• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 9
  • 8
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 48
  • 48
  • 20
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Epigenetic Alterations of Toll-Like Receptors by TET2 in Spontaneous Preterm Labor

Chumble, Anuja 01 January 2014 (has links)
Increasing evidence implicates the presence of bacteria in intrauterine tissues as an important risk factor for spontaneous preterm labor. Epigenetic alterations of innate immunity genes may increase the mother’s sensitivity to subclinical levels of bacteria. This study examined the presence of TET2, TLR-2, and TLR-9 in intrauterine tissue, and evaluated whether epigenetic alterations of these genes, as well as IL-8, changed their expression in human decidual tissue and a macrophage cell culture. Immunohistochemicalstaining was used to detect the presence of these proteins in intrauterine tissue. Gene expression changes were evaluated in stimulated monocytes and macrophages. Fluorescence immunohistochemistry was used to track translocation of TET2 in stimulated monocytes and macrophages. Secreted IL-8 concentration was detected with ELISA. Decidual expression of TET2, TLR-2, and TLR-9 increased in the order TNL < TL < sPTL < iPTL. This study found that TET2, TLR-2, TLR-9, and IL-8 are regulated by epigenetic mechanisms. This study was the first to report activation of TET2 involves its translocation from the cytosol to the nucleus in macrophages.
42

18F-markierte S100-Proteine als potentielle Radioliganden für die funktionelle Charakterisierung des Rezeptors für advanced glycation endproducts (RAGE) in vitro und in vivo

