a significant increase in energy densities handled by the new components of power electronics, accompanied by an increase in compactness. Parallel to these technological advances, the widespread use of electricity as a primary energy carrier within systems increasingly distributed, including means for processing information closer to the function carried out, paving the way a new generation of highly integrated mechatronic systems. However, the emergence of these new features raises a critical question related to cooling mode thereof. This question is closely coupled to the energy aspects and their environmental impact, imposing a significant improvement in measured across the full energy function returns. It is in this context that the present study deals firstly recovery systems waste heat dissipated in power electronic systems for autonomous power sensors, where other functional systems via energy "room" and recovered. Particularly among targeted consumers, innovative features intensification electromechanically exchanges heat in heat exchangers are studied and implemented. Eventually, the idea would be to supply the operating systems for the optimization of heat exchange in the cooling system of an electronic card in the same way that heat dissipates, recovered in the form of electrical energy. To this end, various methods of conversion of heat into electricity are considered, modeled and implemented in the course of this work. Two complementary types of energy conversion are considered in turn : The thermoelectric conversion effect by using the Seebeck effect which takes place in the presence of a temperature gradient and the pyroelectric effect that appears in the presence of temporal variation of the temperature. These two phenomena are analyzed and described using physical and behavioral models, including an experimental approach requiring the establishment of specific test benches. The electricity recovered by pyroelectric conversion is then formatted with recovery systems, low voltage specially developed threshold. The feasibility of remote sensors autonomous supply, where emission (point) measuring systems, is then demonstrated concretely based on the results systems. Paving the way to a concept of active cooling computer chips, drawing directly from the heat dissipated for food through two methods previously studied the problem of intensification of heat transfer in cooling loops mechanically activated is discussed in the latter part of the memory. This activation is carried out using a distributed drive system multicellular based piezoelectric actuators. Developed in close collaboration with teams of thermodynamics, the idea is to provide a fluid pump and a change of heat transfer in a heat transfer system by activating the walls of the heat exchanger deformation. The operating system is called first studied and simulated by a finite element calculation. A prototype is built and characterized under actual conditions in a second time. The multicellular actuating system composed of a plurality of actuators and a supply system configurable multipath is then integrated into an exchange of heat testbed specifically developed. This experience is a fundamental first step in the development of electroactive systems, potentially autonomous, allowing the intensification of heat exchange in cooling loops for high-performance power electronics.
153

Nanostructurization of Transition Metal Silicides for High Temperature Thermoelectric Materials

Perumal, Suresh January 2012 (has links) (PDF)
Transition Metal Silicides (TMS) are well known refractory materials because of their high thermal and structural stability at elevated temperature. In addition TMS materials are known for their moderate thermoelectric applications at high temperature since they exhibit superior semiconducting behavior. But TMS materials have relatively higher thermal conductivity which limits their applications in the field of thermoelectrics. So it is important to reduce their thermal conductivity to enhance conversion efficiency. In this regard, the work is performed to reduce the thermal conductivity of selected silicides such as CrSi2, MnSi2, and β-FeSi2 through alloys scattering and nano-structuring by mechanical alloying. A brief introduction about basic principles of thermoelectricity and related parameters are described in the chapter 1. Thermoelectric material’s figure of merit (zT) depends on the ratio of carrier charge transport and thermal energy transport. The conversion efficiency can be significantly enhanced by increasing the zT value. This chapter discusses the methods to increase the zT and list out some of the state-of-art of thermoelectric materials which possesses high zT value. Chapter 2 covers the preparation of selected silicides, such as CrSi2, MnSi2 and β-FeSi2, and the characterization techniques used to define the thermoelectric performance. In this chapter the suitability and the performance of transition metal silicides for high temperature thermoelectric application are discussed. In summary, the objective of the thesis has been framed. Chapter 3 deals with thermoelectric properties of pure and Mn, Al doped chromium disilicide (CrSi2). This chapter has been divided into three parts and discussed the effect of composition variation (CrSi1.90-2.10), point defects (by introducing Al at Si site), and mass-fluctuation scattering (by co-substitution of Mn and Al) on thermoelectric properties of polycrystalline CrSi2 in the temperature range of 300K-800K. In the first part, it is observed that CrSi2 has a homogeneity range of CrSi1.95-CrSi2.02. The secondary phases evolve above and below this homogeneity range. These secondary phases significantly scatter phonons and reduce the thermal conductivity. In the second part, Al has been introduced at Si site in CrSi2 and creates the point defects which is also scatter the short wavelength phonons and lead to low thermal conductivity. The third part explores the influence of co-substitution of Mn at Cr site and Al at Si site on lattice thermal conductivity. Here, substitution of Al creates point defects and addition of Mn leads to mass fluctuation scattering. These combined effects result in huge reduction in lattice thermal conductivity and thereby enhanced the zT. Chapter 4 deals with efforts of nano-structuring the CrSi2 through Mechanical Alloying (MA) using SS (stainless steel) and WC (Tungsten Carbide) milling media. The effects of two milling media on crystallite size reduction are discussed. It is seen that as milling time increases the rate of crystallite size reduction also increases. The X-ray diffraction studies of hot pressed pellets show the formation of secondary metallic phase like Cr1-xFexSi from SS milled samples and CrSi from WC milled samples. It indicates that CrSi2 gains metallic Fe atoms during mechanical alloying and the secondary phases are formed. As milling time increases it is observed that weight loss from the milling balls also increases. The Fe content coming from SS ball forms a solid solution with CrSi phase. The transport properties like resistivity, Seebeck coefficient and thermal conductivity were measured for milled samples from 300K-800K. It is observed that formation of the secondary metallic phase reduces resistivity and Seebeck coefficient of overall ceramics. Very large reduction in thermal conductivity was found for samples which were 15hrs-WC-milled (7.4 W/m.K at 375K) due to increased phonon scattering by grain boundaries. The 15hrs-SS-milled samples show thermal conductivity ~10 W/m.K which is considerably low as compared to the as-cast CrSi2 (13.5 W/m.K). This chapter explores the structural studies and mechano-chemical decomposition of CrSi2. In addition, the influences of mechanical milling media and micron size secondary phase on transport properties of CrSi2 are also discussed. Chapter 5 deals with the influence of microstructures of MnSi2 densified by hot uni-axial pressing (HP) and spark plasma sintering (SPS) on thermoelectric properties. The effects of these densification processes on arresting the grain growth during sintering are explored. The powder X-ray diffraction studies show higher manganese silicide (HMS) with secondary Si phase. The SEM and EPMA results confirmed the presence of Si phase. The TEM micrographs are shown the particle size distribution of HMS to be <200nm with fine precipitates of Si, of 5-10nm size, in the HMS matrix. The ball milled samples of MnSi2 showed increase in resistivity and Seebeck coefficient with large reduction in total thermal conductivity as compared to that seen in as-cast sample. The SPS densified samples show lower thermal conductivity, with reduction by about 52%, as compared to HP sample’s (45%) reduction for same conditions. An enhancement in zT by 73% could be achieved for the SPS densified for 2 min at 1060˚C. Chapter 6 examines (i) the decomposition of α–FeSi2, generally known as α-Fe2Si5, (eutectoid reaction) into β-FeSi2 with Si dispersoids (ii) formation of β-FeSi2 from ε-FeSi and α-Fe2Si5 (peritectoid reaction). This is accompanied by a discussion of the microstructural effect on thermoelectric properties. Prolonged annealing of peritectoid composition decomposes the α– FeSi2 phase, replaces the ε–FeSi phase, and forms pure β-FeSi2 whereas eutectoid composition of α–FeSi2 decomposes into lamellar structure of β-FeSi2 and Si dispersions. The aging heat treatment carried out for composition prepared from eutectoid reaction at various temperatures (600°C, 700°C, 800°C and 850°C for duration of 100hrs, 10hrs, 4hrs and 10hrs, respectively) below the equilibrium eutectoid temperature were found to have fine and homogenous dispersions of Si particles. The XRD and SEM studies confirmed the presence of a secondary Si phase on the matrix of β-FeSi2 for the heat treated eutectoid composition. The excess Si phase in β-FeSi2 increases the resistivity and Seebeck coefficient by the reducing carrier concentration of system as compared to those that of pure β-FeSi2, which is prepared from peritectoid composition. The samples heat treated at 600°C showed relatively low thermal conductivity as compared to that of β-FeSi2. This chapter gives a route map for reducing the thermal conductivity by micro structural engineering through Si dispersions on β-FeSi2. In addition, this comparison of two the decomposition processes and its influence on the microstructure and thermoelectric properties is made. Chapter 7 summarizes the key conclusions of the work performed in this thesis. The work reported in this thesis has been carried out by the candidate as a part of Ph.D training programme. He hopes that this would constitute a worthwhile contribution to the field of thermoelectrics for understanding the (i) effect of alloy scattering, (ii) mass fluctuation scattering, (iii) and nano-structuring of transition metal silicides for high temperature thermoelectric materials.
154

Microstructure Design And Interfacial Effects On Thermoelectric Properties Of Bi-Sb-Te System