Hoppmann, Susan 06 October 2009 (has links) (PDF)
Die Interaktion von S100-Proteinen mit dem Rezeptor für advanced glycation endproducts (RAGE) wird als hoch relevant bei der Entstehung, Manifestation und Progression verschiedener entzündlicher Erkrankungen sowie bei der Tumorigenese gewertet. Das tiefergehende Verständnis der Interaktion von S100-Proteinen mit RAGE in vivo stellt eine wissenschaftliche Herausforderung dar und ist ein Ansatz für therapeutische Interventionen. Darüber hinaus stellen Untersuchungen zum Metabolismus von extrazellulär zirkulierenden S100-Proteinen in vivo einen vielversprechenden Forschungsansatz zur Analyse von S100-Protein-assoziierten Erkrankungen dar. Die einzigartigen Eigenschaften der Positronen-Emissions-Tomographie (PET) als nicht-invasives bildgebendes Verfahren erlauben die Darstellung und quantitative Erfassung biochemischer Prozesse mit der Möglichkeit zelluläre und molekulare Reaktionswege aufzuzeigen sowie in vivo-Mechanismen von Krankheiten im Kontext eines physiologischen Umfeldes darzulegen. Ziel der vorliegenden Arbeit war es, Fluor-18-markierte S100-Proteine (18F-S100) herzustellen, diese biochemisch, radiochemisch und radiopharmakologisch zu charakterisieren und deren Metabolismus und Interaktion mit RAGE in vivo mittels Kleintier-PET am Tiermodell zu untersuchen. Es wurden die mit RAGE interagierenden S100-Proteine S100A1, S100A12 und S100B in biologisch funktioneller Form hergestellt. Dazu wurden die entsprechenden S100-Gene in den prokaryotischen Expressionsvektor pGEX-6P-1 kloniert. Mit diesen Konstrukten wurden E. coli-Zellen transformiert, aus denen nachfolgend die S100-Proteine isoliert und gereinigt werden konnten. Es konnte eine Reinigung unter nativen, milden Bedingungen etabliert werden, die es ermöglichte, S100A1, S100A12 und S100B in biologisch aktiver Form und in hohen Reinheitsgraden (&amp;gt; 95%) für die nachfolgenden Experimente bereitzustellen. Diese S100-Proteine wurden über den 18F-tragenden Aktivester N-Succinimidyl-4-[18F]fluorbenzoesäure ([18F]SFB) radioaktiv markiert und charakterisiert. Dabei konnte sichergestellt werden, dass die 18F-S100-Proteine in vitro und in vivo stabil sind. Weiterhin konnte nachgewiesen werden, dass die radioaktive Markierung keine Beeinträchtigung auf die biologische Funktionalität der S100-Proteine hat. Dies wurde anhand von sRAGE-Bindungsuntersuchungen sowie Zell-Interaktionsuntersuchungen an konfluenten Endothelzellen (HAEC) und an zu Makrophagen differenzierten THP-1-Zellen (THP-1-Makrophagen) verifiziert. Für die Untersuchung der RAGE-Bindung war die Produktion des löslichen sRAGE bzw. die Generation von flRAGE-berexprimierenden Zellen erforderlich. Beide Konstrukte wurden in geeigneten Zellsystemen exprimiert und das sRAGE-Protein wurde in biologisch aktiver Form synthetisiert und gereinigt (Reinheitsgrad &amp;gt; 97%). Die 18F-S100-Bindung an THP-1-Makrophagen und HAEC wurde in Gegenwart von glykierten LDL (glykLDL) sowie sRAGE signifikant inhibiert, was auf eine RAGE-Interaktion hinweist. Weiterhin konnten durch den Einsatz von Scavenger-Rezeptor-Liganden, wie z. B. Maleinanhydrid-modifiziertes BSA (malBSA) bzw. von Lektinen inhibierende Effekte erzielt werden. Dies ist ein Indiz für die 18F-S100-Interaktion mit Scavenger-Rezeptoren und Glykokonjugaten an der Zelloberfläche. Durch die Untersuchungen mittels konfokaler Laserscanning-Mikroskopie an THP-1-Makrophagen wurde eine Zellaufnahme des Fluoreszein-markierten S100A12 festgestellt. Weiterhin konnten Kolokalisationen mit Lektinen detektiert werden. Das metabolische Schicksal extrazellulär zirkulierender 18F-S100-Proteine in vivo wurde mit Hilfe dynamischer PET-Untersuchungen bzw. anhand von Bioverteilungs-Untersuchungen in männlichen Wistar-Ratten analysiert. Die Hauptakkumulation der Radioaktivität wurde in der Leber und in den Nieren detektiert. In diesen Organen findet der Metabolismus bzw. die glomeruläre Filtration der 18F-S100-Proteine statt. In den Untersuchungen zur Genexpression mittels Echtzeit-PCR sowie im immunchemischen Proteinnachweis am Western Blot wurde eine hohe Expression und Proteinbiosynthese des RAGE in der Lunge ermittelt. Die Lunge eignet sich daher als „Referenz“-Organ für eine funktionelle in vivo-Charakterisierung von RAGE mit 18FS100-Proteinen. Bei den durchgeführten PET-Untersuchungen konnte eine temporäre 18F-S100-Interaktion mit dem Lungengewebe festgestellt werden. Die Retention des 18FS100A12 in der Lunge wurde in Gegenwart von sRAGE inhibiert. Dies ist ein Hinweis dafür, dass 18F-S100-Proteine auch in vivo an RAGE binden können. Die Radioaktivitäts-Akkumulation in den Organen Leber und Milz, die eine Vielzahl von sessilen Makrophagen aufweisen, wurde durch die Applikation von malBSA inhibiert. Dies ist ein Indiz dafür, dass 18F-S100-Proteine in vivo mit Scavenger-Rezeptoren interagieren können. Die vorliegende Arbeit liefert deutliche Hinweise darauf, dass RAGE nicht der alleinige Rezeptor für 18F-S100-Proteine ist. Der Einsatz von 18F-S100-Proteinen als experimentelles Werkzeug in dynamischen PET-Untersuchungen birgt das Potential einer Charakterisierung von S100-Protein-assoziierten, pathophysiologischen Prozessen. / Members of the S100 family of EF-hand calcium binding proteins play important regulatory roles not only within cells but also exert effects in a cytokine-like manner on definite target cells once released into extracellular space or circulating blood. Accordingly, increased levels of S100 proteins in the circulating blood have been associated with a number of disease states, e.g., diabetes, cancer, and various inflammatory disorders. As the best known target protein of extracellular S100 proteins, the receptor for advanced glycation endproducts (RAGE) is of significant importance. However, the role of extracellular S100 proteins during etiology, progression, and manifestation of inflammatory disorders still is poorly understood. One reason for this is the shortage of sensitive methods for direct assessment of the metabolic fate of circulating S100 proteins and, on the other hand, measurement of functional expression of extracellular targets of S100 proteins, e.g., RAGE in vivo. In this line, small animal PET provides a valuable tool for noninvasive imaging of physiological processes and interactions like plasma or vascular retention, tissue-specific receptor binding, accumulation or elimination in vivo. To address this question, human S100 proteins were cloned in the bacterial expression vector pGEX-6P-1, expressed in E. coli BL21, and purified by affinity chromatography and anion exchange chromatography. Purified S100A1, S100B and S100A12 proteins were then radiolabeled with the positron emitter fluorine-18 (18F) by N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). Radiolabeling of S100 proteins resulted in radiochemical yields of 3-10% (corrected for decay) and effective specific radioactivities of 1 GBq/µmol, respectively. For investigations about RAGE binding soluble RAGE (sRAGE) was expressed and purified using pSecTag2B. A radioligand binding assay confirmed specific binding of 18F-S100A12, 18F-S100A1, and 18F-S100B to immobilized sRAGE, also showing an order of affinity with S100A12 &amp;gt; S100A1 &amp;gt; S100B. These results indicate that radioactive labelling of S100 proteins did not affect their overall affinity to RAGE. Cellular association studies in human THP-1 macrophages and human aortic endothelial cells (HAEC) showed specific binding of all 18F-S100 proteins to the non-internalizing RAGE as confirmed by inhibitory effects exerted either by other RAGE ligands, e.g., glycated LDL, or by soluble RAGE. Of interest, 18F-S100 proteins were also shown to interact with other putative binding sites, e.g. scavenger receptors as well as proteoglycans. In this line, uptake of 18F-S100 proteins in THP-1 and HAEC could be inhibited by various scavenger receptor ligands, in particular by maleylated BSA as well as by lectines (e.g. ConA and SBA). Confocal laser scanning microscopy analysis showed a major part of the fluoresceinated S100A12 bound to the surface of THP-1 macrophages. Beyond this, uptake of S100A12 could be determined indicating an interaction of S100A12 with both non-internalizing, e.g., RAGE, and internalizing receptors, e.g. scavenger receptors. By evaluation of the relative contribution of 18F-S100A12 association to RAGE-overexpressed CHO cells (using pIres2-AcGFP1), 18F-S100A12 showed a significantly higher association to CHO-RAGE cells compared with CHO-mock cells. Based on these findings and due to their crucial role in inflammatory disorders the metabolic fate of S100 proteins was further investigated in dynamic small animal Positron emission tomography (PET) studies as well as in biodistribution studies in Wistar rats in vivo. For interpretation of in vivo investigations in rats, expression of RAGE was analyzed by quantitative real time RT-PCR as well as western blotting in various organs. Lung tissue expressed the highest level of RAGE protein compared to the other tissues. PET studies in rats revealed a comparatively long mean residence time of circulating 18F-S100 proteins. A major contributor to this phenomenon seems to be a sustained temporary interaction with tissues overexpressing RAGE, e.g., the lung. On the other hand, renal clearance of 18F-S100 via glomerular filtration is a major elimination pathway. However, scavenger receptor-mediated pathways in the liver, the spleen and, to a minor extent, in the kidneys, also seem to contribute to the overall clearance. The presence of sRAGE revealed a decreased retention of 18F-S100A12 in the lung, indicating in vivo binding to RAGE. In vivo blocking studies using maleylated BSA demonstrated a strong inhibition of putative binding sites in rat tissues enriched in cells expressing scavenger receptors like liver and spleen. In conclusion, 18F-labeling of S100 proteins and the use of small animal PET provide a valuable tool to discriminate the kinetics and the metabolic fate of S100 proteins in vivo. Furthermore, the results strongly suggest an involvement of other putative receptors beside RAGE in distribution, tissue association and elimination of circulating proinflammatory S100 proteins. Moreover, the approach provides novel probes for imaging of functional expression of RAGE and scavenger receptors in peripheral inflammatory compartments.
43