Femi, Olu Emmanuel 06 1900 (has links) (PDF)
Climate change is a subject of deep distress in today’s world. Over dependence on hydrocarbon has resulted in serious environmental problems. Rising sea level, global warming and ozone layer depletion are the mainstream of any discuss world over. The collective goal of cutting carbon emission by the year 2020has prompted the search for clean, alternative energy sources. This effort are already yielding good reward as other forms of energy such as solar, wind, nuclear and hydro have received huge investment and renew interest over the past decade. Thermoelectric materials over the past decades have been tipped to replace conventional means of power generations as these materials have the ability to convert heat to electrical energy and vice versa. They are simple, have no moving parts and use no greenhouse gases. But the major drawback of these materials is their low conversion efficiency. Hence there is a need to enhance the efficiency of thermoelectric material to fulfill their undeniable potentials. A parameter called the thermoelectric figure of merit, ZT defines the efficiency of a thermoelectric material. ZT relates three non-mutually exclusive transport properties namely Seebeck coefficient, electrical conductivity and thermal conductivity. Efficient thermoelectric material should possess high Seebeck coefficient, high electrical conductivity and low thermal conductivity. Hence, one of the interesting ideas in the area of thermoelectric research is the concept of designing a bulk material with high density of phonon scattering centers so has to reduce the lattice contribution to thermal conductivity but at the same time have minimum impact oncharge carriers. This is usually achieved by utilizing interphase and grain boundaries which are localized defects to scatter phonons. The volume fraction of the grain/interphase boundaries can be control through phase modification and microstructure design. This thesis is centered on Bi-Sb-Te systems which are the present room temperature state of the earth thermoelectric material. The investigation revolves around developing a new kind of microstructure in the well-studied Bi-Sb-Te system that shows tremendous potential as a means to reduce lattice contribution to thermal conductivity. The idea of having both p and n-type thermoelectric material preferably from the same material was also a motivation in our investigation. The thesis isdivided into six chapters. The first chapter introduces the concept of thermoelectricity i.e. the direct conversion of thermal energy into electricity. The physics involved and contribution of individual to the science of thermoelectricity were enumerated. Efficiency, optimization and material selection for better thermoelectric performance were briefly enumerated. Prospective materials that are currently been investigated for better thermoelectric properties were also mentioned. The structure of the Bi-Sb-Te system which is the focus of this thesis is present in this chapter including doping effect on the thermoelectric performance of the system as well as the various methods present been employed to improve the thermoelectric properties of the system. Finally the chapter enumerates the scope and object of the present thesis. The different experimental procedures adopted in the present thesis arediscussed in chapter 2. The details of different processing routes followed to synthesize flame-melted ingots, flame-melted + low temperature milled (cryo milling) + spark plasma sintering (SPS) alloy and flame-melted + melt spinning + spark plasma sintering (SPS) alloy, are discussed followed by the various structural and functional characterization techniques. The unique advantage of the spark plasma sintering techniques over the conventional sintering method was talked out in detail. The structural characterizations performed on the synthesized alloys include XRD, SEM and whilethe functional characterizations comprised of Hall measurement, Seebeck coefficient, electrical resistivity and thermal conductivity measurements. Thermoelectric properties of selected composition of Bi-Sb-Te synthesized via flame-melting are presented in chapter 3.Detail study of four analyzed compositions namelyBi24Sb20Te56, Bi20Sb12Te69, Bi16Sb5Te79 and Bi29Sb11Te60resulted in four unique microstructure and different volume fraction of primary and secondary phases. The resultant morphologies of the microstructure were observed to have influence the thermoelectric behavior corresponding to each composition. The sole influence of anti-structural defects on the conductivity type and the role of microstructure morphologies and length scale were understood in this chapter. Samples with segregated Te and a solid solution BiSbTe3(eutectic morphology) form an n-type thermoelectric material while samples with only solid solution BiSbTe3 forms a p-type thermoelectric material. Pair of n-type and p-type material was obtained without the introduction of external dopant.The pair shows good compatibility factorsuitable for thermoelectric device. In chapter 4, the thermoelectric properties of four selected composition of Bi-Sb-Te synthesized via low temperature milling plus spark plasma sintering is addressed. The analyzed compositions are as follows Bi24Sb20Te56, Bi18Sb11Te71, Bi17Sb6Te77, and Bi28Sb15Te57 respectively. The effect of low temperature milling combine with the prospect of minimum grain growth of spark plasma sintering on the thermoelectric properties of the selected compositions were determined. Samples with eutectic morphology which would otherwise scatter charge carriers were observed to have the highest carrier mobility as a result of high volume fraction of Te phase which serves as a donor injecting excess electrons into the system. The impact of small grain size was observed on the transport properties of the sample Bi28Sb15Te57 with the highest electrical resistivity, the best Seebeck coefficient and the lowest thermal conductivity. Pair of n-type and p-type material was obtained without the introduction of external doping elements. The pairshows good compatibility factor suitable for segmented thermoelectric device. Chapter 5 narrates the thermoelectric properties of four compositions namely Bi30Sb13Te58, Bi23Sb13Te65, Bi18Sb5Te77 and Bi23Sb20Te58subjected to melt spinning plus spark plasma sintering.High cooling rate obtained during melt spinning process was observed in this chapter to cause a shift of composition which resulted in a microstructure morphology with eutectic colonies that is predominantly Te rich. These Te rich colonies in the sample Bi30Sb13Te58 was observed to change the conductivity type of the sample from an otherwise p-type to n-type while also aiding bipolar conduction which was detrimental to the overall thermoelectric performance of the alloy. Segregated Te in the form of eutectic morphology helps to inject excess electron into the bulk of the sample Bi23Sb13Te65 and Bi18Sb5Te77hereby increases the observed electrical conductivity which by virtue of the microstructure morphology is expected to be low. As a result of the processing routes, all four compositions in this chapter shown-type conductivity. Chapter 6 presents the summary of the important conclusions drawn from this work.
155