Criblage d’activités biologiques de plantes endémiques ou indigènes de La Réunion - Recherche de molécules antivirales ciblant le virus du chikungunya / Screening of biological activities of endemic or indigenous plants of La Réunion - Research of antiviral molecules targeting the chikungunya virus

Techer, Sophie 26 April 2013 (has links)
Ce travail de thèse s'attache à identifier des plantes et/ou molécules à activités cytotoxique, antioxydante, anti-inflammatoire et antivirale ciblant le virus du chikungunya (CHIKV) dans le but de trouver des alternatives thérapeutiques vis-à-vis du stress oxydatif et de l'inflammation, mécanismes impliqués dans les maladies chroniques non transmissibles (diabète, obésité…), et de la maladie du chikungunya, maladie vectorielle réémergente. La première partie de ces travaux présente les résultats obtenus lors d'un criblage d'activités biologiques réalisé sur une sélection de dix-huit plantes endémiques et indigènes de La Réunion. Les activités ciblées ont été les activités cytotoxiques sur une lignée cellulaire humaine (cellules THP-1), les activités antioxydantes évaluées par un test in cellulo d'hémolyse et par quatre tests chimiques (TEAC/DPPH/FRAP/ORAC) ainsi qu'une évaluation de la teneur en composés phénoliques (test FOLIN) et les activités anti-inflammatoires testées sur des macrophages murins (cellules RAW-BlueTM). Les résultats obtenus ont permis de mettre, plus particulièrement, en évidence les activités de différents extraits : cytotoxique pour Carissa spinarum, antioxydantes pour Agarista buxifolia et Dryopteris wallichiana et anti-inflammatoire pour Stillingia lineata et Indigofera ammoxylum. La deuxième partie du travail est consacrée à l'étude phytochimique d'une espèce indigène de La Réunion, Stillingia lineata, choisie en raison des résultats obtenus lors de ce criblage biologique préliminaire et de ceux du programme Phytochik. Un fractionnement bioguidé par un test antiviral, réalisé sur des cellules Vero (cellules rénales de singe vert Cercopithecus aethiops) contaminées par le CHIKV, a conduit à l'isolement de trois macrocycles diterpéniques rares de type tonantzitlolone dont l'un présente une structure non caractérisée jusque-là, et d'un pimarane de structure nouvelle. La 4'-acétoxytonantzitlolone a été identifiée comme molécule candidate contre le CHIKV (CE50 = 7 μM). Des relations structure-activité ont pu être définies ; la présence d'un groupement oxygéné sur la chaîne latérale des tonantzitlolones semble jouer un rôle important sur la réponse antivirale de ces squelettes diterpéniques. / The aims of this PhD work were to identify plants and/or molecules with cytotoxic, antioxidant, anti-inflammatory or antiviral (chikungunya virus , CHIKV) activities in order to find therapeutic alternatives towards oxidative stress and inflammation, mechanisms involved in chronic noncommunicable diseases (diabetes, obesity ...), and chikungunya disease, reemerging vector-borne disease. The first part of this work presents the results obtained from a biological screening carried out on a selection of eighteen endemic and indigenous plants of La Réunion. The targeted activities were cytotoxicity on a human cell line (THP-1), antioxidant activities evaluated using an in cellulo hemolysis assay and four chemical tests (TEAC / DPPH / FRAP / ORAC) together with an evaluation of the content of phenolic compounds (FOLIN test) and anti-inflammatory activity tested in murine macrophages (RAW cells-BlueTM). The results allowed to highlight activities of different extracts in particular : cytotoxic for Carissa spinarum, antioxidant for Dryopteris wallichiana and Agarista buxifolia and anti-inflammatory for Stillingia lineata and Indigofera ammoxylum.The second part of this work is devoted to the phytochemical study of Stillingia lineata, an indigenous species of La Réunion chosen because of the results obtained in this preliminary biological screening and those carried out in Phytochik programme. Bioassay-guided fractionation performed on Vero cells (green monkey kidney cells Cercopithecus aethiops) infected with CHIKV led to the isolation of three rare macrocycle-type diterpenes called tonantzitlolone and a new pimarane. The 4'-acetoxytonantzitlolone was identified as a candidate molecule against CHIKV (EC50 = 7 μM). Structure-activity relationships have been defined, the presence of an oxygenated group on the side chain of tonantzitlolones seems to play an important role in the antiviral response of the diterpene skeleton.
44

18F-markierte S100-Proteine als potentielle Radioliganden für die funktionelle Charakterisierung des Rezeptors für advanced glycation endproducts (RAGE) in vitro und in vivo

Hoppmann, Susan 11 September 2009 (has links)
Die Interaktion von S100-Proteinen mit dem Rezeptor für advanced glycation endproducts (RAGE) wird als hoch relevant bei der Entstehung, Manifestation und Progression verschiedener entzündlicher Erkrankungen sowie bei der Tumorigenese gewertet. Das tiefergehende Verständnis der Interaktion von S100-Proteinen mit RAGE in vivo stellt eine wissenschaftliche Herausforderung dar und ist ein Ansatz für therapeutische Interventionen. Darüber hinaus stellen Untersuchungen zum Metabolismus von extrazellulär zirkulierenden S100-Proteinen in vivo einen vielversprechenden Forschungsansatz zur Analyse von S100-Protein-assoziierten Erkrankungen dar. Die einzigartigen Eigenschaften der Positronen-Emissions-Tomographie (PET) als nicht-invasives bildgebendes Verfahren erlauben die Darstellung und quantitative Erfassung biochemischer Prozesse mit der Möglichkeit zelluläre und molekulare Reaktionswege aufzuzeigen sowie in vivo-Mechanismen von Krankheiten im Kontext eines physiologischen Umfeldes darzulegen. Ziel der vorliegenden Arbeit war es, Fluor-18-markierte S100-Proteine (18F-S100) herzustellen, diese biochemisch, radiochemisch und radiopharmakologisch zu charakterisieren und deren Metabolismus und Interaktion mit RAGE in vivo mittels Kleintier-PET am Tiermodell zu untersuchen. Es wurden die mit RAGE interagierenden S100-Proteine S100A1, S100A12 und S100B in biologisch funktioneller Form hergestellt. Dazu wurden die entsprechenden S100-Gene in den prokaryotischen Expressionsvektor pGEX-6P-1 kloniert. Mit diesen Konstrukten wurden E. coli-Zellen transformiert, aus denen nachfolgend die S100-Proteine isoliert und gereinigt werden konnten. Es konnte eine Reinigung unter nativen, milden Bedingungen etabliert werden, die es ermöglichte, S100A1, S100A12 und S100B in biologisch aktiver Form und in hohen Reinheitsgraden (&amp;gt; 95%) für die nachfolgenden Experimente bereitzustellen. Diese S100-Proteine wurden über den 18F-tragenden Aktivester N-Succinimidyl-4-[18F]fluorbenzoesäure ([18F]SFB) radioaktiv markiert und charakterisiert. Dabei konnte sichergestellt werden, dass die 18F-S100-Proteine in vitro und in vivo stabil sind. Weiterhin konnte nachgewiesen werden, dass die radioaktive Markierung keine Beeinträchtigung auf die biologische Funktionalität der S100-Proteine hat. Dies wurde anhand von sRAGE-Bindungsuntersuchungen sowie Zell-Interaktionsuntersuchungen an konfluenten Endothelzellen (HAEC) und an zu Makrophagen differenzierten THP-1-Zellen (THP-1-Makrophagen) verifiziert. Für die Untersuchung der RAGE-Bindung war die Produktion des löslichen sRAGE bzw. die Generation von flRAGE-berexprimierenden Zellen erforderlich. Beide Konstrukte wurden in geeigneten Zellsystemen exprimiert und das sRAGE-Protein wurde in biologisch aktiver Form synthetisiert und gereinigt (Reinheitsgrad &amp;gt; 97%). Die 18F-S100-Bindung an THP-1-Makrophagen und HAEC wurde in Gegenwart von glykierten LDL (glykLDL) sowie sRAGE signifikant inhibiert, was auf eine RAGE-Interaktion hinweist. Weiterhin konnten durch den Einsatz von Scavenger-Rezeptor-Liganden, wie z. B. Maleinanhydrid-modifiziertes BSA (malBSA) bzw. von Lektinen inhibierende Effekte erzielt werden. Dies ist ein Indiz für die 18F-S100-Interaktion mit Scavenger-Rezeptoren und Glykokonjugaten an der Zelloberfläche. Durch die Untersuchungen mittels konfokaler Laserscanning-Mikroskopie an THP-1-Makrophagen wurde eine Zellaufnahme des Fluoreszein-markierten S100A12 festgestellt. Weiterhin konnten Kolokalisationen mit Lektinen detektiert werden. Das metabolische Schicksal extrazellulär zirkulierender 18F-S100-Proteine in vivo wurde mit Hilfe dynamischer PET-Untersuchungen bzw. anhand von Bioverteilungs-Untersuchungen in männlichen Wistar-Ratten analysiert. Die Hauptakkumulation der Radioaktivität wurde in der Leber und in den Nieren detektiert. In diesen Organen findet der Metabolismus bzw. die glomeruläre Filtration der 18F-S100-Proteine statt. In den Untersuchungen zur Genexpression mittels Echtzeit-PCR sowie im immunchemischen Proteinnachweis am Western Blot wurde eine hohe Expression und Proteinbiosynthese des RAGE in der Lunge ermittelt. Die Lunge eignet sich daher als „Referenz“-Organ für eine funktionelle in vivo-Charakterisierung von RAGE mit 18FS100-Proteinen. Bei den durchgeführten PET-Untersuchungen konnte eine temporäre 18F-S100-Interaktion mit dem Lungengewebe festgestellt werden. Die Retention des 18FS100A12 in der Lunge wurde in Gegenwart von sRAGE inhibiert. Dies ist ein Hinweis dafür, dass 18F-S100-Proteine auch in vivo an RAGE binden können. Die Radioaktivitäts-Akkumulation in den Organen Leber und Milz, die eine Vielzahl von sessilen Makrophagen aufweisen, wurde durch die Applikation von malBSA inhibiert. Dies ist ein Indiz dafür, dass 18F-S100-Proteine in vivo mit Scavenger-Rezeptoren interagieren können. Die vorliegende Arbeit liefert deutliche Hinweise darauf, dass RAGE nicht der alleinige Rezeptor für 18F-S100-Proteine ist. Der Einsatz von 18F-S100-Proteinen als experimentelles Werkzeug in dynamischen PET-Untersuchungen birgt das Potential einer Charakterisierung von S100-Protein-assoziierten, pathophysiologischen Prozessen. / Members