Caractérisation du transfert de matière par condensation sur une plaque horizontale / Characterization of mass transfer by condensation on a horizontal plate

Tiwari, Akhilesh 21 December 2011 (has links)
La réussite du développement de vols spatiaux de longue durée, ainsi que de l’établissement de stations permanentes nécessite des systèmes fermés autonomes bien contrôlés. L’optimisation d’une boucle fermée d’un système support vie bio-régénératif, impose le contrôle de l’hydrodynamique et des transferts de chaleur et de masse couplés qui se développent au sein d’un habitacle spatial comprenant des hommes ou des plantes. Un protocole expérimental (expérience terrestre et méthode de mesure) a été conçu pour quantifier les vitesses de l’air et les transferts hétérogènes qui se développent par condensation d’air humide sur une surface plate horizontale de petite taille (25 cm2), en conditions contrôlées (régime d’écoulement, hygrométrie, température). Une surface active était maintenue isotherme sous le point de rosée par thermoélectricité et le flux de masse était mesuré par pesée. Un tunnel climatique a été utilisé pour générer des écoulements laminaires ou faiblement turbulents. Environ 70 expériences de condensation ont été réalisées à température ambiante (19-23°C) avec une humidité relative de 35-65 % et pour des vitesses comprises entre 1.0 et 3.0 m/s. Le dispositif de condensation a un comportement de type profil épais pour l’écoulement et les coefficients de transferts de masse ont été évalués. L’augmentation de l’intensité de l’écoulement se traduit par une dépendance du nombre de Sherwood en Re2/3. Une relation empirique est proposée pour estimer la température de la surface. Le comportement de l’écoulement au sein de la couche limite et de la croissance des gouttes sur la surface de la plaque sont discutées. Ce travail expérimental sera utile pour le développement de modèles théoriques adaptés à d’autres géométries. / For the development of successful long term space flights, and the establishment of permanent bases in space, a well controlled self sustained closed environment is required. In order to optimize a closed-loop bio-regenerative life support system, it is necessary to control the hydrodynamics and the coupled heat and mass transfer, which develop in a space habitat concerned with humans and plants. We have designed a ground based experimental setup and protocol to measure the air flow velocities and concomitant mass transfer by condensation of water vapour from humid air on a horizontal flat plate of small size (area 25 cm2), in a controlled air flow conditions (flow regime, hygrometry, temperature). An active isothermal surface was kept below the dew point, by using thermoelectricity, and precise weighing of the condensate in order to evaluate the rate of mass flux. An air-conditioned closed circuit wind tunnel has been used to produce laminar to weakly turbulent flows. Almost 70 condensation experiments have been performed at an ambient temperature (19-23 °C) for a relative humidity between 35-65 %, and for the velocity range 1.0-3.0 m/s. The condensing unit behaves as a blunt-faced body and mass transfer coefficients were deduced. When increasing the flow intensity it was found that the Sherwood number had a dependence on Re2/3. An empirical relation was proposed to estimate the surface temperature. The flow behaviour within the boundary layer and the analysis of the drop growth on the flat plate surface under weakly turbulent flows has been discussed. This experimental work will be helpful to develop theoretical models for further studies with other geometries.
156

Nanomatériaux pour applications thermoélectriques / Nanomatetials for thermoelectric applications