of the S100 family of EF-hand calcium binding proteins play important regulatory roles not only within cells but also exert effects in a cytokine-like manner on definite target cells once released into extracellular space or circulating blood. Accordingly, increased levels of S100 proteins in the circulating blood have been associated with a number of disease states, e.g., diabetes, cancer, and various inflammatory disorders. As the best known target protein of extracellular S100 proteins, the receptor for advanced glycation endproducts (RAGE) is of significant importance. However, the role of extracellular S100 proteins during etiology, progression, and manifestation of inflammatory disorders still is poorly understood. One reason for this is the shortage of sensitive methods for direct assessment of the metabolic fate of circulating S100 proteins and, on the other hand, measurement of functional expression of extracellular targets of S100 proteins, e.g., RAGE in vivo. In this line, small animal PET provides a valuable tool for noninvasive imaging of physiological processes and interactions like plasma or vascular retention, tissue-specific receptor binding, accumulation or elimination in vivo. To address this question, human S100 proteins were cloned in the bacterial expression vector pGEX-6P-1, expressed in E. coli BL21, and purified by affinity chromatography and anion exchange chromatography. Purified S100A1, S100B and S100A12 proteins were then radiolabeled with the positron emitter fluorine-18 (18F) by N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). Radiolabeling of S100 proteins resulted in radiochemical yields of 3-10% (corrected for decay) and effective specific radioactivities of 1 GBq/µmol, respectively. For investigations about RAGE binding soluble RAGE (sRAGE) was expressed and purified using pSecTag2B. A radioligand binding assay confirmed specific binding of 18F-S100A12, 18F-S100A1, and 18F-S100B to immobilized sRAGE, also showing an order of affinity with S100A12 &amp;gt; S100A1 &amp;gt; S100B. These results indicate that radioactive labelling of S100 proteins did not affect their overall affinity to RAGE. Cellular association studies in human THP-1 macrophages and human aortic endothelial cells (HAEC) showed specific binding of all 18F-S100 proteins to the non-internalizing RAGE as confirmed by inhibitory effects exerted either by other RAGE ligands, e.g., glycated LDL, or by soluble RAGE. Of interest, 18F-S100 proteins were also shown to interact with other putative binding sites, e.g. scavenger receptors as well as proteoglycans. In this line, uptake of 18F-S100 proteins in THP-1 and HAEC could be inhibited by various scavenger receptor ligands, in particular by maleylated BSA as well as by lectines (e.g. ConA and SBA). Confocal laser scanning microscopy analysis showed a major part of the fluoresceinated S100A12 bound to the surface of THP-1 macrophages. Beyond this, uptake of S100A12 could be determined indicating an interaction of S100A12 with both non-internalizing, e.g., RAGE, and internalizing receptors, e.g. scavenger receptors. By evaluation of the relative contribution of 18F-S100A12 association to RAGE-overexpressed CHO cells (using pIres2-AcGFP1), 18F-S100A12 showed a significantly higher association to CHO-RAGE cells compared with CHO-mock cells. Based on these findings and due to their crucial role in inflammatory disorders the metabolic fate of S100 proteins was further investigated in dynamic small animal Positron emission tomography (PET) studies as well as in biodistribution studies in Wistar rats in vivo. For interpretation of in vivo investigations in rats, expression of RAGE was analyzed by quantitative real time RT-PCR as well as western blotting in various organs. Lung tissue expressed the highest level of RAGE protein compared to the other tissues. PET studies in rats revealed a comparatively long mean residence time of circulating 18F-S100 proteins. A major contributor to this phenomenon seems to be a sustained temporary interaction with tissues overexpressing RAGE, e.g., the lung. On the other hand, renal clearance of 18F-S100 via glomerular filtration is a major elimination pathway. However, scavenger receptor-mediated pathways in the liver, the spleen and, to a minor extent, in the kidneys, also seem to contribute to the overall clearance. The presence of sRAGE revealed a decreased retention of 18F-S100A12 in the lung, indicating in vivo binding to RAGE. In vivo blocking studies using maleylated BSA demonstrated a strong inhibition of putative binding sites in rat tissues enriched in cells expressing scavenger receptors like liver and spleen. In conclusion, 18F-labeling of S100 proteins and the use of small animal PET provide a valuable tool to discriminate the kinetics and the metabolic fate of S100 proteins in vivo. Furthermore, the results strongly suggest an involvement of other putative receptors beside RAGE in distribution, tissue association and elimination of circulating proinflammatory S100 proteins. Moreover, the approach provides novel probes for imaging of functional expression of RAGE and scavenger receptors in peripheral inflammatory compartments.
45