Vo, Thi Thanh Xuan 17 September 2015 (has links)
Les nano-composés de type Sn1-xTaxO2 (0 ≤ x ≤ 0,03) ont été étudiés en vue de leurs propriétés thermoélectriques. Une méthode de co-précipitation a été utilisée pour synthétiser des nano-poudres ayant une taille des grains moyenne d’environ 3 nm. L’étude structurale et microstructurale a suggéré une limite de solubilité pour le Ta de 0,008 ≤ x < 0,010. Ces nano-poudres ont été ensuite densifiées par Spark Plasma Sintering, avec des compacités atteignant ~ 95%. Le dopage en Ta a permis une amélioration des propriétés thermoélectriques du SnO2 et, en accord avec la limite de solubilité, une valeur maximale du facteur de mérite de 4,7x10-5 K-1 a été observée pour l’échantillon x = 0,008. De plus, nous avons démontré qu’une diminution de la taille des grains permettait d’améliorer le coefficient Seebeck, de diminuer la conductivité thermique, mais conduisait à une diminution de la conductivité électrique. La stabilité des oxydes, notamment à l'échelle nanométrique, est remise en question par des caractérisations physico-chimiques. Partant de ces matériaux à base de SnO2, un nano-composite (ZnO-SnO2) a été étudié. Le composé Zn1-xGdxO (0 ≤ x ≤ 0,03) a été préparé par la méthode de Péchini et caractérisé en comparant avec d’autres matériaux à base de ZnO. Un premier test de nano-composite M30 (30% en masse Sn0.996Ta0.004O2 et 70% en masse Zn0.997Gd0.003O) a été mené. Le résultat obtenu a montré qu’une concentration de nano-inclusion Sn0.996Ta0.004O2 de 30 % ne permettait pas d’améliorer les propriétés thermoélectriques du nano-composite M30, par rapport aux matériaux de départ. / The nano-compound Sn1-xTaxO2 (0 ≤ x ≤ 0.03) was studied with a view to their thermoelectric properties. A method of co-precipitation was used to synthesize nano-powders having an average grain size of about 3 nm. The structural and microstructural study suggested a solid solubility limit of 0.008 ≤ x < 0.010. These nano-powders were then densified by Spark Plasma Sintering, with density reaching ~ 95%. The doping of Ta improved the thermoelectric properties, and in good agreement with the solubility limit, a maximum value of the factor of merit of 4.7x10-5 K-1 was observed for the sample x = 0.008. The stability of oxides, particularly at the nanoscale, is questioned by physicochemical characterizations. From these SnO2-based materials, a nano-composite (ZnO-SnO2) was studied. The compound Zn1-xGdxO (0 ≤ x ≤ 0.03) was prepared by the method of Pechini and characterized by comparing with other ZnO-based materials. A first test of nano-composite M30 (30 wt% Sn0.996Ta0.004O2 and 70 wt% Zn0.997Gd0.003O) was conducted. The result showed that a concentration of 30% nano-inclusion Sn0.996Ta0.004O2 did not allow to improve the thermoelectric properties of nano-composite M30, compared to the starting materials.
157

Forêt de nanofils semiconducteurs pour la thermoélectricité / Forest of semiconducting nanowires for thermoelectricity