Identification et caractérisation de gènes chez Salmonella enterica sérovar Typhi impliqués dans l’interaction avec les macrophages humains.

Sabbagh, Sébastien 07 1900 (has links)
Le genre bactérien Salmonella regroupe plus de 2500 sérovars, mais peu sont responsables de pathologies humaines. Salmonella enterica sérovar Typhi (S. Typhi) est reconnu pour son importance médicale à travers le globe. S. Typhi cause la fièvre typhoïde chez l’Homme, une maladie infectieuse létale caractérisée par la dissémination systémique de la bactérie vers des organes du système réticulo-endothélial. La fièvre typhoïde représente un fardeau pour la santé mondiale, notamment auprès des pays en développement où les conditions sanitaires sont désuètes. La situation se complique davantage par l’apparition de souches résistantes aux antibiotiques. De plus, les deux vaccins licenciés sont d’efficacité modérée, présentent certaines contraintes techniques et ne sont pas appropriés pour les jeunes enfants et nourrissons. La phase systémique de l’infection par Salmonella repose sur sa survie dans les macrophages du système immunitaire. Dans ce compartiment intracellulaire, la bactérie module les défenses antimicrobiennes grâce à de multiples facteurs de virulence encodés dans son génome. Les mécanismes moléculaires sollicités sont complexes et finement régulés. Malgré les progrès scientifiques réalisés précédemment, plusieurs incompréhensions persistent au sujet de l’adaptation de ce pathogène dans les macrophages de l’hôte. Pour mieux concevoir les déterminants génétiques de S. Typhi impliqués dans l’interaction avec ces cellules, une stratégie de sélection négative a été appliquée afin de vérifier systématiquement l’effet direct des gènes pendant l’infection. En premier temps, une librairie de mutants par transposon chez S. Typhi a été créée pour l’infection de macrophages humains en culture. Après 24 heures d’infection, la présence des mutants fut évaluée simultanément par analyse sur des biopuces de Salmonella. Au total, 130 gènes ont été sélectionnés pour leur contribution potentielle auprès des macrophages infectés. Ces gènes comptaient des composantes d’enveloppe bactérienne, des éléments fimbriaires, des portions du flagelle, des régulateurs, des facteurs de pathogenèse et plusieurs protéines sans fonction connue. En deuxième temps, cette collection de gènes a dirigé la création de 28 mutants de délétion définie chez S. Typhi. Les capacités d’entrée et de réplication intracellulaire de ces mutants au sein des macrophages humains ont été caractérisées. D’abord, les macrophages ont été co-infectés avec les mutants en présence de la souche sauvage, pour vérifier la compétitivité de chacun d’eux envers cette dernière. Ensuite, les mutants ont été inoculés individuellement chez les macrophages et leur infectivité fut mesurée comparativement à celle de la souche sauvage. Sommairement, 26 mutants ont présenté des défauts lorsqu’en compétition, tandis que 14 mutants se sont montrés défectueux lorsque testés seuls. Par ailleurs, 12 mutants ont exposé une déficience lors de l’infection mixte et individuelle, incluant les mutants acrA, exbDB, flhCD, fliC, gppA, mlc, pgtE, typA, waaQGP, STY1867-68, STY2346 et SPI-4. Notamment, 35 nouveaux phénotypes défectueux d’entrée ou de survie intracellulaire chez Salmonella ont été révélés par cette étude. Les données générées ici offrent plusieurs nouvelles pistes pour élucider comment S. Typhi manipule sa niche intracellulaire, menant à l’infection systémique. Les gènes décrits représentent des cibles potentielles pour atténuer la bactérie chez l’humain et pourraient contribuer au développement de meilleures souches vaccinales pour immuniser contre la fièvre typhoïde. / The bacterial genus Salmonella holds over 2500 serovars, but few are responsible for human pathologies. Salmonella enterica serovar Typhi (S. Typhi) is recognized across the globe for its medical importance. S. Typhi causes typhoid fever in humans, a lethal infectious disease characterized by systemic dissemination of the bacteria to organs of the reticulo-endothelial system. Typhoid fever represents a burden for public health, notably in developing countries where sanitary conditions are obsolete. The situation is further complicated by the appearance of strains resistant to antibiotics. Moreover, both of the licensed vaccines are of moderate efficiency, present certain technical constraints and are not appropriate for young children and newborns. The systemic phase of infection by Salmonella relies on its survival within macrophages of the immune system. In this intracellular compartment, the bacterium modulates antimicrobial defenses thanks to multiple virulence factors encoded within its genome. Molecular mechanisms taking place are complex and finely regulated. Despite scientific advances made previously, many misunderstandings persist concerning the adaptation of this pathogen within host macrophages. To better conceive the genetic determinants of S. Typhi involved in interaction with these cells, a negative selection strategy was applied to systematically verify the direct effect of genes during infection. Firstly, a library of transposon insertion mutants in S. Typhi was created for infection of cultured human macrophages. After 24 hours of infection, the presence of mutants was evaluated simultaneously by analysis on Salmonella microarrays. In total, 130 genes were selected for their potential contribution within infected macrophages. These genes included bacterial envelope components, fimbrial elements, portions of the flagellum, regulators, pathogenesis factors, and many proteins of unknown function. Secondly, this collection of genes led to the creation of 28 defined deletion mutants in S. Typhi. The ability of entry and intracellular replication of these mutants within human macrophages were characterized. To start, macrophages were coinfected with mutants in the presence of the wild-type strain, in order to verify the competitiveness of each of them against the latter. Then, mutants were inoculated individually into macrophages and their infectiveness was measured in comparison with the wild-type strain. In summary, 26 mutants presented defects when in competition, whereas 14 mutants were shown defective when tested alone. Furthermore, 12 mutants exposed a deficiency during mixed and individual infection experiments, including mutants acrA, exbDB, flhCD, fliC, gppA, mlc, pgtE, typA, waaQGP, STY1867-68, STY2346, and SPI-4. In particular, 35 new defective phenotypes of Salmonella entry or intracellular survival were revealed in this study. Data generated here provides significant novel insight for elucidating how S. Typhi manipulates its intracellular niche, leading to systemic infection. Genes described represent potential targets for attenuating the bacteria in the human host and could contribute to the development of better vaccine strains to immunize against typhoid fever.
46

Caractérisation des fonctions de transport du cholestérol des sous-types de macrophages M1 et M2 issus de cellules THP-1

Renaud, Julien 06 1900 (has links)
No description available.
47

Identification et caractérisation de gènes chez Salmonella enterica sérovar Typhi impliqués dans l’interaction avec les macrophages humains

Sabbagh, Sébastien 07 1900 (has links)
No description available.
48

Influence of Nrf2 Activators and Keap1 Inhibitors on Antioxidative Phenotypes of THP-1-Derived M1 and M2 macrophages: Therapeutic Potential for Systemic Lupus Erythematosus

Svahn, Leo January 2023 (has links)
POPULAR SCIENTIFIC SUMMARY Systemic lupus erythematosus (SLE) is not your average disorder. It behaves like a mischievous troublemaker, wreaking havoc throughout the body, causing inflammation that affects multiple organs. SLE presents a puzzle that keeps health care professionals worldwide intrigued, searching for answers amidst its complex of immunologic manifestations and clinical symptoms. While we’ve made progress in understanding SLE, its specific cause remains a mystery. What we do know is that SLE triggers a fascinating interplay between genetic, hormonal, and environmental factors in susceptible individuals. Macrophages, specialized white blood cells, can be likened to moody actors on a stage wearing different masks and wielding functional props. Among them are M1 macrophages, fiery troublemakers who provoke pro-inflammatory responses, and M2 macrophages, peacemakers striving for balance by generating anti-inflammatory responses. Then there is NRF2, the vigilante, normally held by its captor, KEAP1. However, when cells stress NRF2 manages to break free from KEAP1 and spring into action, embarking on a crucial journey into the cell nucleus where DNA is stored. Once inside, NRF2 binds specific regions of the DNA, promoting genes associated with protective activities, including antioxidative responses and detoxification processes, thereby shielding cells from further harm. Now, let us envision a therapeutic strategy that utilizes this; if we can deliberately unleashNRF2 on command, triggering a powerful cascade of antioxidative responses throughout the body,such a treatment would offer tremendous promise and serve as a paradigm for patients sufferingfrom chronic inflammation. But the question remains: Is it possible? In this study, we investigated the effects of certain chemicals on macrophages in a controlledlab environment. Our goal was to explore their potential for therapeutic purposes. Excitingly, wediscovered that these chemicals can indeed influence macrophages to produce a stronger antiinflammatory and antioxidant response. These findings could be promising for developing futuretreatments, especially in patients diagnosed with conditions such as SLE. / ABSTRACT Systemic lupus erythematosus (SLE) is a multifaceted, chronic autoimmune disorder that leads to inflammation and affects various organs. A wide range of immunologic manifestations and clinical symptoms characterizes SLE. While the specific cause remains unknown, it is thought to result from a combination of genetic susceptibility and the intricate interplay between environmental and hormonal factors. A significant subset of SLE patients also experience renal manifestation, lupus nephritis (LN), characterized by distinct inflammatory responses in which macrophages play a role. Macrophages exhibit different functional characteristics depending on their environment, and generally display two contrasting phenotypes; M1, which elicits proinflammatory responses, and M2, which generates anti-inflammatory responses Homeostasis is vital, yet environmental stress is inevitable. NRF2, a transcription factor known for its involvement in oxidative stress response, plays a pivotal role. Under basal conditions, NRF2 resides in the cytoplasm and is targeted for degradation by the protein KEAP1. However, during cellular stress, the NRF2-KEAP1 complex dissociates, allowing NRF2 to translocate into the nucleus where it binds specific regulatory regions of genes that promote cytoprotective activities. The NRF2 pathway has gained attention as a potential target for therapeutic strategies in inflammatory conditions, including SLE. This study aimed to assess the effects of certain chemical NRF2 activators and a KEAP1 inhibitor on an in vitro model of M1 and M2 macrophage polarization. The objective was to investigate whether these compounds could enhance antioxidative response. To evaluate this, key genes and proteins involved in antioxidative pathways were analyzed. Gene expression was assessed using quantitative real-time PCR (qPCR), and protein presence was determined through immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). The findings of this study indicate that stimulation of macrophage subgroups with the selected compounds promotes a shift towards anti-inflammatory and antioxidative response. / <p>Rektor tilldelade Leo Svahn stipendie Österby för <em>välartade obemedlade studier</em>.</p>

Page generated in 0.0482 seconds