Singhal, Dhruv 20 May 2019 (has links)
La conversion thermoélectrique a suscité un regain d'intérêt en raison des possibilités d'augmenter l'efficacité tout en exploitant les effets de taille. Par exemple, les nanofils montrent théoriquement une augmentation des facteurs de puissance ainsi qu'une réduction du transport des phonons en raison d'effets de confinement et/ou de taille. Dans ce contexte, le diamètre des nanofils devient un paramètre crucial à prendre en compte pour obtenir des rendements thermoélectriques élevés. Une approche habituelle consiste à réduire la conductivité thermique phononique dans les nanofils en améliorant la diffusion sur les surfaces tout en réduisant les diamètres.Dans ce travail, la caractérisation thermique d'une forêt dense de nanofils de silicium, germanium, silicium-germanium et alliage Bi2Te3 est réalisée par une méthode 3-omega très sensible. Ces forêts de nanofils pour le silicium, le germanium et les alliages silicium-germanium ont été fabriqués selon une technique "bottom-up" suivant le mécanisme Vapeur-Liquide-Solide en dépôt chimique en phase vapeur. La croissance assistée par matrice et la croissance par catalyseurs en or des nanofils à diamètres contrôlés ont été réalisés à l'aide d'alumine nanoporeuse comme matrice. Les nanofils sont fabriqués selon la géométrie interne des nanopores, dans ce cas le profil de surface des nanofils peut être modifié en fonction de la géométrie des nanopores. Profitant de ce fait, la croissance à haute densité de nanofils modulés en diamètre a également été démontrée, où l'amplitude et la période de modulation peuvent être facilement contrôlées pendant la fabrication des matrices. Même en modulant les diamètres pendant la croissance, les nanofils ont été structurellement caractérisés comme étant monocristallins par microscopie électronique à transmission et analyse par diffraction des rayons X.La caractérisation thermique de ces nanofils a révélé une forte diminution de la conductivité thermique en fonction du diamètre, dont la réduction était principalement liée à une forte diffusion par les surfaces. La contribution du libre parcours moyen à la conductivité thermique observée dans ces matériaux "bulk" varie beaucoup, Bi2Te3 ayant une distribution en libre parcours moyen (0,1 nm à 15 nm) très faible par rapport aux autres matériaux. Même alors, des conductivités thermiques réduites (~40%) ont été observées dans ces alliages attribuées à la diffusion par les surfaces et par les impuretés. D'autre part, le silicium et le germanium ont une conductivité thermique plus élevée avec une plus grande distribution de libre parcours moyen. Dans ces nanofils, une réduction significative (facteur 10 à 15 ) a été observée avec une forte dépendance avec la taille des nanofils.Alors que les effets de taille réduisent la conductivité thermique par une meilleure diffusion sur les surfaces, le dopage de ces nanofils peut ajouter un mécanisme de diffusion par différence de masse à des échelles de longueur atomique. La dépendance en température de la conductivité thermique a été déterminée pour les nanofils dopés de silicium afin d'observer une réduction de la conductivité thermique à une valeur de 4,6 W.m-1K-1 dans des nanofils de silicium fortement dopés avec un diamètre de 38 nm. En tenant compte de la conductivité électrique et du coefficient Seebeck calculé, on a observé un ZT de 0,5. Avec l'augmentation significative de l'efficacité du silicium en tant que matériau thermoélectrique, une application pratique réelle sur les appareils n'est pas loin de la réalité. / Thermoelectric conversion has gained renewed interest based on the possibilities of increasing the efficiencies while exploiting the size effects. For instance, nanowires theoretically show increased power factors along with reduced phonon transport owing to confinement and/or size effects. In this context, the diameter of the nanowires becomes a crucial parameter to address in order to obtain high thermoelectric efficiencies. A usual approach is directed towards reducing the phononic thermal conductivity in nanowires by achieving enhanced boundary scattering while reducing diameters.In this work, thermal characterisation of a dense forest of silicon, germanium, silicon-germanium and Bi2Te3 alloy nanowires is done through a sensitive 3ω method. These forest of nanowires for silicon, germanium and silicon-germanium alloy were grown through bottom-up technique following the Vapour-Liquid-Solid mechanism in Chemical vapour deposition. The template-assisted and gold catalyst growth of nanowires with controlled diameters was achieved with the aid of tuneable nanoporous alumina as templates. The nanowires are grown following the internal geometry of the nanopores, in such a case the surface profile of the nanowires can be modified according to the fabricated geometry of nanopores. Benefiting from this fact, high-density growth of diameter-modulated nanowires was also demonstrated, where the amplitude and the period of modulation can be easily tuned during the fabrication of the templates. Even while modulating the diameters during growth, the nanowires were structurally characterised to be monocrystalline through transmission electron microscopy and X-ray diffraction analysis.The thermal characterisation of these nanowires revealed a strong diameter dependent decrease in the thermal conductivity, where the reduction was predominantly linked to strong boundary scattering. The mean free path contribution to the thermal conductivity observed in the bulk of fabricated nanowire materials vary a lot, where Bi2Te3 has strikingly low mean free path distribution (0.1 nm to 15 nm) as compared to the other materials. Even then, reduced thermal conductivities (~40%) were observed in these alloys attributed to boundary and impurity scattering. On the other hand, silicon and germanium have higher thermal conductivity with a larger mean free path distribution. In these nanowires, a significant reduction (10-15 times) was observed with a strong dependence on the size of the nanowires.While size effects reduce the thermal conductivity by enhanced boundary scattering, doping these nanowires can incorporate mass-difference scattering at atomic length scales. The temperature dependence of thermal conductivity was determined for doped nanowires of silicon to observe a reduction in thermal conductivity to a value of 4.6 W.m-1K-1 in highly n-doped silicon nanowires with 38 nm diameter. Taking into account the electrical conductivity and calculated Seebeck coefficient, a ZT of 0.5 was observed. With these significant increase in the efficiency of silicon as a thermoelectric material, a real practical application to devices is not far from reality.
158

Développement d'une approche multi-échelle de modélisation de dispositifs thermoélectriques : application à des systèmes de capteurs sans fils autonomes sur le corps humain / Development of a multiscale approach for thermoelectric devices modelling : application to wearable wireless autonomous sensors systems

Bella, Malika 14 December 2016 (has links)
Les dispositifs thermoélectriques, basés sur la conversion d'énergie thermique, offrent des perspectives intéressantes pour le développement de systèmes autonomes. Les principaux défis pour le développement de telles technologies reposent sur l'obtention de dispositifs flexibles, écologiquement et économiquement viables pouvant alimenter des appareils électroniques à faible consommation d'énergie. Le but de cette thèse a donc été de proposer une méthodologie pour l'analyse globale de dispositifs thermoélectriques pour des applications à température ambiante. Dans un premier temps, une approche multi-échelle pour la modélisation de dispositifs thermoélectriques a été développée. A cet effet, trois niveaux d'abstraction ont été considérés. A l'échelle du système, un modèle compact a été développé afin d'évaluer les performances du dispositif dans son environnement. A l'échelle du dispositif, des prototypes virtuels de TEG ont été évalués par le biais de la simulation numérique. A l'échelle des matériaux, la DFT combinée à une approche semi-classique basée sur l'équation de transport de Boltzmann ont été utilisées afin de calculer les propriétés électroniques. La tétraédrite et la famatinite ont été sélectionnées en raison de leurs propriétés prometteuses à température ambiante ainsi que de leur abondance et faible coût. Dans un second temps, des travaux expérimentaux sur la synthèse de nanoparticules de Cu-Sb-S ont été menés. Des nanoparticules quasi-monodisperses avec des tailles inférieures à 50 nm ont été obtenues grâce à la mise au point d'un procédé basé sur la synthèse solvothermale avec surfactant, une méthode faible coût et facilement adaptable à grande échelle. / Thermoelectric devices, capitalizing on waste heat conversion, offer good prospects for the development of autonomous systems. The main challenges for technology development are to obtain flexible, environmentally friendly and low-cost thermoelectric devices with performances sufficient enough to power small electronic devices. The aim of this thesis was thus to propose a methodology for the global analysis of thermoelectric devices for ambient temperature applications. The developed methodology enables the evaluation of key parameters impact on the global system. First, a multiscale approach for thermoelectric devices modelling is developed. In this scope, three parallel levels of modeling are addressed. At the system level, a compact model is developed in order to evaluate overall system efficiency as a function of the thermal environment. At the device level, virtual prototypes of printed devices are built and their performances are evaluated via a finite-element simulation tool. Low temperature gradient has to be dealt with by appropriate architecture design. At the material level, quantum DFT is used in conjunction with semi-classical approach using Boltzmann transport theory to calculate electronic properties. Tetrahedrite and famatinite compounds are chosen due to their promising thermoelectric properties at room temperature and their relative abundance and low cost. Secondly, an experimental work has been conducted on the synthesis of sulphide nanoparticles. Quasi-monodisperse nanoparticles with a size not exceeding 50 nm have successfully been fabricated via a low cost and easily scalable surfactant assisted solvothermal technique.
159

Zum thermischen Widerstand von Silicium-Germanium-Hetero-Bipolartransistoren / The thermal resistance of silicon-germanium heterojunction bipolar transistors

Korndörfer, Falk 10 November 2014 (has links) (PDF)
Der thermische Widerstand ist eine wichtige Kenngröße von Silicium-Germanium-Hetero-Bipolartransistoren (SiGe-HBTs). Bisher kam es bei der quantitativen Bestimmung der thermischen Widerstände von SiGe-HBTs zu deutlichen Abweichungen zwischen Simulation und Messung. Der Unterschied zwischen Simulation und Messung betrug bei den untersuchten HBTs mehr als 30 Prozent. Diese Arbeit widmet sich der Aufklärung und Beseitigung der möglichen Ursachen hierfür. Zu diesem Zweck werden als erstes die Messmethoden analysiert. Es zeigt sich, dass die bisher verwendete Extraktionsmethode sensitiv auf den Early-Effekt (Basisweitenmodulation) reagiert. Im Rahmen der Untersuchungen wurde ein neues Extraktionsverfahren entwickelt. Die neue Extraktions­methode ist unempfindlich gegenüber dem Early-Effekt. Mit Bauelemente­simulationen wird erstmalig die Wirkung des Seebeck-Effektes (Thermospannungen) auf die elektrisch extrahierten thermischen Widerstände demonstriert. Der Seebeck-Effekt bewirkt, dass die elektrisch extrahierten thermischen Widerstände der untersuchten HBTs nahezu 10 Prozent kleiner als die erwarteten Werte sind. Dieser Effekt wurde bisher nicht beachtet und wird hier erstmals nachgewiesen. Weiterhin wird die Abhängigkeit des thermischen Widerstandes vom Arbeitspunkt untersucht. Dabei hat sich gezeigt, dass bis zu einer Basis-Emitter-Spannung von 0,91 Volt die geometrische Form des Wärme abgebenden Gebietes unabhängig vom Arbeitspunkt ist. Anhand von Messungen wird gezeigt, dass die Dotierung die spezifische Wärmeleitfähigkeit von Silicium reduziert. Die Abnahme wird für Dotierungen größer als 1*1019 cm‑3 deutlich sichtbar. Ist die Dotierung größer als 1*1020 cm‑3, beträgt die Abnahme der spezifischen Wärmeleitfähigkeit mehr als 75 Prozent. Mithilfe einer Simulatorkalibrierung wird die spezifische Wärmeleitfähigkeit als Funktion der Dotierung bestimmt. Die erhaltene Funktion kann künftig beim thermischen Entwurf von HBTs verwendet werden. Somit können zukünftig genauere Vorhersagen zum thermischen Widerstand der HBTs gemacht werden. Dies ermöglicht zuverlässigere Aussagen darüber, wie Änderungen des Transistordesigns zur Minimierung des thermischen Widerstandes beitragen. / The thermal resistance is an important parameter of silicon-germanium heterojunction bipolar transistors (SiGe HBTs). Until now, the quantitative determination of the thermal resistance showed significant differences between measurements and simulations. The difference between simulation and measurement of the investigated HBTs was more than 30 percent. This thesis devotes the clarification and elimination of potential sources for it. For this purpose, the measurement methods are analyzed at first. It is shown, that the currently used extraction method is sensitive to the Early effect (basewidth modulation). A now extraction method was developed, which is not sensitive to the Early effect. For the first time, the influence of the Seebeck effect (thermoelectric voltages) on the electrically extracted thermal resistance is shown by device simulations. The Seebeck effect leads to a 10 percent lower extracted thermal resistances compared to the expected values of the investigated HBTs. This effect was not taken into account up to now and is demonstrated here for the first time. Furthermore, the dependence of the thermal resistance on the operating point was investigated. The results show that the shape of the heat source is independent of the operating point if the base emitter voltage is smaller than 0.91 volt. The thermal conductivity of silicon is decreased by increasing doping concentrations. This is shown by measurements. The reduction of the thermal conductivity is well observable for doping concentrations higher than 1*1019 cm‑3. For doping concentration higher than 1*1020 cm‑3 the reduction amounts to more than 75 percent. The thermal conductivity was determined as a function of the doping concentration with the aid of a simulator calibration. This function can be used in the future thermal design of HBTs. It facilitates the optimization of the HBTs with respect to a minimal thermal resistance.
160

Contribution à l’étude électrochimique du système P2-NaxCoO2 : synthèse et caractérisation de nouveaux oxydes lamellaires ordonnés (A/A’)CoO2 (A, A’ = Li, Na, Ag) / Electrochemical study of the P2-NaxCoO2 system : synthesis and characterizations of new ordered lamellar oxides (A/A')CoO2 (A,A'=Li, Na, Ag)

Berthelot, Romain 03 December 2010 (has links)
Selon le taux de sodium, par exemple de bonnes caractéristiques thermoélectriques pour les phases riches en sodium, ainsi que la supraconductivité pour certaines compositions (x ~ 0.3) hydratées, en font un exemple de choix pour étudier les corrélations entre la structure et les propriétés. La première partie de ce travail utilise l’électrochimie et la technique de batteries au sodium pour explorer en détail et de manière continue le diagramme de phase de ce système (pour x ≥ 0.5), en particulier avec un suivi in situ par diffraction des rayons X de l’intercalation d’ions sodium. Les compositions monophasées sont caractérisées par un potentiel électrochimique propre, et leur stabilité thermique relative est étudiée lors de cyclages à différentes températures.Dérivant de P2-NaxCoO2, le système ordonné OP4-(Li/Na)CoO2 se caractérise également par des propriétés thermoélectriques remarquables. La seconde partie de ce travail approfondit la connaissance de ce système caractérisé par une intercalation alternée des ions lithium et sodium. A partir de cet empilement, par des échanges ioniques topotactiques, trois nouveaux empilements théoriquement simulés sont expérimentalement mis en évidence et caractérisés. Il s’agit des polytypes inédits O4-LiCoO2 et D4-AgCoO2, ainsi que de l’empilement OD4-(Li/Ag)CoO2, premier exemple d’une intercroissance NaCl / delafossite au sein d’une même structure lamellaire. / The P2-NaxCoO system exhibits various outstanding physical phenomena such as promising thermoelectric properties (for x ~ 0.7) and superconductivity for hydrated compositions. The first part of the present study uses electrochemistry through sodium batteries to deeply explore the P2-NaxCoO2 phase diagram (for x ≥ 0.5) in a continuous way, with especially an in situ XRD experiment that follows sodium ions intercalation. Peculiar single-phase compositions are characterized by a specific electrochemical voltage, and their relative thermal stability is studied through electrochemical cycling at various temperatures.The second part of this project deals with the ordered OP4-(Li/Na)CoO2 system which also exhibits promising thermoelectric features. Its structure is characterized by an alternate intercalation of lithium and sodium ions. Using this system, topotactic ionic exchanges enable to obtain three new stackings, O4-LiCoO2, D4-AgCoO2, and the OD4-(Li/Ag)CoO2 which are first simulated, experimentally evidenced and then characterized. The OD4 stacking is thefirst example of a NaCl / delafossite intergrowth in the same layered structure.

Page generated in 0.075 seconds